Mathematical Tools
 for Engineering and Management

Lecture 7

30 Nov 2011
$\left(\frac{\text { GPE }}{(G)}\right.$
\triangleright Models, Data and Algorithms
\triangleright Linear Optimization
\triangleright Mathematical Background: Polyhedra, Simplex-Algorithm
\triangleright Sensitivity Analysis; (Mixed) Integer Programming
\triangleright MIP Modelling
\triangleright MIP Modelling: More Examples; Branch \& Bound
\triangleright Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms
\triangleright Complexity Theory
\triangleright Nonlinear Optimization
\triangleright Scheduling
\triangleright Lot Sizing
\triangleright Multicriteria Optimization
\triangleright Oral exam
$\left(\frac{\text { GPE }}{(G)}\right.$
\triangleright Even if an optimal solution is not found, branch and bound delivers an optimality certificate, that gives valuable information on the solution quality!
\triangleright Even if an optimal solution is not found, branch and bound delivers an optimality certificate, that gives valuable information on the solution quality!

	modelling flexibility	solvability	optimality certificate
LPs	-	++	+++
MIPs	+	0	++
heuristics	++	+	--
approximation algorithms	++	+	+
non-linear (convex) models	+	0	+
non-linear (general) models	++	-	0

\triangleright Even if an optimal solution is not found, branch and bound delivers an optimality certificate, that gives valuable information on the solution quality!

	modelling flexibility	solvability	optimality certificate
LPs	-	++	+++
MIPs	+	0	++
heuristics	++	+	--
approximation algorithms	++	+	+
non-linear (convex) models	+	0	+
non-linear (general) models	++	-	0
\triangleright Tuning branch \& bound:			

\qquad
\triangleright Even if an optimal solution is not found, branch and bound delivers an optimality certificate, that gives valuable information on the solution quality!

	modelling flexibility	solvability	optimality certificate
LPs	-	++	+++
MIPs	+	0	++
heuristics	++	+	--
approximation algorithms	++	+	+
non-linear (convex) models	+	0	+
non-linear (general) models	++	-	0

\triangleright Tuning branch \& bound:

- Order of processing the nodes (sub-problems)
\triangleright Even if an optimal solution is not found, branch and bound delivers an optimality certificate, that gives valuable information on the solution quality!

	modelling flexibility	solvability	optimality certificate
LPs	-	++	+++
MIPs	+	0	++
heuristics	++	+	--
approximation algorithms	++	+	+
non-linear (convex) models	+	0	+
non-linear (general) models	++	-	0

\triangleright Tuning branch \& bound:

- Order of processing the nodes (sub-problems)
- Defining sub-problems (branching)
\qquad
\triangleright Even if an optimal solution is not found, branch and bound delivers an optimality certificate, that gives valuable information on the solution quality!
modelling flexibility solvability optimality certificate

LPs	-	++	+++
MIPs	+	0	++
heuristics	++	+	--
approximation algorithms	++	+	+
non-linear (convex) models	+	0	+
non-linear (general) models	++	-	0

\triangleright Tuning branch \& bound:

- Order of processing the nodes (sub-problems)
- Defining sub-problems (branching)
- Cutting planes \boldsymbol{m} branch \& cut

$$
===\text { cutting planes }===
$$

\qquad
$===$ cutting planes $===$


```
=== cutting planes ===
```



```
=== cutting planes ===
```


\#
Z 21 B

-

\triangleright Problem: no method known that effectively generates all cutting planes
(GPE) \qquad

\triangleright Problem: no method known that effectively generates all cutting planes
\Rightarrow No guarantee that the algorithm terminates

\triangleright Problem: no method known that effectively generates all cutting planes
\Rightarrow No guarantee that the algorithm terminates
\triangleright Use cutting planes in combination with branch \& bound
$\left(\frac{\mathrm{FPE}}{(\mathrm{GPE}}\right):$ \qquad

\triangleright Problem: no method known that effectively generates all cutting planes
\Rightarrow No guarantee that the algorithm terminates
\triangleright Use cutting planes in combination with branch \& bound
\Rightarrow branch \& cut: generate some "promising" cutting planes in tree nodes to improve subproblem solutions

\triangleright Problem to solve: find an optimal order of welding points!
\qquad

Problem formulation: Given a set of cities together with travel times to travel from every city to every other, find a tour leading through every city such that the total travel time is minimized.
\qquad

Z

Problem formulation: Given a set of cities together with travel times to travel from every city to every other, find a tour leading through every city such that the total travel time is minimized.

