Mathematical Tools
for Engineering and Management

Lecture 7

30 Nov 2011

9} P
SSERRRRRR

< Overview >

Models, Data and Algorithms

Linear Optimization

Mathematical Background: Polyhedra, Simplex-Algorithm
Sensitivity Analysis; (Mixed) Integer Programming

MIP Modelling

MIP Modelling: More Examples; Branch & Bound
Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms
Complexity Theory

Nonlinear Optimization

Scheduling

Lot Sizing

Multicriteria Optimization

>
>
>
>
>
>
>
>
>
>
>
>
>

Oral exam

ZZ[][33

< Comparison: MIP and other modelling approaches >

> Even if an optimal solution is not found, branch and bound delivers an optimality
certificate, that gives valuable information on the solution quality!

ZZ[][33

N Comparison: MIP and other modelling approaches >

> Even if an optimal solution is not found, branch and bound delivers an optimality

certificate, that gives valuable information on the solution quality!

modelling flexibility solvability optimality certificate

LPs - ++ +++
MIPs + 0 +4
heuristics +-+ + - -
approximation algorithms + + +
non-linear (convex) models + o +
non-linear (general) models ++ — 0

ZZ[][33

N Comparison: MIP and other modelling approaches >

> Even if an optimal solution is not found, branch and bound delivers an optimality

certificate, that gives valuable information on the solution quality!

modelling flexibility solvability optimality certificate

LPs - ++ +++
MIPs + 0 +4
heuristics +-+ + - -
approximation algorithms + + +
non-linear (convex) models + o +
non-linear (general) models ++ — 0

> Tuning branch & bound:

ZZ[][33

N Comparison: MIP and other modelling approaches >

> Even if an optimal solution is not found, branch and bound delivers an optimality

certificate, that gives valuable information on the solution quality!

modelling flexibility solvability optimality certificate

LPs - ++ +++
MIPs + 0 +4
heuristics +-+ + - -
approximation algorithms + + +
non-linear (convex) models + o +
non-linear (general) models ++ — 0

> Tuning branch & bound:

e Order of processing the nodes (sub-problems)

ZZ[][33

N Comparison: MIP and other modelling approaches >

> Even if an optimal solution is not found, branch and bound delivers an optimality

certificate, that gives valuable information on the solution quality!

modelling flexibility solvability optimality certificate

LPs - ++ +++
MIPs + 0 +4
heuristics +-+ + - -
approximation algorithms + + +
non-linear (convex) models + o +
non-linear (general) models ++ — 0

> Tuning branch & bound:

e Order of processing the nodes (sub-problems)

e Defining sub-problems (branching)

ZZ[][33

N Comparison: MIP and other modelling approaches >

> Even if an optimal solution is not found, branch and bound delivers an optimality

certificate, that gives valuable information on the solution quality!

modelling flexibility solvability optimality certificate

LPs - ++ +++
MIPs + 0 +4
heuristics +-+ + - -
approximation algorithms + + +
non-linear (convex) models + o +
non-linear (general) models ++ — 0

> Tuning branch & bound:

e Order of processing the nodes (sub-problems)
e Defining sub-problems (branching)
e Cutting planes [branch & cut

ZZ[][33

< LP relaxation >

=== cutting planes ===

ZZ[][33

< LP relaxation >

=== cutting planes ===

¥

< LP relaxation >

=== cutting planes ===

11 > Feasible region of the LP relaxation is a

polyhedron

¥

< LP relaxation >

=== cutting planes ===

11 > Feasible region of the LP relaxation is a

10 polyhedron

> In general, integer points do not lie on

the boundary

¥

< LP relaxation >

< Integer hull >

11 > The convex hull of all integer solutions is a

polyhedron with only integer vertices

¥

13

< Integer hull >

11 > The convex hull of all integer solutions is a

10 polyhedron with only integer vertices

> lIdea: using the simplex algorithm on
this polyhedron gives the optimal
integer solution!

