
� �

Mathematical Tools

for Engineering and Management

Lecture 7

30 Nov 2011

··············



� Overview �

� Models, Data and Algorithms

� Linear Optimization

� Mathematical Background: Polyhedra, Simplex-Algorithm

� Sensitivity Analysis; (Mixed) Integer Programming

� MIP Modelling

� MIP Modelling: More Examples; Branch & Bound

� Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms

� Complexity Theory

� Nonlinear Optimization

� Scheduling

� Lot Sizing

� Multicriteria Optimization

� Oral exam
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� Even if an optimal solution is not found, branch and bound delivers an optimality
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� Comparison: MIP and other modelling approaches �

� Even if an optimal solution is not found, branch and bound delivers an optimality

certificate, that gives valuable information on the solution quality!

modelling flexibility solvability optimality certificate

LPs – ++ +++

MIPs + o ++

heuristics ++ + – –

approximation algorithms ++ + +

non-linear (convex) models + o +

non-linear (general) models ++ – o

� Tuning branch & bound:

• Order of processing the nodes (sub-problems)

• Defining sub-problems (branching)

• Cutting planes ➡ branch & cut
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� Feasible region of the LP relaxation is a

polyhedron

� In general, integer points do not lie on

the boundary
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11 � The convex hull of all integer solutions is a

polyhedron with only integer vertices

� Idea: using the simplex algorithm on

this polyhedron gives the optimal

integer solution!
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A cutting plane is an inequality that is

violated by a fractional solution but

satisfied by all integer solutions
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➡ new current solution
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linear program
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� Solving MIPs with cutting planes �

Start
Solve the LP relaxation

➡ current solution

Is current solution

integer?

STOP

current solution

is IP-optimum

Resolve linear program

➡ new current solution

Add cutting planes to

linear program

yes

no

� Problem: no method known that effectively generates all cutting planes

➡ No guarantee that the algorithm terminates

� Use cutting planes in combination with branch & bound

➡ branch & cut: generate some “promising” cutting planes in tree nodes to

improve subproblem solutions
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� Back to a previous example �

� Problem to solve: find an optimal order of welding points!
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� Travelling Salesman Problem �

Problem formulation: Given a set of cities together with travel times to travel from

every city to every other, find a tour leading through every city such that the total

travel time is minimized.
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Problem formulation: Given a set of cities together with travel times to travel from

every city to every other, find a tour leading through every city such that the total

travel time is minimized.
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� TSP – overview �

� A typical combinatorial problem...

� Complete enumeration of all possible solutions is not an option (combinatorial explosion):

# cities # possible tours time to try out all tours

5 24 0.012 milliseconds

10 362,880 0.18 seconds

15 87,178,291,200 12 hours

20 121,645,100,408,832,000 1927 years

� TSP can be formulated as a binary integer program

➡ Provides upper bounds for the solution

➡ Huge number of variables and constraints

➡ Gives optimal solutions only for instances with small number of cities

� Combinatorial algorithms are much more successful

➡ Combinatorial optimization
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best one is not an option . More efficient methods should be found.
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� What is combinatorial optimization? �

� Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer 2003:

Combinatorial optimization searches for an optimum object in a finite

collection of objects. Typically, the collection has a concise representation

(like a graph), while the number of objects is huge — more precisely, grows

exponentially in the size of the representation (like all matchings or all

Hamiltonian circuits). So scanning all objects one by one and selecting the

best one is not an option . More efficient methods should be found.

� Problems can often be solved with integer programming models

➡ Collection of objects = integer points in the feasible region

� But: usually there are special approaches that are much more efficient

� Examples: Travelling Salesman Problem, Minimum Spanning Tree, Knapsack

Problem, Shortest Path Problem, Network Flow, Matching, Stable

Set Problem, ...
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xA,C = xC,D = xD,E = xE,F = xF,B = xB,A = 1, all other variables = 0

➡ Tour length: 305
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5 24 40

10 362,880 1,042

15 87,178,291,200 32,796

20 121,645,100,408,832,000 1,048,614
...

n (n− 1)! 2n − 2 + 2n

➡ The IP formulation gives optimal solutions only for relatively small input size

(# cities < 20)

➡ To solve the TSP for larger instances

• try to find solutions by using heuristics or approximation algorithms

• use lower bounds provided by the IP model to estimate quality of solutions
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� TSP – optimal solution gallery �

1954: Dantzig et al: 49 cities 1977: Grötschel: 120 cities 1987: Padberg, Rinaldi: 532 cities

1987: Grötschel, Holland: 666 cities 1987: Padberg, Rinaldi: 2392 “cities” 1994: Applegate et al: 7397 “cities”

1998: Applegate et al: 13509 cities 2001: Applegate et al: 15112 cities 2004: Applegate et al: 24978 cities

··················
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