Mathematical Tools
 for Engineering and Management

Lecture 8

7 Dec 2011
\triangleright Models, Data and Algorithms
\triangleright Linear Optimization
\triangleright Mathematical Background: Polyhedra, Simplex-Algorithm
\triangleright Sensitivity Analysis; (Mixed) Integer Programming
\triangleright MIP Modelling
\triangleright MIP Modelling: More Examples; Branch \& Bound
\triangleright Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms
\triangleright TSP-Heuristics
\triangleright Complexity Theory
\triangleright Nonlinear Optimization
\triangleright Scheduling
\triangleright Lot Sizing
\triangleright Multicriteria Optimization
\triangleright Oral exam
$\triangleright \quad$ Nearest neighbour heuristic (greedy algorithm):
\qquad

Z 2 [D
\triangleright Nearest neighbour heuristic (greedy algorithm):

- Start with an arbitrary city

E \qquad
\triangleright Nearest neighbour heuristic (greedy algorithm):

- Start with an arbitrary city
- Append the city (or one of the cities) closest to the last visited city to the tour...
(GPE) \qquad
$\triangleright \quad$ Nearest neighbour heuristic (greedy algorithm):
- Start with an arbitrary city
- Append the city (or one of the cities) closest to the last visited city to the tour...
- ...until all cities are visited
\triangleright Nearest neighbour heuristic (greedy algorithm):
- Start with an arbitrary city
- Append the city (or one of the cities) closest to the last visited city to the tour...
- ...until all cities are visited
\Rightarrow Straightforward and easy to implement

E \qquad
\triangleright Nearest neighbour heuristic (greedy algorithm):

- Start with an arbitrary city
- Append the city (or one of the cities) closest to the last visited city to the tour...
- ...until all cities are visited
\Rightarrow Straightforward and easy to implement
\Rightarrow But: might produce arbitrarily bad solutions - or even the worst possible tour!
\qquad
\triangleright Nearest neighbour heuristic (greedy algorithm):
- Start with an arbitrary city
- Append the city (or one of the cities) closest to the last visited city to the tour...
- ...until all cities are visited
\Rightarrow Straightforward and easy to implement
\Rightarrow But: might produce arbitrarily bad solutions - or even the worst possible tour!
\triangleright Tour expansion heuristic:
$\left(\frac{17}{(G P E)}\right)$ \qquad
\triangleright Nearest neighbour heuristic (greedy algorithm):
- Start with an arbitrary city
- Append the city (or one of the cities) closest to the last visited city to the tour...
- ...until all cities are visited
\Rightarrow Straightforward and easy to implement
\Rightarrow But: might produce arbitrarily bad solutions - or even the worst possible tour!
\triangleright Tour expansion heuristic:
- Order the cities in some way
\qquad
\triangleright Nearest neighbour heuristic (greedy algorithm):
- Start with an arbitrary city
- Append the city (or one of the cities) closest to the last visited city to the tour...
- ...until all cities are visited
\Rightarrow Straightforward and easy to implement
\Rightarrow But: might produce arbitrarily bad solutions - or even the worst possible tour!
\triangleright Tour expansion heuristic:
- Order the cities in some way
- Start with the tour through the first two cities
$\left(\frac{17}{(G P E)}\right)$
\triangleright Nearest neighbour heuristic (greedy algorithm):
- Start with an arbitrary city
- Append the city (or one of the cities) closest to the last visited city to the tour...
- ...until all cities are visited
\Rightarrow Straightforward and easy to implement
\Rightarrow But: might produce arbitrarily bad solutions - or even the worst possible tour!
\triangleright Tour expansion heuristic:
- Order the cities in some way
- Start with the tour through the first two cities
- Insert the next city at the best position...
\triangleright Nearest neighbour heuristic (greedy algorithm):
- Start with an arbitrary city
- Append the city (or one of the cities) closest to the last visited city to the tour...
- ...until all cities are visited
\Rightarrow Straightforward and easy to implement
\Rightarrow But: might produce arbitrarily bad solutions - or even the worst possible tour!
\triangleright Tour expansion heuristic:
- Order the cities in some way
- Start with the tour through the first two cities
- Insert the next city at the best position...
- ...until all cities are inserted
\triangleright Nearest neighbour heuristic (greedy algorithm):
- Start with an arbitrary city
- Append the city (or one of the cities) closest to the last visited city to the tour...
- ...until all cities are visited
\Rightarrow Straightforward and easy to implement
\Rightarrow But: might produce arbitrarily bad solutions - or even the worst possible tour!
\triangleright Tour expansion heuristic:
- Order the cities in some way
- Start with the tour through the first two cities
- Insert the next city at the best position...
- ...until all cities are inserted
\Rightarrow Can be improved by smart ordering and definition of "best position"
\triangleright Nearest neighbour heuristic (greedy algorithm):
- Start with an arbitrary city
- Append the city (or one of the cities) closest to the last visited city to the tour...
- ...until all cities are visited
\Rightarrow Straightforward and easy to implement
\Rightarrow But: might produce arbitrarily bad solutions - or even the worst possible tour!
\triangleright Tour expansion heuristic:
- Order the cities in some way
- Start with the tour through the first two cities
- Insert the next city at the best position...
- ...until all cities are inserted
- Can be improved by smart ordering and definition of "best position"
\Rightarrow But: might also produce bad solutions in general
\qquad
$\triangleright \quad$ Nearest neighbour heuristic (greedy algorithm):
- Start with an arbitrary city
- Append the city (or one of the cities) closest to the last visited city to the tour...
- ...until all cities are visited
\Rightarrow Straightforward and easy to implement
\Rightarrow But: might produce arbitrarily bad solutions - or even the worst possible tour!
\triangleright Tour expansion heuristic:
- Order the cities in some way
- Start with the tour through the first two cities
- Insert the next city at the best position...
- ...until all cities are inserted
- Can be improved by smart ordering and definition of "best position"
\Rightarrow But: might also produce bad solutions in general
\triangleright Try to prove quality of solution
- approximation algorithms