¥

1 \ 1 1
11 12 13

< Integer hull — inequalities >

11 > The integer hull is a subset of the feasible

region of the LP relaxation

¥

13

Integer hull — inequalities

11 > The integer hull is a subset of the feasible

10 region of the LP relaxation

> Problem: how to find the describing

inequalities efficiently?

¥

< Integer hull — inequalities >

> The integer hull is a subset of the feasible

region of the LP relaxation

> Problem: how to find the describing
inequalities efficiently?

22 + 3z, < 30
2 Tp+ T < 11
~ S 3+ 22, < 30
Tp Z 0
\ e = 0 J

¥

Integer hull — inequalities

> The integer hull is a subset of the feasible

region of the LP relaxation

> Problem: how to find the describing
inequalities efficiently?

Unsolved in general!

(3

2, + 3. < 30
2 Tp+ T < 11
~ < 3,422, < 30
Tp Z 0
\ e 2 U J
\\\\ |

Cutting planes >

11 > ldea: Generate only the important

10 inequalities — those that are violated by a

given fractional optimal solution

¥

\ 1 1
1'1\ 12 13

Cutting planes >

11 > ldea: Generate only the important

10 inequalities — those that are violated by a

given fractional optimal solution

¥

\ 1 1
1} 12 13

Cutting planes

11 > ldea: Generate only the important

10 inequalities — those that are violated by a

given fractional optimal solution

N Solving MIPs with cutting planes >

N Solving MIPs with cutting planes >

Solve the LP relaxation

A 4

Start

[l current solution

l

Is current solution yes

STOP

current solution

|

integer?

| no

Resolve linear program Add cutting planes to
%

[new current solution linear program

is IP-optimum

> Problem: no method known that effectively generates all cutting planes

ZZ[][33

N Solving MIPs with cutting planes >

Solve the LP relaxation

Start >

[l current solution

l

Is current solution yes

STOP

current solution

|

integer?

| no

Resolve linear program Add cutting planes to
%

[new current solution linear program

is IP-optimum

> Problem: no method known that effectively generates all cutting planes

[1 No guarantee that the algorithm terminates

ZZ[][33

N Solving MIPs with cutting planes >

Solve the LP relaxation

Start >

[l current solution

l

Is current solution yes

STOP

current solution

|

integer?

| no

Resolve linear program Add cutting planes to
%

[new current solution linear program

is IP-optimum

> Problem: no method known that effectively generates all cutting planes

[1 No guarantee that the algorithm terminates

> Use cutting planes in combination with branch & bound

ZZ[][33

Solving MIPs with cutting planes

Solve the LP relaxation

A 4

Start

[l current solution

l

Is current solution yes

|

integer?

STOP

current solution

is IP-optimum

| no

Resolve linear program Add cutting planes to
%

[1 new current solution linear program

Problem: no method known that effectively generates all cutting planes

[1 No guarantee that the algorithm terminates

Use cutting planes in combination with branch & bound

[J branch & cut: generate some “promising” cutting planes in tree nodes to

improve subproblem solutions

ZZ[][33

< Back to a previous example >

1B

< Back to a previous example >

1B

< Back to a previous example >

CON

— 7

> Problem to solve: find an optimal order of welding points!

ZZ[][33

Travelling Salesman Problem >

Problem formulation: Given a set of cities together with travel times to travel from
every city to every other, find a tour leading through every city such that the total

travel time is minimized.

ZZ[][33

Travelling Salesman Problem >

Problem formulation: Given a set of cities together with travel times to travel from
every city to every other, find a tour leading through every city such that the total

travel time is minimized.

Cville 3¢

p\
\

ZZ[][33

Travelling Salesman Problem >

Problem formulation: Given a set of cities together with travel times to travel from
every city to every other, find a tour leading through every city such that the total

travel time is minimized.

Atown 65

ZZ[][33

Travelling Salesman Problem >

Problem formulation: Given a set of cities together with travel times to travel from
every city to every other, find a tour leading through every city such that the total

travel time is minimized.

(asymmetric TSP)

Atown 65

ZZ[][33

< TSP — overview >

> A typical combinatorial problem...