\qquad

Problem formulation: Given a set of cities together with travel times to travel from every city to every other, find a tour leading through every city such that the total travel time is minimized.

\qquad

Problem formulation: Given a set of cities together with travel times to travel from every city to every other, find a tour leading through every city such that the total travel time is minimized.

(asymmetric TSP)
\qquad

- A typical combinatorial problem...

E \qquad
\qquad
$72]$

- A typical combinatorial problem...
\triangleright Complete enumeration of all possible solutions is not an option (combinatorial explosion):
\qquad
\qquad
- A typical combinatorial problem...
\triangleright Complete enumeration of all possible solutions is not an option (combinatorial explosion):

\# cities	\# possible tours	time to try out all tours
5	24	0.012 milliseconds
10	362,880	0.18 seconds
15	$87,178,291,200$	12 hours
20	$121,645,100,408,832,000$	1927 years

\qquad

- A typical combinatorial problem...
\triangleright Complete enumeration of all possible solutions is not an option (combinatorial explosion):

\# cities	\# possible tours	time to try out all tours
5	24	0.012 milliseconds
10	362,880	0.18 seconds
15	$87,178,291,200$	12 hours
20	$121,645,100,408,832,000$	1927 years

\triangleright TSP can be formulated as a binary integer program

- A typical combinatorial problem...
\triangleright Complete enumeration of all possible solutions is not an option (combinatorial explosion):

\# cities	\# possible tours	time to try out all tours
5	24	0.012 milliseconds
10	362,880	0.18 seconds
15	$87,178,291,200$	12 hours
20	$121,645,100,408,832,000$	1927 years

\triangleright TSP can be formulated as a binary integer program
\Rightarrow Provides upper bounds for the solution
\qquad

- A typical combinatorial problem...
\triangleright Complete enumeration of all possible solutions is not an option (combinatorial explosion):

\# cities	\# possible tours	time to try out all tours
5	24	0.012 milliseconds
10	362,880	0.18 seconds
15	$87,178,291,200$	12 hours
20	$121,645,100,408,832,000$	1927 years

\triangleright TSP can be formulated as a binary integer program
\Rightarrow Provides upper bounds for the solution
\Rightarrow Huge number of variables and constraints
\Rightarrow Gives optimal solutions only for instances with small number of cities
\qquad

- A typical combinatorial problem...
Δ Complete enumeration of all possible solutions is not an option (combinatorial explosion):

\# cities	\# possible tours	time to try out all tours
5	24	0.012 milliseconds
10	362,880	0.18 seconds
15	$87,178,291,200$	12 hours
20	$121,645,100,408,832,000$	1927 years

\triangleright TSP can be formulated as a binary integer program
\Rightarrow Provides upper bounds for the solution
\Rightarrow Huge number of variables and constraints
\Rightarrow Gives optimal solutions only for instances with small number of cities
\triangleright Combinatorial algorithms are much more successful
\Rightarrow Combinatorial optimization

- Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer 2003:

GPE \qquad
\qquad
\triangleright Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer 2003:

Combinatorial optimization searches for an optimum object in a finite collection of objects. Typically, the collection has a concise representation (like a graph), while the number of objects is huge - more precisely, grows exponentially in the size of the representation (like all matchings or all Hamiltonian circuits). So scanning all objects one by one and selecting the best one is not an option. More efficient methods should be found.
\triangleright Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer 2003:

Combinatorial optimization searches for an optimum object in a finite collection of objects. Typically, the collection has a concise representation (like a graph), while the number of objects is huge - more precisely, grows exponentially in the size of the representation (like all matchings or all Hamiltonian circuits). So scanning all objects one by one and selecting the best one is not an option. More efficient methods should be found.
\triangleright Problems can often be solved with integer programming models
\qquad
\triangleright Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer 2003:

Combinatorial optimization searches for an optimum object in a finite collection of objects. Typically, the collection has a concise representation (like a graph), while the number of objects is huge - more precisely, grows exponentially in the size of the representation (like all matchings or all Hamiltonian circuits). So scanning all objects one by one and selecting the best one is not an option. More efficient methods should be found.
\triangleright Problems can often be solved with integer programming models
\Rightarrow Collection of objects $=$ integer points in the feasible region

