
� �

Mathematical Tools

for Engineering and Management

Lecture 7

30 Nov 2011

··············



� Overview �

� Models, Data and Algorithms

� Linear Optimization

� Mathematical Background: Polyhedra, Simplex-Algorithm

� Sensitivity Analysis; (Mixed) Integer Programming

� MIP Modelling

� MIP Modelling: More Examples; Branch & Bound

� Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms

� Complexity Theory

� Nonlinear Optimization

� Scheduling

� Lot Sizing

� Multicriteria Optimization

� Oral exam

··············



� Comparison: MIP and other modelling approaches �

� Even if an optimal solution is not found, branch and bound delivers an optimality

certificate, that gives valuable information on the solution quality!

··············



� Comparison: MIP and other modelling approaches �

� Even if an optimal solution is not found, branch and bound delivers an optimality

certificate, that gives valuable information on the solution quality!

modelling flexibility solvability optimality certificate

LPs – ++ +++

MIPs + o ++

heuristics ++ + – –

approximation algorithms ++ + +

non-linear (convex) models + o +

non-linear (general) models ++ – o

··············



� Comparison: MIP and other modelling approaches �

� Even if an optimal solution is not found, branch and bound delivers an optimality

certificate, that gives valuable information on the solution quality!

modelling flexibility solvability optimality certificate

LPs – ++ +++

MIPs + o ++

heuristics ++ + – –

approximation algorithms ++ + +

non-linear (convex) models + o +

non-linear (general) models ++ – o

� Tuning branch & bound:

··············



� Comparison: MIP and other modelling approaches �

� Even if an optimal solution is not found, branch and bound delivers an optimality

certificate, that gives valuable information on the solution quality!

modelling flexibility solvability optimality certificate

LPs – ++ +++

MIPs + o ++

heuristics ++ + – –

approximation algorithms ++ + +

non-linear (convex) models + o +

non-linear (general) models ++ – o

� Tuning branch & bound:

• Order of processing the nodes (sub-problems)

··············



� Comparison: MIP and other modelling approaches �

� Even if an optimal solution is not found, branch and bound delivers an optimality

certificate, that gives valuable information on the solution quality!

modelling flexibility solvability optimality certificate

LPs – ++ +++

MIPs + o ++

heuristics ++ + – –

approximation algorithms ++ + +

non-linear (convex) models + o +

non-linear (general) models ++ – o

� Tuning branch & bound:

• Order of processing the nodes (sub-problems)

• Defining sub-problems (branching)

··············



� Comparison: MIP and other modelling approaches �

� Even if an optimal solution is not found, branch and bound delivers an optimality

certificate, that gives valuable information on the solution quality!

modelling flexibility solvability optimality certificate

LPs – ++ +++

MIPs + o ++

heuristics ++ + – –

approximation algorithms ++ + +

non-linear (convex) models + o +

non-linear (general) models ++ – o

� Tuning branch & bound:

• Order of processing the nodes (sub-problems)

• Defining sub-problems (branching)

• Cutting planes ➡ branch & cut

··············



� LP relaxation �

=== cutting planes ===

··············



� LP relaxation �

=== cutting planes ===

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11

infeasible

··············



� LP relaxation �

=== cutting planes ===

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11

infeasible

� Feasible region of the LP relaxation is a

polyhedron

··············



� LP relaxation �

=== cutting planes ===

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11

infeasible

� Feasible region of the LP relaxation is a

polyhedron

� In general, integer points do not lie on

the boundary

··············



� LP relaxation �

··············



� Integer hull �

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11 � The convex hull of all integer solutions is a

polyhedron with only integer vertices

··············



� Integer hull �

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11 � The convex hull of all integer solutions is a

polyhedron with only integer vertices

� Idea: using the simplex algorithm on

this polyhedron gives the optimal

integer solution!

··············



� Integer hull – inequalities �

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11 � The integer hull is a subset of the feasible

region of the LP relaxation

··············



� Integer hull – inequalities �

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11 � The integer hull is a subset of the feasible

region of the LP relaxation

� Problem: how to find the describing

inequalities efficiently?