A graph $G=(V, E)$ consists of a set of vertices V and a set of edges E between the vertices
$\left(\frac{1+1}{(G P E)}\right)$ \qquad
*
Z 2 [B

A graph $G=(V, E)$ consists of a set of vertices V and a set of edges E between the vertices
\triangleright Directed graph: edges (or arcs) have a direction
$\Rightarrow E \subseteq\{(i, j) \mid i, j \in V, i \neq j\}$
$\left(\begin{array}{l}(\mathrm{GPE}) \\ (2)\end{array}\right.$ \qquad

A graph $G=(V, E)$ consists of a set of vertices V and a set of edges E between the vertices
\triangleright Directed graph: edges (or arcs) have a direction
$\Rightarrow E \subseteq\{(i, j) \mid i, j \in V, i \neq j\}$

(GPE) \qquad

A graph $G=(V, E)$ consists of a set of vertices V and a set of edges E between the vertices
\triangleright Directed graph: edges (or arcs) have a direction
$\Rightarrow E \subseteq\{(i, j) \mid i, j \in V, i \neq j\}$

- Undirected graph: edges have no direction
$\Rightarrow E \subseteq\{\{i, j\} \mid i, j \in V, i \neq j\}$

A graph $G=(V, E)$ consists of a set of vertices V and a set of edges E between the vertices
\triangleright Directed graph: edges (or arcs) have a direction
$\Rightarrow E \subseteq\{(i, j) \mid i, j \in V, i \neq j\}$

- Undirected graph: edges have no direction
$\Rightarrow E \subseteq\{\{i, j\} \mid i, j \in V, i \neq j\}$

A graph $G=(V, E)$ consists of a set of vertices V and a set of edges E between the vertices
\triangleright Directed graph: edges (or arcs) have a direction
$\Rightarrow E \subseteq\{(i, j) \mid i, j \in V, i \neq j\}$

- Undirected graph: edges have no direction
$\Rightarrow E \subseteq\{\{i, j\} \mid i, j \in V, i \neq j\}$

\triangleright Examples:
complete graph on n vertices: K_{n}

K_{5}
(GPE)