ZZ[][33

< TSP — overview >

> A typical combinatorial problem...

> Complete enumeration of all possible solutions is not an option (combinatorial explosion):

ZZ[][33

< TSP — overview >

> A typical combinatorial problem...

> Complete enumeration of all possible solutions is not an option (combinatorial explosion):

cities # possible tours time to try out all tours
5 24 0.012 milliseconds
10 362,880 0.18 seconds
15 87,178,291,200 12 hours
20 121,645,100,408,832,000 1927 years

ZZ[][33

< TSP — overview >

> A typical combinatorial problem...

> Complete enumeration of all possible solutions is not an option (combinatorial explosion):

cities # possible tours time to try out all tours
5 24 0.012 milliseconds
10 362,880 0.18 seconds
15 87,178,291,200 12 hours
20 121,645,100,408,832,000 1927 years

> TSP can be formulated as a binary integer program

ZZ[][33

< TSP — overview >

> A typical combinatorial problem...

> Complete enumeration of all possible solutions is not an option (combinatorial explosion):

cities # possible tours time to try out all tours
5 24 0.012 milliseconds
10 362,880 0.18 seconds
15 87,178,291,200 12 hours
20 121,645,100,408,832,000 1927 years

> TSP can be formulated as a binary integer program

[0 Provides upper bounds for the solution

ZZ[][33

< TSP — overview >

> A typical combinatorial problem...

> Complete enumeration of all possible solutions is not an option (combinatorial explosion):

cities # possible tours time to try out all tours
5 24 0.012 milliseconds
10 362,880 0.18 seconds
15 87,178,291,200 12 hours
20 121,645,100,408,832,000 1927 years

> TSP can be formulated as a binary integer program
[1 Provides upper bounds for the solution
[Huge number of variables and constraints

[1 Gives optimal solutions only for instances with small number of cities

ZZ[][33

< TSP — overview >

> A typical combinatorial problem...

> Complete enumeration of all possible solutions is not an option (combinatorial explosion):

cities # possible tours time to try out all tours
5 24 0.012 milliseconds
10 362,880 0.18 seconds
15 87,178,291,200 12 hours
20 121,645,100,408,832,000 1927 years

> TSP can be formulated as a binary integer program
[1 Provides upper bounds for the solution
[Huge number of variables and constraints

[1 Gives optimal solutions only for instances with small number of cities

> Combinatorial algorithms are much more successful

[1 Combinatorial optimization

ZZ[][33

N What is combinatorial optimization? >

> Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer 2003:

ZZ[][33

N What is combinatorial optimization? >

> Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer 2003:

Combinatorial optimization searches for an optimum object in a finite

collection of objects. Typically, the collection has a _
(like a graph), while the _ — more precisely, grows
_ in the size of the representation (like all matchings or all

Hamiltonian circuits). So scanning all objects one by one and selecting the

best one is not an option . More efficient methods should be found.

1B

N What is combinatorial optimization? >

> Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer 2003:

Combinatorial optimization searches for an optimum object in a finite

collection of objects. Typically, the collection has a _
(like a graph), while the _ — more precisely, grows
_ in the size of the representation (like all matchings or all

Hamiltonian circuits). So scanning all objects one by one and selecting the

best one is not an option . More efficient methods should be found.

> Problems can often be solved with integer programming models

1B

N What is combinatorial optimization? >

> Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer 2003:

Combinatorial optimization searches for an optimum object in a finite

collection of objects. Typically, the collection has a _
(like a graph), while the _ — more precisely, grows
_ in the size of the representation (like all matchings or all

Hamiltonian circuits). So scanning all objects one by one and selecting the

best one is not an option . More efficient methods should be found.

> Problems can often be solved with integer programming models

[J Collection of objects = integer points in the feasible region

& =
z E
%) N R
e £
" o
S Z[l

N What is combinatorial optimization? >

> Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer 2003:

Combinatorial optimization searches for an optimum object in a finite

collection of objects. Typically, the collection has a _
(like a graph), while the _ — more precisely, grows
_ in the size of the representation (like all matchings or all

Hamiltonian circuits). So scanning all objects one by one and selecting the

best one is not an option . More efficient methods should be found.