\triangleright Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer 2003:

Combinatorial optimization searches for an optimum object in a finite collection of objects. Typically, the collection has a concise representation (like a graph), while the number of objects is huge - more precisely, grows exponentially in the size of the representation (like all matchings or all Hamiltonian circuits). So scanning all objects one by one and selecting the best one is not an option. More efficient methods should be found.
\triangleright Problems can often be solved with integer programming models
\Rightarrow Collection of objects $=$ integer points in the feasible region

\triangleright But: usually there are special approaches that are much more efficient
\qquad
\triangleright Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer 2003:

Combinatorial optimization searches for an optimum object in a finite collection of objects. Typically, the collection has a concise representation (like a graph), while the number of objects is huge - more precisely, grows exponentially in the size of the representation (like all matchings or all Hamiltonian circuits). So scanning all objects one by one and selecting the best one is not an option. More efficient methods should be found.
\triangleright Problems can often be solved with integer programming models
\Rightarrow Collection of objects $=$ integer points in the feasible region

\triangleright But: usually there are special approaches that are much more efficient
\triangleright Examples: Travelling Salesman Problem, Minimum Spanning Tree, Knapsack Problem, Shortest Path Problem, Network Flow, Matching, Stable Set Problem, ...
$\left(\begin{array}{l}(\mathrm{GPE}) \\ (2)\end{array}\right.$
\qquad

Problem formulation: Given a set of cities together with travel times to travel from every city to every other, find a tour leading through every city such that the total travel time is minimized.
\qquad

Problem formulation: Given a set of cities together with travel times to travel from every city to every other, find a tour leading through every city such that the total travel time is minimized.

...........

Problem formulation: Given a set of cities together with travel times to travel from every city to every other, find a tour leading through every city such that the total travel time is minimized.

\qquad

Problem formulation: Given a set of cities together with travel times to travel from every city to every other, find a tour leading through every city such that the total travel time is minimized.

(asymmetric TSP)
\qquad
$\mathrm{V} \quad x_{i, j} \in\{0,1\} \quad \Rightarrow x_{i, j}=1 \Leftrightarrow$ tour uses route from city i to city j
$\left(\frac{1+1}{(G P E)}\right)$ \qquad
\qquad
$\mathrm{V} \quad x_{i, j} \in\{0,1\} \quad \Rightarrow x_{i, j}=1 \Leftrightarrow$ tour uses route from city i to city j

- Example:

$\mathrm{V} \quad x_{i, j} \in\{0,1\} \quad \Rightarrow x_{i, j}=1 \Leftrightarrow$ tour uses route from city i to city j
\triangleright Example: $\quad x_{\mathrm{A}, \mathrm{C}}=x_{\mathrm{C}, \mathrm{D}}=x_{\mathrm{D}, \mathrm{E}}=x_{\mathrm{E}, \mathrm{F}}=x_{\mathrm{F}, \mathrm{B}}=x_{\mathrm{B}, \mathrm{A}}=1$, all other variables $=0$

$\mathrm{V} \quad x_{i, j} \in\{0,1\} \quad \Rightarrow x_{i, j}=1 \Leftrightarrow$ tour uses route from city i to city j
\triangleright Example: $\quad x_{\mathrm{A}, \mathrm{C}}=x_{\mathrm{C}, \mathrm{D}}=x_{\mathrm{D}, \mathrm{E}}=x_{\mathrm{E}, \mathrm{F}}=x_{\mathrm{F}, \mathrm{B}}=x_{\mathrm{B}, \mathrm{A}}=1$, all other variables $=0$

\qquad

S Cities: $C=\{1, \ldots, n\}$

$$
x_{i, j} \in\{0,1\} \text { for all } i, j \in C, i \neq j
$$

\qquad

Objective: minimize (total tour length) $\sum_{i, j \in C, i \neq j} \ell_{i, j} x_{i, j}$

$$
x_{i, j} \in\{0,1\} \text { for all } i, j \in C, i \neq j
$$

[^0]SPE \qquad

Objective: minimize (total tour length) $\sum_{i, j \in C, i \neq j} \ell_{i, j} x_{i, j}$

Cities: $C=\{1, \ldots, n\}$
P
Route lengths: $\ell_{i, j} \geq 0$ for all $i, j \in C, i \neq j$
\qquad