··············



� Integer hull – inequalities �

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11 � The integer hull is a subset of the feasible

region of the LP relaxation

� Problem: how to find the describing

inequalities efficiently?







































4xb + 7xc ≤ 70

4xb + 4xc ≤ 45

5xb + 3xc ≤ 50

xb ≥ 0

xc ≥ 0







































?
 







































2xb + 3xc ≤ 30

xb + xc ≤ 11

3xb + 2xc ≤ 30

xb ≥ 0

xc ≥ 0







































··············



� Integer hull – inequalities �

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11 � The integer hull is a subset of the feasible

region of the LP relaxation

� Problem: how to find the describing

inequalities efficiently?







































4xb + 7xc ≤ 70

4xb + 4xc ≤ 45

5xb + 3xc ≤ 50

xb ≥ 0

xc ≥ 0







































?
 







































2xb + 3xc ≤ 30

xb + xc ≤ 11

3xb + 2xc ≤ 30

xb ≥ 0

xc ≥ 0







































� Unsolved in general!

··············



� Cutting planes �

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11 � Idea: Generate only the important

inequalities – those that are violated by a

given fractional optimal solution

··············



� Cutting planes �

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11 � Idea: Generate only the important

inequalities – those that are violated by a

given fractional optimal solution

··············



� Cutting planes �

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11 � Idea: Generate only the important

inequalities – those that are violated by a

given fractional optimal solution

A cutting plane is an inequality that is

violated by a fractional solution but

satisfied by all integer solutions

··············



� Solving MIPs with cutting planes �

Start
Solve the LP relaxation

➡ current solution

Is current solution

integer?

STOP

current solution

is IP-optimum

Resolve linear program

➡ new current solution

Add cutting planes to

linear program

yes

no

··············



� Solving MIPs with cutting planes �

Start
Solve the LP relaxation

➡ current solution

Is current solution

integer?

STOP

current solution

is IP-optimum

Resolve linear program

➡ new current solution

Add cutting planes to

linear program

yes

no

� Problem: no method known that effectively generates all cutting planes

··············



� Solving MIPs with cutting planes �

Start
Solve the LP relaxation

➡ current solution

Is current solution

integer?

STOP

current solution

is IP-optimum

Resolve linear program

➡ new current solution

Add cutting planes to

linear program

yes

no

� Problem: no method known that effectively generates all cutting planes

➡ No guarantee that the algorithm terminates

··············



� Solving MIPs with cutting planes �

Start
Solve the LP relaxation

➡ current solution

Is current solution

integer?

STOP

current solution

is IP-optimum

Resolve linear program

➡ new current solution

Add cutting planes to

linear program

yes

no

� Problem: no method known that effectively generates all cutting planes

➡ No guarantee that the algorithm terminates

� Use cutting planes in combination with branch & bound

··············



� Solving MIPs with cutting planes �

Start
Solve the LP relaxation

➡ current solution

Is current solution

integer?

STOP

current solution

is IP-optimum

Resolve linear program

➡ new current solution

Add cutting planes to

linear program

yes

no

� Problem: no method known that effectively generates all cutting planes

➡ No guarantee that the algorithm terminates

� Use cutting planes in combination with branch & bound

➡ branch & cut: generate some “promising” cutting planes in tree nodes to

improve subproblem solutions

··············



� Back to a previous example �

··············



� Back to a previous example �

··············



� Back to a previous example �

� Problem to solve: find an optimal order of welding points!

··············



� Travelling Salesman Problem �

Problem formulation: Given a set of cities together with travel times to travel from

every city to every other, find a tour leading through every city such that the total

travel time is minimized.

··············



� Travelling Salesman Problem �

Problem formulation: Given a set of cities together with travel times to travel from

every city to every other, find a tour leading through every city such that the total

travel time is minimized.