A graph $G=(V, E)$ consists of a set of vertices V and a set of edges E between the vertices
\triangleright Directed graph: edges (or arcs) have a direction
$\Rightarrow E \subseteq\{(i, j) \mid i, j \in V, i \neq j\}$

- Undirected graph: edges have no direction
$\Rightarrow E \subseteq\{\{i, j\} \mid i, j \in V, i \neq j\}$

\triangleright Examples:
complete graph on n vertices: K_{n}

K_{5}
complete bipartite graph:

$$
K_{m, n}
$$

$K_{3,2}$

A graph $G=(V, E)$ consists of a set of vertices V and a set of edges E between the vertices
\triangleright Directed graph: edges (or arcs) have a direction
$\Rightarrow E \subseteq\{(i, j) \mid i, j \in V, i \neq j\}$

- Undirected graph: edges have no direction
$\Rightarrow E \subseteq\{\{i, j\} \mid i, j \in V, i \neq j\}$

\triangleright Examples:
complete graph on n vertices: K_{n}

K_{5}
complete bipartite graph: path: P_{n}
$K_{m, n}$

$K_{3,2}$

P_{5}
$\left(\frac{\mathrm{FPE}}{(\mathrm{GPE}}\right)$

A graph $G=(V, E)$ consists of a set of vertices V and a set of edges E between the vertices
\triangleright Directed graph: edges (or arcs) have a direction
$\Rightarrow E \subseteq\{(i, j) \mid i, j \in V, i \neq j\}$

- Undirected graph: edges have no direction
$\Rightarrow E \subseteq\{\{i, j\} \mid i, j \in V, i \neq j\}$

\triangleright Examples:
complete graph on n vertices: K_{n}

K_{5}
complete bipartite graph:

$$
K_{m, n}
$$

$K_{3,2}$
path: P_{n}

P_{5}
cycle on n vertices: C_{n}

C_{7}
(GPE)

A tree T is a graph with the following properties:

- T contains no cycles
- T is connected (i.e. every two vertices can be connected by a path in T)
- There is exactly one more vertex than there are edges (i.e. $|V|=|E|+1$)

A tree T is a graph with the following properties:

- T contains no cycles
- T is connected (i.e. every two vertices can be connected by a path in T)
- There is exactly one more vertex than there are edges (i.e. $|V|=|E|+1$)

\qquad

A tree T is a graph with the following properties:

- T contains no cycles
- T is connected (i.e. every two vertices can be connected by a path in T)
- There is exactly one more vertex than there are edges (i.e. $|V|=|E|+1$)

\Rightarrow Removing one edge makes the tree disconnected

A tree T is a graph with the following properties:

- T contains no cycles
- T is connected (i.e. every two vertices can be connected by a path in T)
- There is exactly one more vertex than there are edges (i.e. $|V|=|E|+1$)

\Rightarrow Removing one edge makes the tree disconnected
- Adding a new edge creates a cycle
$\triangleright \quad$ Given a graph $G=(V, E)$ with non-negative edge-weights w_{e} for all $e \in E \ldots$
(GPE) \qquad
\triangleright Given a graph $G=(V, E)$ with non-negative edge-weights w_{e} for all $e \in E \ldots$

\triangleright Given a graph $G=(V, E)$ with non-negative edge-weights w_{e} for all $e \in E \ldots$...find a minimum spanning tree for G

\triangleright Given a graph $G=(V, E)$ with non-negative edge-weights w_{e} for all $e \in E \ldots$
...find a minimum spanning tree for G, that is: a subset E^{\prime} of the edges such that
- the edges in E^{\prime} form a tree

\triangleright Given a graph $G=(V, E)$ with non-negative edge-weights w_{e} for all $e \in E \ldots$
...find a minimum spanning tree for G, that is: a subset E^{\prime} of the edges such that
- the edges in E^{\prime} form a tree
- all vertices of G are in the tree

\triangleright Given a graph $G=(V, E)$ with non-negative edge-weights w_{e} for all $e \in E \ldots$
...find a minimum spanning tree for G, that is: a subset E^{\prime} of the edges such that
- the edges in E^{\prime} form a tree
- all vertices of G are in the tree
- the total weight of the tree edges is minimal