Objective: minimize (total tour length) $\sum_{i, j \in C, i \neq j} \ell_{i, j} x_{i, j}$

(usage of routes)

$$
x_{i, j} \in\{0,1\} \text { for all } i, j \in C, i \neq j
$$

Cities: $C=\{1, \ldots, n\}$
Route lengths: $\ell_{i, j} \geq 0$ for all $i, j \in C, i \neq j$

Objective: minimize (total tour length) $\sum_{i, j \in C, i \neq j} \ell_{i, j} x_{i, j}$
C (city outbound)

$$
\sum_{j \neq i} x_{i, j}=1 \quad \text { for all cities } i \in C
$$

(usage of routes)

$$
x_{i, j} \in\{0,1\} \text { for all } i, j \in C, i \neq j
$$

Cities: $C=\{1, \ldots, n\}$

Route lengths: $\ell_{i, j} \geq 0$ for all $i, j \in C, i \neq j$

Objective: minimize (total tour length) $\sum_{i, j \in C, i \neq j} \ell_{i, j} x_{i, j}$
C (city outbound)

$$
\sum_{j \neq i} x_{i, j}=1 \quad \text { for all cities } i \in C
$$

(city inbound)

(usage of routes)

$$
x_{i, j} \in\{0,1\} \text { for all } i, j \in C, i \neq j
$$

Cities: $C=\{1, \ldots, n\}$

Route lengths: $\ell_{i, j} \geq 0$ for all $i, j \in C, i \neq j$

Objective: minimize (total tour length) $\sum_{i, j \in C, i \neq j} \ell_{i, j} x_{i, j}$
C (city outbound)

$\sum_{j \neq i} x_{i, j}=1 \quad$ for all cities $i \in C$
(city inbound)

$$
\sum_{j \neq i} x_{j, i}=1 \quad \text { for all cities } i \in C
$$

(usage of routes) $x_{i, j} \in\{0,1\}$ for all $i, j \in C, i \neq j$

Cities: $C=\{1, \ldots, n\}$
Route lengths: $\ell_{i, j} \geq 0$ for all $i, j \in C, i \neq j$

Objective: minimize (total tour length) $\sum_{i, j \in C, i \neq j} \ell_{i, j} x_{i, j}$

C

Cities: $C=\{1, \ldots, n\}$

Route lengths: $\ell_{i, j} \geq 0$ for all $i, j \in C, i \neq j$
\qquad

Objective: minimize (total tour length) $\sum_{i, j \in C, i \neq j} \ell_{i, j} x_{i, j}$

C

(usage of routes) $x_{i, j} \in\{0,1\}$ for all $i, j \in C, i \neq j$

Cities: $C=\{1, \ldots, n\}$

Route lengths: $\ell_{i, j} \geq 0$ for all $i, j \in C, i \neq j$
$\sum_{j \neq i} x_{i, j}=1 \quad$ for all cities $i \in C$ $\sum_{j \neq i} x_{j, i}=1 \quad$ for all cities $i \in C$

P
\qquad

Objective: minimize (total tour length) $\sum_{i, j \in C, i \neq j} \ell_{i, j} x_{i, j}$

C
(usage of routes)

$$
x_{i, j} \in\{0,1\} \text { for all } i, j \in C, i \neq j
$$

S
Cities: $C=\{1, \ldots, n\}$
P
Route lengths: $\ell_{i, j} \geq 0$ for all $i, j \in C, i \neq j$

\triangleright Force the tour to leave every subset of cities at least once

\qquad
\qquad
\triangleright Force the tour to leave every subset of cities at least once

$$
\Rightarrow \quad \sum_{i \in S, j \notin S} x_{i, j} \geq 1 \quad \text { for all subsets } S \subset C, \emptyset \neq S \neq C
$$

\qquad
\triangleright Force the tour to leave every subset of cities at least once

$$
\Rightarrow \quad \sum_{i \in S, j \notin S} x_{i, j} \geq 1 \quad \text { for all subsets } S \subset C, \emptyset \neq S \neq C
$$

\triangleright Force the tour to leave every subset of cities at least once

$$
\Rightarrow \quad \sum_{i \in S, j \notin S} x_{i, j} \geq 1 \quad \text { for all subsets } S \subset C, \emptyset \neq S \neq C
$$