Atown

Bcity

Cville

New D

Epolis

San F

6
0
→

←
6
5

100 → ← 100

50
→ ←

60

30 →

← 30

4
5
→

←
4
5

65 →

← 65

55
→

←
55

2
5
→

←
2
5

20
→ ←

20

30 →

←
30

··············



� Travelling Salesman Problem �

Problem formulation: Given a set of cities together with travel times to travel from

every city to every other, find a tour leading through every city such that the total

travel time is minimized.

Atown

Bcity

Cville

New D

Epolis

San F

6
0
→

←
6
5

100 → ← 100

50
→ ←

60

30 →

← 30

4
5
→

←
4
5

65 →

← 65

55
→

←
55

2
5
→

←
2
5

20
→ ←

20

30 →

←
30

105 → ← 110

140
→

← 140

9
5
→

←
1
0
0

105
→

←
110

120
→

←
1
2
0

··············



� Travelling Salesman Problem �

Problem formulation: Given a set of cities together with travel times to travel from

every city to every other, find a tour leading through every city such that the total

travel time is minimized.

Atown

Bcity

Cville

New D

Epolis

San F

6
0
→

←
6
5

100 → ← 100

50
→ ←

60

30 →

← 30

4
5
→

←
4
5

65 →

← 65

55
→

←
55

2
5
→

←
2
5

20
→ ←

20

30 →

←
30

105 → ← 110

140
→

← 140

9
5
→

←
1
0
0

105
→

←
110

120
→

←
1
2
0

(asymmetric TSP)

··············



� TSP – overview �

� A typical combinatorial problem...

··············



� TSP – overview �

� A typical combinatorial problem...

� Complete enumeration of all possible solutions is not an option (combinatorial explosion):

··············



� TSP – overview �

� A typical combinatorial problem...

� Complete enumeration of all possible solutions is not an option (combinatorial explosion):

# cities # possible tours time to try out all tours

5 24 0.012 milliseconds

10 362,880 0.18 seconds

15 87,178,291,200 12 hours

20 121,645,100,408,832,000 1927 years

··············



� TSP – overview �

� A typical combinatorial problem...

� Complete enumeration of all possible solutions is not an option (combinatorial explosion):

# cities # possible tours time to try out all tours

5 24 0.012 milliseconds

10 362,880 0.18 seconds

15 87,178,291,200 12 hours

20 121,645,100,408,832,000 1927 years

� TSP can be formulated as a binary integer program

··············



� TSP – overview �

� A typical combinatorial problem...

� Complete enumeration of all possible solutions is not an option (combinatorial explosion):

# cities # possible tours time to try out all tours

5 24 0.012 milliseconds

10 362,880 0.18 seconds

15 87,178,291,200 12 hours

20 121,645,100,408,832,000 1927 years

� TSP can be formulated as a binary integer program

➡ Provides upper bounds for the solution

··············



� TSP – overview �

� A typical combinatorial problem...

� Complete enumeration of all possible solutions is not an option (combinatorial explosion):

# cities # possible tours time to try out all tours

5 24 0.012 milliseconds

10 362,880 0.18 seconds

15 87,178,291,200 12 hours

20 121,645,100,408,832,000 1927 years

� TSP can be formulated as a binary integer program

➡ Provides upper bounds for the solution

➡ Huge number of variables and constraints

➡ Gives optimal solutions only for instances with small number of cities

··············



� TSP – overview �

� A typical combinatorial problem...

� Complete enumeration of all possible solutions is not an option (combinatorial explosion):

# cities # possible tours time to try out all tours

5 24 0.012 milliseconds

10 362,880 0.18 seconds

15 87,178,291,200 12 hours

20 121,645,100,408,832,000 1927 years

� TSP can be formulated as a binary integer program

➡ Provides upper bounds for the solution

➡ Huge number of variables and constraints

➡ Gives optimal solutions only for instances with small number of cities

� Combinatorial algorithms are much more successful

➡ Combinatorial optimization

··············



� What is combinatorial optimization? �

� Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer 2003:

··············



� What is combinatorial optimization? �

� Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer 2003:

Combinatorial optimization searches for an optimum object in a finite

collection of objects. Typically, the collection has a concise representation

(like a graph), while the number of objects is huge — more precisely, grows

exponentially in the size of the representation (like all matchings or all

Hamiltonian circuits). So scanning all objects one by one and selecting the

best one is not an option . More efficient methods should be found.