\qquad
\triangleright Given a graph $G=(V, E)$ with non-negative edge-weights w_{e} for all $e \in E \ldots$
...find a minimum spanning tree for G, that is: a subset E^{\prime} of the edges such that
- the edges in E^{\prime} form a tree
- all vertices of G are in the tree
- the total weight of the tree edges is minimal

\qquad
\triangleright Given a graph $G=(V, E)$ with non-negative edge-weights w_{e} for all $e \in E \ldots$
...find a minimum spanning tree for G, that is: a subset E^{\prime} of the edges such that
- the edges in E^{\prime} form a tree
- all vertices of G are in the tree
- the total weight of the tree edges is minimal
\Rightarrow total weight: 290

\triangleright Given a graph $G=(V, E)$ with non-negative edge-weights w_{e} for all $e \in E \ldots$
...find a minimum spanning tree for G, that is: a subset E^{\prime} of the edges such that
- the edges in E^{\prime} form a tree
- all vertices of G are in the tree
- the total weight of the tree edges is minimal

\Rightarrow total weight: 260
\triangleright Given a graph $G=(V, E)$ with non-negative edge-weights w_{e} for all $e \in E \ldots$
...find a minimum spanning tree for G, that is: a subset E^{\prime} of the edges such that
- the edges in E^{\prime} form a tree
- all vertices of G are in the tree
- the total weight of the tree edges is minimal
\Rightarrow not allowed: not a tree!

\triangleright Given a graph $G=(V, E)$ with non-negative edge-weights w_{e} for all $e \in E \ldots$
...find a minimum spanning tree for G, that is: a subset E^{\prime} of the edges such that
- the edges in E^{\prime} form a tree
- all vertices of G are in the tree
- the total weight of the tree edges is minimal
= not allowed: misses vertices!

\triangleright Given a graph $G=(V, E)$ with non-negative edge-weights w_{e} for all $e \in E \ldots$
...find a minimum spanning tree for G, that is: a subset E^{\prime} of the edges such that
- the edges in E^{\prime} form a tree
- all vertices of G are in the tree
- the total weight of the tree edges is minimal

" total weight: 195
\triangleright Given a graph $G=(V, E)$ with non-negative edge-weights w_{e} for all $e \in E \ldots$
...find a minimum spanning tree for G, that is: a subset E^{\prime} of the edges such that
- the edges in E^{\prime} form a tree
- all vertices of G are in the tree
- the total weight of the tree edges is minimal

\Rightarrow total weight: 195
\triangleright Real-world problem:
Connect a set of given computers to form a local network, at minimal cost
$\left(\frac{17}{(G P E)}\right)$
\triangleright Idea: select cheap edges, as long as they don't result in a cycle (greedy)
\triangleright Idea: select cheap edges, as long as they don't result in a cycle (greedy)
- Set of potential edges $:=E$, tree $T:=$ empty
(GPE) \qquad 7
\triangleright Idea: select cheap edges, as long as they don't result in a cycle (greedy)
- Set of potential edges $:=E$, tree $T:=$ empty
- Until all vertices are in the tree $T \ldots$
\triangleright Idea: select cheap edges, as long as they don't result in a cycle (greedy)
- Set of potential edges $:=E$, tree $T:=$ empty
- Until all vertices are in the tree $T \ldots$
- ...determine cheapest remaining potential edge: $\rightarrow e$
\triangleright Idea: select cheap edges, as long as they don't result in a cycle (greedy)
- Set of potential edges $:=E$, tree $T:=$ empty
- Until all vertices are in the tree $T \ldots$
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle:
\triangleright Idea: select cheap edges, as long as they don't result in a cycle (greedy)
- Set of potential edges $:=E$, tree $T:=$ empty
- Until all vertices are in the tree $T \ldots$
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle:

$$
\text { add } e \text { to } T
$$

\qquad
\triangleright Idea: select cheap edges, as long as they don't result in a cycle (greedy)