> Problems can often be solved with integer programming models

[J Collection of objects = integer points in the feasible region

> But: usually there are special approaches that are much more efficient

1B

What is combinatorial optimization?

> Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer 2003:

Combinatorial optimization searches for an optimum object in a finite

collection of objects. Typically, the collection has a _
(like a graph), while the _ — more precisely, grows
_ in the size of the representation (like all matchings or all

Hamiltonian circuits). So scanning all objects one by one and selecting the

best one is not an option . More efficient methods should be found.

> Problems can often be solved with integer programming models

[J Collection of objects = integer points in the feasible region

> But: usually there are special approaches that are much more efficient

> Examples: Travelling Salesman Problem, Minimum Spanning Tree, Knapsack
Problem, Shortest Path Problem, Network Flow, Matching, Stable
Set Problem, ...

ZZ[][33

Travelling Salesman Problem >

Problem formulation: Given a set of cities together with travel times to travel from
every city to every other, find a tour leading through every city such that the total

travel time is minimized.

ZZ[][33

Travelling Salesman Problem >

Problem formulation: Given a set of cities together with travel times to travel from
every city to every other, find a tour leading through every city such that the total

travel time is minimized.

Cville 3¢

p\
\

ZZ[][33

Travelling Salesman Problem >

Problem formulation: Given a set of cities together with travel times to travel from
every city to every other, find a tour leading through every city such that the total

travel time is minimized.

Atown 65

ZZ[][33

Travelling Salesman Problem >

Problem formulation: Given a set of cities together with travel times to travel from
every city to every other, find a tour leading through every city such that the total

travel time is minimized.

(asymmetric TSP)

Atown 65

ZZ[][33

N TSP — integer variables >

z;; €4{0,1} 0O =z;; =1 < tour uses route from city ¢ to city j

1B

N TSP — integer variables >

z;; €4{0,1} 0O =z;; =1 < tour uses route from city ¢ to city j

> Example:
Cville 3¢
~
N
2N J v
105 — ~ 110
A 8\
town 65 oA © /N
S0

~

~65 New D
g
%
N
>/
o

ZZ[][33

N TSP — integer variables >

z;; €4{0,1} 0O =z;; =1 < tour uses route from city ¢ to city j

> Example: zac =2cp =2pE = 2eF = 2Fr B = zBA = 1, all other variables = 0

Cville 3¢
~

D \\)N

P ' g & '9’ o 6\\ =~ 30

2N J v
105 — 110
/‘

Atown 65 _ 2 o N

S0
~

~65 New D
g
%
N
>/
o

ZZ[][33

TSP — integer variables >

z;; €4{0,1} 0O =z;; =1 < tour uses route from city ¢ to city j

> Example: zac =2cp =2pE = 2eF = 2Fr B = zBA = 1, all other variables = 0

Cville 3 [l Tour length: 305

~
N T

o

\
105 — ~ 110

S
_ Kb"’
KO J

A

Atown 65 _,

~65 New D
©
%
N
>/
o

ZZ[][33

< TSP — IP model >

E Cities: C = {1,...,n}

ZZ[][33

< TSP — IP model >

(usage of routes) zi; € {0,1} foralli,j € C,i#j
E Cities: C = {1,...,n}

ZZ[][33

< TSP — IP model >

Objective: minimize (total tour length) Z Ui j i j
1,70, 17

(usage of routes) zi; € {0,1} foralli,j € C,i#j
E Cities: C = {1,...,n}

ﬂ."