Objective: minimize (total tour length) $\sum_{i, j \in C, i \neq j} \ell_{i, j} x_{i, j}$
C (city outbound)

$\sum_{j \neq i} x_{i, j}=1 \quad$ for all cities $i \in C$
(city inbound)

$$
\sum_{j \neq i} x_{j, i}=1 \quad \text { for all cities } i \in C
$$

(usage of routes) $x_{i, j} \in\{0,1\}$ for all $i, j \in C, i \neq j$

Cities: $C=\{1, \ldots, n\}$
Route lengths: $\ell_{i, j} \geq 0$ for all $i, j \in C, i \neq j$

Objective: minimize (total tour length) $\sum_{i, j \in C, i \neq j} \ell_{i, j} x_{i, j}$

C

$$
\sum_{j \neq i} x_{i, j}=1 \quad \text { for all cities } i \in C
$$

$$
\begin{array}{ll}
\sum_{i \in S, j \notin S} x_{i, j} \geq 1 & \text { for all subsets of cities } \\
& S \subset C, \emptyset \neq S \neq C
\end{array}
$$

(usage of routes)

$$
x_{i, j} \in\{0,1\} \text { for all } i, j \in C, i \neq j
$$

Cities: $C=\{1, \ldots, n\}$

Route lengths: $\ell_{i, j} \geq 0$ for all $i, j \in C, i \neq j$
\qquad
\triangleright Problem: the model still has exponential size!
\triangleright Problem: the model still has exponential size!

\# cities	\# possible tours	\# constraints
5	24	40
10	362,880	1,042
15	$87,178,291,200$	32,796
20	$121,645,100,408,832,000$	$1,048,614$
\vdots		
n	$(n-1)!$	$2^{n}-2+2 n$

- Problem: the model still has exponential size!

\# cities	\# possible tours	\# constraints
5	24	40
10	362,880	1,042
15	$87,178,291,200$	32,796
20	$121,645,100,408,832,000$	$1,048,614$
\vdots	$(n-1)!$	$2^{n}-2+2 n$

\Rightarrow The IP formulation gives optimal solutions only for relatively small input size $(\#$ cities $<20)$

- Problem: the model still has exponential size!

\# cities	\# possible tours	\# constraints
5	24	40
10	362,880	1,042
15	$87,178,291,200$	32,796
20	$121,645,100,408,832,000$	$1,048,614$
\vdots	$(n-1)!$	$2^{n}-2+2 n$

\Rightarrow The IP formulation gives optimal solutions only for relatively small input size $(\#$ cities $<20)$
\Rightarrow To solve the TSP for larger instances

- try to find solutions by using heuristics or approximation algorithms
- Problem: the model still has exponential size!

\# cities	\# possible tours	\# constraints
5	24	40
10	362,880	1,042
15	$87,178,291,200$	32,796
20	$121,645,100,408,832,000$	$1,048,614$
\vdots	$(n-1)!$	$2^{n}-2+2 n$

\Rightarrow The IP formulation gives optimal solutions only for relatively small input size ($\#$ cities <20)
\Rightarrow To solve the TSP for larger instances

- try to find solutions by using heuristics or approximation algorithms
- use lower bounds provided by the IP model to estimate quality of solutions

1954: Dantzig et al: 49 cities

1987: Grötschel. Holland: 666 cities

1998: Applegate et al: 13509 cities

1977: Grötschel: 120 cities

1987: Padberg, Rinaldi: 2392 "cities"

2001: Applegate et al: 15112 cities

1987: Padberg, Rinaldi: 532 cities

1994: Applegate et al: 7397 "cities"

2004: Applegate et al: 24978 cities

\qquad

- Models, Data and Algorithms
\triangleright Linear Optimization
\triangleright Mathematical Background: Polyhedra, Simplex-Algorithm
\triangleright Sensitivity Analysis; (Mixed) Integer Programming
- MIP Modelling
\triangleright MIP Modelling: More Examples; Branch \& Bound
\triangleright Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms
\triangleright TSP-Heuristics
\triangleright Complexity Theory
\triangleright Nonlinear Optimization
$\triangleright \quad$ Scheduling
\triangleright Lot Sizing
- Multicriteria Optimization
- Oral exam
\qquad

[^0]: S
 Cities: $C=\{1, \ldots, n\}$