- Set of potential edges $:=E$, tree $T:=$ empty
- Until all vertices are in the tree $T \ldots$
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle:

$$
\text { add } e \text { to } T
$$

- ...remove e from the set of potential edges
\qquad
$7 \angle \|$
\triangleright Idea: select cheap edges, as long as they don't result in a cycle (greedy)
- Set of potential edges $:=E$, tree $T:=$ empty
- Until all vertices are in the tree $T \ldots$
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle:

$$
\text { add } e \text { to } T
$$

- ...remove e from the set of potential edges
$\Rightarrow T$ is a minimum spanning tree
\triangleright Idea: select cheap edges, as long as they don't result in a cycle (greedy)
- Set of potential edges $:=E$, tree $T:=$ empty
- Until all vertices are in the tree $T \ldots$
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle:

$$
\text { add } e \text { to } T
$$

- ...remove e from the set of potential edges
$\Rightarrow T$ is a minimum spanning tree

E
\triangleright Idea: select cheap edges, as long as they don't result in a cycle (greedy)

- Set of potential edges $:=E$, tree $T:=$ empty
- Until all vertices are in the tree $T \ldots$
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle:

$$
\text { add } e \text { to } T
$$

- ...remove e from the set of potential edges
$\Rightarrow T$ is a minimum spanning tree

\qquad
- Idea: select cheap edges, as long as they don't result in a cycle (greedy)
- Set of potential edges $:=E$, tree $T:=$ empty
- Until all vertices are in the tree $T \ldots$
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle:

$$
\text { add } e \text { to } T
$$

- ...remove e from the set of potential edges
$\Rightarrow T$ is a minimum spanning tree
total weight: 20

GPE \qquad

- Idea: select cheap edges, as long as they don't result in a cycle (greedy)
- Set of potential edges $:=E$, tree $T:=$ empty
- Until all vertices are in the tree $T \ldots$
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle:

$$
\text { add } e \text { to } T
$$

- ...remove e from the set of potential edges
$\Rightarrow T$ is a minimum spanning tree
total weight: 20

GPE \qquad
\triangleright Idea: select cheap edges, as long as they don't result in a cycle (greedy)

- Set of potential edges $:=E$, tree $T:=$ empty
- Until all vertices are in the tree $T \ldots$
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle:

$$
\text { add } e \text { to } T
$$

- ...remove e from the set of potential edges
$\Rightarrow T$ is a minimum spanning tree
total weight: 45

GPE \qquad
\triangleright Idea: select cheap edges, as long as they don't result in a cycle (greedy)

- Set of potential edges $:=E$, tree $T:=$ empty
- Until all vertices are in the tree $T \ldots$
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle:

$$
\text { add } e \text { to } T
$$

- ...remove e from the set of potential edges
$\Rightarrow T$ is a minimum spanning tree
total weight: 45

GPE \qquad
\triangleright Idea: select cheap edges, as long as they don't result in a cycle (greedy)

- Set of potential edges $:=E$, tree $T:=$ empty
- Until all vertices are in the tree $T \ldots$
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle:

$$
\text { add } e \text { to } T
$$

- ...remove e from the set of potential edges
$\Rightarrow T$ is a minimum spanning tree
total weight: 75

GPE \qquad
\triangleright Idea: select cheap edges, as long as they don't result in a cycle (greedy)

- Set of potential edges $:=E$, tree $T:=$ empty
- Until all vertices are in the tree $T \ldots$
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle:

$$
\text { add } e \text { to } T
$$

- ...remove e from the set of potential edges
$\Rightarrow T$ is a minimum spanning tree
total weight: 75

(GPE) \qquad
\triangleright Idea: select cheap edges, as long as they don't result in a cycle (greedy)
- Set of potential edges $:=E$, tree $T:=$ empty
- Until all vertices are in the tree $T \ldots$
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle:

$$
\text { add } e \text { to } T
$$

- ...remove e from the set of potential edges
$\Rightarrow T$ is a minimum spanning tree
total weight: 75

(GPE)
\qquad
\triangleright Idea: select cheap edges, as long as they don't result in a cycle (greedy)
- Set of potential edges $:=E$, tree $T:=$ empty
- Until all vertices are in the tree $T \ldots$
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle:

$$
\text { add } e \text { to } T
$$

- ...remove e from the set of potential edges
$\Rightarrow T$ is a minimum spanning tree
total weight: 75