··············



� What is combinatorial optimization? �

� Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer 2003:

Combinatorial optimization searches for an optimum object in a finite

collection of objects. Typically, the collection has a concise representation

(like a graph), while the number of objects is huge — more precisely, grows

exponentially in the size of the representation (like all matchings or all

Hamiltonian circuits). So scanning all objects one by one and selecting the

best one is not an option . More efficient methods should be found.

� Problems can often be solved with integer programming models

··············



� What is combinatorial optimization? �

� Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer 2003:

Combinatorial optimization searches for an optimum object in a finite

collection of objects. Typically, the collection has a concise representation

(like a graph), while the number of objects is huge — more precisely, grows

exponentially in the size of the representation (like all matchings or all

Hamiltonian circuits). So scanning all objects one by one and selecting the

best one is not an option . More efficient methods should be found.

� Problems can often be solved with integer programming models

➡ Collection of objects = integer points in the feasible region

··············



� What is combinatorial optimization? �

� Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer 2003:

Combinatorial optimization searches for an optimum object in a finite

collection of objects. Typically, the collection has a concise representation

(like a graph), while the number of objects is huge — more precisely, grows

exponentially in the size of the representation (like all matchings or all

Hamiltonian circuits). So scanning all objects one by one and selecting the

best one is not an option . More efficient methods should be found.

� Problems can often be solved with integer programming models

➡ Collection of objects = integer points in the feasible region

� But: usually there are special approaches that are much more efficient

··············



� What is combinatorial optimization? �

� Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer 2003:

Combinatorial optimization searches for an optimum object in a finite

collection of objects. Typically, the collection has a concise representation

(like a graph), while the number of objects is huge — more precisely, grows

exponentially in the size of the representation (like all matchings or all

Hamiltonian circuits). So scanning all objects one by one and selecting the

best one is not an option . More efficient methods should be found.

� Problems can often be solved with integer programming models

➡ Collection of objects = integer points in the feasible region

� But: usually there are special approaches that are much more efficient

� Examples: Travelling Salesman Problem, Minimum Spanning Tree, Knapsack

Problem, Shortest Path Problem, Network Flow, Matching, Stable

Set Problem, ...

··············



� Travelling Salesman Problem �

Problem formulation: Given a set of cities together with travel times to travel from

every city to every other, find a tour leading through every city such that the total

travel time is minimized.

··············



� Travelling Salesman Problem �

Problem formulation: Given a set of cities together with travel times to travel from

every city to every other, find a tour leading through every city such that the total

travel time is minimized.

Atown

Bcity

Cville

New D

Epolis

San F

6
0
→

←
6
5

100 → ← 100

50
→ ←

60

30 →

← 30

4
5
→

←
4
5

65 →

← 65

55
→

←
55

2
5
→

←
2
5

20
→ ←

20

30 →

←
30

··············



� Travelling Salesman Problem �

Problem formulation: Given a set of cities together with travel times to travel from

every city to every other, find a tour leading through every city such that the total

travel time is minimized.

Atown

Bcity

Cville

New D

Epolis

San F

6
0
→

←
6
5

100 → ← 100

50
→ ←

60

30 →

← 30

4
5
→

←
4
5

65 →

← 65

55
→

←
55

2
5
→

←
2
5

20
→ ←

20

30 →

←
30

105 → ← 110

140
→

← 140

9
5
→

←
1
0
0

105
→

←
110

120
→

←
1
2
0

··············



� Travelling Salesman Problem �

Problem formulation: Given a set of cities together with travel times to travel from

every city to every other, find a tour leading through every city such that the total

travel time is minimized.