L
n LS

S Tuctnt

ZZ[][33

< TSP — IP model >

Objective: minimize (total tour length) Z Ui j i j
1,70, 17

(usage of routes) zi; € {0,1} foralli,j € C,i#j
E Cities: C = {1,...,n}

E Route lengths: ¢; ; > 0 forall i, € C, ¢ # j

ZZ[][33

< TSP — IP model >

Objective: minimize (total tour length) Z Ui j i j
1,70, 17
%

(city outbound) ; i \T)

(usage of routes) zi; € {0,1} foralli,j € C,i#j
E Cities: C = {1,...,n}

E Route lengths: ¢; ; > 0 forall i, € C, ¢ # j

ZZ[][33

< TSP — IP model >

Objective: minimize (total tour length) Z Ui j i j

4 1,J€C, 1]
(city outbound) i — x;; = 1 forall citiessi € C
0 e

(usage of routes) zi; € {0,1} foralli,j € C,i#j
E Cities: C = {1,...,n}

E Route lengths: ¢; ; > 0 forall i, € C, ¢ # j

‘e
2 | ppp——| ¥
‘}"’uumn vy

ZZ[][33

< TSP — IP model >

Objective: minimize (total tour length) Z Ui j i j

4 ,j€C, i#]
(city outbound) ; i \T) me = 1 forall citiesi € C
JFi
(city inbound) > /<—
7 N

(usage of routes) zi; € {0,1} foralli,j € C,i#j
E Cities: C = {1,...,n}

E Route lengths: ¢; ; > 0 forall i, € C, ¢ # j

ﬁq}q
I. = E E
(L)

R PE &

STt ian

ZZ[][33

< TSP — IP model >

Objective: minimize (total tour length) Z Ui j i j

4 0,j€C,i#]
(city outbound) i — me = 1 forall citiesi € C
[] X
/
(city inbound) ; i :\— ;az]z = 1 for all cities? € C

(usage of routes) zi; € {0,1} foralli,j € C,i#j
E Cities: C = {1,...,n}

E Route lengths: ¢; ; > 0 forall i, € C, ¢ # j

ff%
L' E E
(L)

R PE &

STt ian

ZZ[][33

< TSP — IP model >

Objective: minimize (total tour length) Z Ui j i j

4 0,j€C,i#]
(city outbound) i — me = 1 forall citiesi € C
[] X
/
(city inbound) ; i :\— ;az]z = 1 for all cities? € C

(one cycle!) @\
W A

(usage of routes) zi; € {0,1} foralli,j € C,i#j
E Cities: C = {1,...,n}

E Route lengths: ¢; ; > 0 forall i, € C, ¢ # j

ff%
L' E E
(L)

R PE &

STt ian

ZZ[][33

< TSP — IP model >

Objective: minimize (total tour length) Z Ui j i j

4 1,J€C, 1]
(city outbound) ; i \T) Zaxw = 1 for all citiesi € C
J71
/
(city inbound) ; i :\— z:az:]Z = 1 for all citiesi € C
JF#1
(one cycle!) %
WA

(usage of routes) zi; € {0,1} foralli,j € C,i#j
E Cities: C = {1,...,n}

E Route lengths: ¢; ; > 0 forall i, € C, ¢ # j

ff%
= | E £
(L)

QCPE 4

S Tuctian

ZZ[][33

< TSP — IP model >

Objective: minimize (total tour length) Z Ui j i j

4 1,J€C, 1]
(city outbound) ; i \T) Zaxw = 1 for all citiesi € C
JF#u
/
(city inbound) ; i :\— z:az:]Z = 1 for all citiesi € C
JF
AN
|
(one cycle!) \\zj&\\ - ?
el

(usage of routes) zi; € {0,1} foralli,j € C,i#j

Cities: C = {1,...,n}

E Route lengths: ¢; ; > 0 forall i, € C, ¢ # j

Al T
g ,-"
\-

i.n“

ZZ[][33

N TSP — prevent separate cycles >

N TSP — prevent separate cycles >

> Force the tour to leave every subset of cities at least once

TSP — prevent separate cycles

> Force the tour to leave every subset of cities at least once

[] Z zi; > 1 forall subsets S C C,0#S#C
1€S5,7€S

N TSP — prevent separate cycles >

> Force the tour to leave every subset of cities at least once

[] Z zi; > 1 forall subsets S C C,0#S#C
1€S5,7€S

N TSP — prevent separate cycles >

> Force the tour to leave every subset of cities at least once

[] Z zi; > 1 forall subsets S C C,0#S#C
1€S5,7€S

< TSP — IP model >

Objective: minimize (total tour length) Z Ui j i j

4 0,j€C,i#]
(city outbound) i — me = 1 forall citiesi € C
[] X
/
(city inbound) ; i :\— ;az]z = 1 for all cities? € C