Atown

Bcity

Cville

New D

Epolis

San F

6
0
→

←
6
5

100 → ← 100

50
→ ←

60

30 →

← 30

4
5
→

←
4
5

65 →

← 65

55
→

←
55

2
5
→

←
2
5

20
→ ←

20

30 →

←
30

105 → ← 110

140
→

← 140

9
5
→

←
1
0
0

105
→

←
110

120
→

←
1
2
0

(asymmetric TSP)

··············



� TSP – integer variables �

V xi,j ∈ {0, 1} ➡ xi,j = 1 ⇔ tour uses route from city i to city j

··············



� TSP – integer variables �

V xi,j ∈ {0, 1} ➡ xi,j = 1 ⇔ tour uses route from city i to city j

� Example:

Atown

Bcity

Cville

New D

Epolis

San F

6
0
→

←
6
5

100 → ← 100

50
→ ←

60

30 →

← 30

4
5
→

←
4
5

65 →

← 65

55
→

←
55

2
5
→

←
2
5

20
→ ←

20

30 →

←
30

105 → ← 110

140
→

← 140

9
5
→

←
1
0
0

105
→

←
110

120
→

←
1
2
0

··············



� TSP – integer variables �

V xi,j ∈ {0, 1} ➡ xi,j = 1 ⇔ tour uses route from city i to city j

� Example:

Atown

Bcity

Cville

New D

Epolis

San F

6
0
→

←
6
5

100 → ← 100

50
→ ←

60

30 →

← 30

4
5
→

←
4
5

65 →

← 65

55
→

←
55

2
5
→

←
2
5

20
→ ←

20

30 →

←
30

105 → ← 110

140
→

← 140

9
5
→

←
1
0
0

105
→

←
110

120
→

←
1
2
0

xA,C = xC,D = xD,E = xE,F = xF,B = xB,A = 1, all other variables = 0

··············



� TSP – integer variables �

V xi,j ∈ {0, 1} ➡ xi,j = 1 ⇔ tour uses route from city i to city j

� Example:

Atown

Bcity

Cville

New D

Epolis

San F

6
0
→

←
6
5

100 → ← 100

50
→ ←

60

30 →

← 30

4
5
→

←
4
5

65 →

← 65

55
→

←
55

2
5
→

←
2
5

20
→ ←

20

30 →

←
30

105 → ← 110

140
→

← 140

9
5
→

←
1
0
0

105
→

←
110

120
→

←
1
2
0

xA,C = xC,D = xD,E = xE,F = xF,B = xB,A = 1, all other variables = 0

➡ Tour length: 305

··············



� TSP – IP model �

S Cities: C = {1, . . . , n}

··············



� TSP – IP model �

S Cities: C = {1, . . . , n}

V (usage of routes) xi,j ∈ {0, 1} for all i, j ∈ C, i 6= j

··············



� TSP – IP model �

S Cities: C = {1, . . . , n}

V (usage of routes) xi,j ∈ {0, 1} for all i, j ∈ C, i 6= j

Objective: minimize (total tour length)
∑

i,j∈C, i 6=j

ℓi,j xi,j

··············



� TSP – IP model �

S Cities: C = {1, . . . , n}

V (usage of routes) xi,j ∈ {0, 1} for all i, j ∈ C, i 6= j

Objective: minimize (total tour length)
∑

i,j∈C, i 6=j

ℓi,j xi,j

P Route lengths: ℓi,j ≥ 0 for all i, j ∈ C, i 6= j

··············



� TSP – IP model �

S Cities: C = {1, . . . , n}

V (usage of routes) xi,j ∈ {0, 1} for all i, j ∈ C, i 6= j

Objective: minimize (total tour length)
∑

i,j∈C, i 6=j

ℓi,j xi,j

P Route lengths: ℓi,j ≥ 0 for all i, j ∈ C, i 6= j

C
(city outbound) i

··············



� TSP – IP model �

S Cities: C = {1, . . . , n}

V (usage of routes) xi,j ∈ {0, 1} for all i, j ∈ C, i 6= j

Objective: minimize (total tour length)
∑

i,j∈C, i 6=j

ℓi,j xi,j

P Route lengths: ℓi,j ≥ 0 for all i, j ∈ C, i 6= j

C
(city outbound) i

∑

j 6=i

xi,j = 1 for all cities i ∈ C

··············



� TSP – IP model �

S Cities: C = {1, . . . , n}

V (usage of routes) xi,j ∈ {0, 1} for all i, j ∈ C, i 6= j

Objective: minimize (total tour length)
∑

i,j∈C, i 6=j

ℓi,j xi,j

P Route lengths: ℓi,j ≥ 0 for all i, j ∈ C, i 6= j

C
(city outbound) i

∑

j 6=i

xi,j = 1 for all cities i ∈ C

(city inbound) i

··············



� TSP – IP model �

S Cities: C = {1, . . . , n}

V (usage of routes) xi,j ∈ {0, 1} for all i, j ∈ C, i 6= j

Objective: minimize (total tour length)
∑

i,j∈C, i 6=j

ℓi,j xi,j

P Route lengths: ℓi,j ≥ 0 for all i, j ∈ C, i 6= j

C
(city outbound) i

∑

j 6=i

xi,j = 1 for all cities i ∈ C

(city inbound) i

∑

j 6=i

xj,i = 1 for all cities i ∈ C

··············



� TSP – IP model �

S Cities: C = {1, . . . , n}

V (usage of routes) xi,j ∈ {0, 1} for all i, j ∈ C, i 6= j

Objective: minimize (total tour length)
∑

i,j∈C, i 6=j

ℓi,j xi,j

P Route lengths: ℓi,j ≥ 0 for all i, j ∈ C, i 6= j

C
(city outbound) i

∑

j 6=i

xi,j = 1 for all cities i ∈ C

(city inbound) i

∑

j 6=i

xj,i = 1 for all cities i ∈ C

(one cycle!)

··············



� TSP – IP model �

S Cities: C = {1, . . . , n}

V (usage of routes) xi,j ∈ {0, 1} for all i, j ∈ C, i 6= j

Objective: minimize (total tour length)
∑

i,j∈C, i 6=j

ℓi,j xi,j

P Route lengths: ℓi,j ≥ 0 for all i, j ∈ C, i 6= j

C
(city outbound) i

∑

j 6=i

xi,j = 1 for all cities i ∈ C

(city inbound) i

∑

j 6=i

xj,i = 1 for all cities i ∈ C

(one cycle!)

✘

··············



� TSP – IP model �

S Cities: C = {1, . . . , n}

V (usage of routes) xi,j ∈ {0, 1} for all i, j ∈ C, i 6= j

Objective: minimize (total tour length)
∑

i,j∈C, i 6=j

ℓi,j xi,j

P Route lengths: ℓi,j ≥ 0 for all i, j ∈ C, i 6= j

C
(city outbound) i

∑

j 6=i

xi,j = 1 for all cities i ∈ C

(city inbound) i

∑

j 6=i

xj,i = 1 for all cities i ∈ C

(one cycle!)

✘ ➡ ?

··············



� TSP – prevent separate cycles �

A

B

C

D

E

F

···············



� TSP – prevent separate cycles �

A

B

C

D

E

F

� Force the tour to leave every subset of cities at least once

···············



� TSP – prevent separate cycles �

A

B

C

D

E

F

� Force the tour to leave every subset of cities at least once

➡
∑

i∈S, j 6∈S

xi,j ≥ 1 for all subsets S ⊂ C, ∅ 6= S 6= C

···············



� TSP – prevent separate cycles �

A

B

C

D

E

F

� Force the tour to leave every subset of cities at least once

➡
∑

i∈S, j 6∈S

xi,j ≥ 1 for all subsets S ⊂ C, ∅ 6= S 6= C

A

B

C

D

E

F

···············



� TSP – prevent separate cycles �

A

B

C

D

E

F

� Force the tour to leave every subset of cities at least once

➡
∑

i∈S, j 6∈S

xi,j ≥ 1 for all subsets S ⊂ C, ∅ 6= S 6= C

A

B

C

D

E

F

A

B

C

D

E

F

···············



� TSP – IP model �

S Cities: C = {1, . . . , n}

V (usage of routes) xi,j ∈ {0, 1} for all i, j ∈ C, i 6= j

Objective: minimize (total tour length)
∑

i,j∈C, i 6=j

ℓi,j xi,j

P Route lengths: ℓi,j ≥ 0 for all i, j ∈ C, i 6= j

C
(city outbound) i

∑

j 6=i

xi,j = 1 for all cities i ∈ C

(city inbound) i

∑

j 6=i

xj,i = 1 for all cities i ∈ C

················



� TSP – IP model �

S Cities: C = {1, . . . , n}

V (usage of routes) xi,j ∈ {0, 1} for all i, j ∈ C, i 6= j

Objective: minimize (total tour length)
∑

i,j∈C, i 6=j

ℓi,j xi,j

P Route lengths: ℓi,j ≥ 0 for all i, j ∈ C, i 6= j

C
(city outbound) i

∑

j 6=i

xi,j = 1 for all cities i ∈ C

(city inbound) i

∑

j 6=i

xj,i = 1 for all cities i ∈ C

(one cycle!)
∑

i∈S, j 6∈S

xi,j ≥ 1 for all subsets of cities

S ⊂ C, ∅ 6= S 6= C

················



� TSP – IP model size �

� Problem: the model still has exponential size!

·················



� TSP – IP model size �

� Problem: the model still has exponential size!

# cities # possible tours # constraints

5 24 40

10 362,880 1,042

15 87,178,291,200 32,796

20 121,645,100,408,832,000 1,048,614
...

n (n− 1)! 2n − 2 + 2n

·················



� TSP – IP model size �

� Problem: the model still has exponential size!

# cities # possible tours # constraints

5 24 40

10 362,880 1,042

15 87,178,291,200 32,796

20 121,645,100,408,832,000 1,048,614
...

n (n− 1)! 2n − 2 + 2n

➡ The IP formulation gives optimal solutions only for relatively small input size

(# cities < 20)

·················



� TSP – IP model size �

� Problem: the model still has exponential size!

# cities # possible tours # constraints

5 24 40

10 362,880 1,042

15 87,178,291,200 32,796

20 121,645,100,408,832,000 1,048,614
...

n (n− 1)! 2n − 2 + 2n

➡ The IP formulation gives optimal solutions only for relatively small input size

(# cities < 20)

➡ To solve the TSP for larger instances

• try to find solutions by using heuristics or approximation algorithms

·················



� TSP – IP model size �

� Problem: the model still has exponential size!

# cities # possible tours # constraints

5 24 40

10 362,880 1,042

15 87,178,291,200 32,796

20 121,645,100,408,832,000 1,048,614
...

n (n− 1)! 2n − 2 + 2n

➡ The IP formulation gives optimal solutions only for relatively small input size

(# cities < 20)

➡ To solve the TSP for larger instances

• try to find solutions by using heuristics or approximation algorithms

• use lower bounds provided by the IP model to estimate quality of solutions

·················



� TSP – optimal solution gallery �

1954: Dantzig et al: 49 cities 1977: Grötschel: 120 cities 1987: Padberg, Rinaldi: 532 cities

1987: Grötschel, Holland: 666 cities 1987: Padberg, Rinaldi: 2392 “cities” 1994: Applegate et al: 7397 “cities”

1998: Applegate et al: 13509 cities 2001: Applegate et al: 15112 cities 2004: Applegate et al: 24978 cities

··················



� Overview �

� Models, Data and Algorithms

� Linear Optimization

� Mathematical Background: Polyhedra, Simplex-Algorithm

� Sensitivity Analysis; (Mixed) Integer Programming

� MIP Modelling

� MIP Modelling: More Examples; Branch & Bound

� Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms

� TSP-Heuristics

� Complexity Theory

� Nonlinear Optimization

� Scheduling

� Lot Sizing

� Multicriteria Optimization

� Oral exam

···················