(usage of routes) zi; € {0,1} foralli,j € C,i#j
E Cities: C = {1,...,n}

E Route lengths: ¢; ; > 0 forall i, € C, ¢ # j

ff%
L' E E
(L)

R PE &

STt ian

ZZ[][33

< TSP — IP model

Objective: minimize (total tour length) Z Ui j i j

4 1,J€C, 1]
(city outbound) ; i \T) Zaxw = 1 for all citiesi € C
JFi
/
(city inbound) ; i :\— Zm]z = 1 for all citiesi € C
J71
(one cycle!) Z zi; > 1 for all subsets of cities
i€S,j¢S ScC,0#£8S+#C
(usage of routes) zi; € {0,1} foralli,j € C,i#j

Cities: C = {1,...,n}

Route lengths: ¢; ; > O forall¢,j € C, i # j

1B

< TSP — IP model size >

> Problem: the model still has exponential size!

ZZ[][33

< TSP — IP model size >

> Problem: the model still has exponential size!

cities # possible tours # constraints
5 24 40
10 362,880 1,042
15 387,178,291,200 32,796
20 121,645,100,408,832,000 1,048,614
n (n—1)! 2" —-2+42n

ZZ[][33

< TSP — IP model size >

> Problem: the model still has exponential size!

cities # possible tours # constraints
5 24 40
10 362,880 1,042
15 387,178,291,200 32,796
20 121,645,100,408,832,000 1,048,614
n (n—1)! 2" —-2+42n

[0 The IP formulation gives optimal solutions only for relatively small input size
(# cities < 20)

ZZ[][33

< TSP — IP model size >

> Problem: the model still has exponential size!

cities # possible tours # constraints
5 24 40
10 362,880 1,042
15 387,178,291,200 32,796
20 121,645,100,408,832,000 1,048,614
n (n—1)! 2" —-2+42n

[0 The IP formulation gives optimal solutions only for relatively small input size
(# cities < 20)

[J To solve the TSP for larger instances

e try to find solutions by using heuristics or approximation algorithms

ZZ[][33

< TSP — IP model size >

> Problem: the model still has exponential size!

cities # possible tours # constraints
5 24 40
10 362,880 1,042
15 387,178,291,200 32,796
20 121,645,100,408,832,000 1,048,614
n (n—1)! 2" —-2+42n

[0 The IP formulation gives optimal solutions only for relatively small input size
(# cities < 20)

[J To solve the TSP for larger instances
e try to find solutions by using heuristics or approximation algorithms

e use lower bounds provided by the IP model to estimate quality of solutions

ZZ[][33

< TSP — optimal solution gallery >

W

1954: Dantzig et al: 49 cities 1977: Grotschel: 120 cities 1987: Padberg, Rinaldi: 532 cities

m%,%%

%?.FUT |
i
1

1987: Grotschel. Holland: 666 cities 1987: Padberg, Rinaldi: 2392 “cities” 1994: Applegate et al: 7397 “cities”
4 ; : 77

mauil|

|

[

LIL

1998: Applegate et al: 13509 cities 2001: Applegate et al: 15112 cities 2004: Applééate et al: 24978 cities

B

< Overview >

Models, Data and Algorithms

Linear Optimization

Mathematical Background: Polyhedra, Simplex-Algorithm
Sensitivity Analysis; (Mixed) Integer Programming

MIP Modelling

MIP Modelling: More Examples; Branch & Bound
Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms
TSP-Heuristics

Complexity Theory

Nonlinear Optimization

Scheduling

Lot Sizing

Multicriteria Optimization

>
>
>
>
>
>
>
>
>
>
>
>
>
>

Oral exam

ZZ[][33