(GPE) \qquad
\triangleright Idea: select cheap edges, as long as they don't result in a cycle (greedy)
- Set of potential edges $:=E$, tree $T:=$ empty
- Until all vertices are in the tree $T \ldots$
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle:

$$
\text { add } e \text { to } T
$$

- ...remove e from the set of potential edges
$\Rightarrow T$ is a minimum spanning tree
total weight: 75

(GPE)
\qquad
\triangleright Idea: select cheap edges, as long as they don't result in a cycle (greedy)
- Set of potential edges $:=E$, tree $T:=$ empty
- Until all vertices are in the tree $T \ldots$
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle:

$$
\text { add } e \text { to } T
$$

- ...remove e from the set of potential edges
$\Rightarrow T$ is a minimum spanning tree
total weight: 75

(GPE) \qquad
\triangleright Idea: select cheap edges, as long as they don't result in a cycle (greedy)
- Set of potential edges $:=E$, tree $T:=$ empty
- Until all vertices are in the tree $T \ldots$
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle:

$$
\text { add } e \text { to } T
$$

- ...remove e from the set of potential edges
$\Rightarrow T$ is a minimum spanning tree
total weight: 125

(GPE) \qquad
\triangleright Idea: select cheap edges, as long as they don't result in a cycle (greedy)
- Set of potential edges $:=E$, tree $T:=$ empty
- Until all vertices are in the tree $T \ldots$
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle:

$$
\text { add } e \text { to } T
$$

- ...remove e from the set of potential edges
$\Rightarrow T$ is a minimum spanning tree
total weight: 125

(GPE) \qquad
\triangleright Idea: select cheap edges, as long as they don't result in a cycle (greedy)
- Set of potential edges $:=E$, tree $T:=$ empty
- Until all vertices are in the tree $T \ldots$
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle:

$$
\text { add } e \text { to } T
$$

- ...remove e from the set of potential edges
$\Rightarrow T$ is a minimum spanning tree
total weight: 180

GPE
\qquad
\triangleright Idea: select cheap edges, as long as they don't result in a cycle (greedy)

- Set of potential edges $:=E$, tree $T:=$ empty
- Until all vertices are in the tree $T \ldots$
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle:

$$
\text { add } e \text { to } T
$$

- ...remove e from the set of potential edges
$\Rightarrow T$ is a minimum spanning tree
total weight: 180
$\Rightarrow T$ contains all vertices
\Rightarrow done!

(GPE)
- Kruskal's algorithm is fast (polynomial runtime) and relatively easy to implement (greedy algorithm)
- Kruskal's algorithm is fast (polynomial runtime) and relatively easy to implement (greedy algorithm)
\triangleright Still it always computes an optimal tree! (Proof by contradiction)
\qquad

\triangleright Kruskal's algorithm is fast (polynomial runtime) and relatively easy to implement (greedy algorithm)
\triangleright Still it always computes an optimal tree! (Proof by contradiction)
\triangleright Published by Joseph B. Kruskal in 1956

Joseph B. Kruskal (1928-2010)

Problem formulation: Given a set of cities together with travel times to travel between every two cities, find a tour leading through every city such that the total travel time is minimized.
\qquad

Problem formulation: Given a set of cities together with travel times to travel between every two cities, find a tour leading through every city such that the total travel time is minimized.

\triangleright MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
\qquad
\qquad
\triangleright MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:

- Compute an MST for the graph, using distances as edge weights
\triangleright MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
- Compute an MST for the graph, using distances as edge weights

(GPE)
\triangleright MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
- Compute an MST for the graph, using distances as edge weights
- Create a "fake tour" by going to and back for every edge of the tree

\qquad
\triangleright MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
- Compute an MST for the graph, using distances as edge weights
- Create a "fake tour" by going to and back for every edge of the tree

\triangleright MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
- Compute an MST for the graph, using distances as edge weights
- Create a "fake tour" by going to and back for every edge of the tree
- Start traversing the "tour" at some city

\triangleright MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
- Compute an MST for the graph, using distances as edge weights
- Create a "fake tour" by going to and back for every edge of the tree
- Start traversing the "tour" at some city
- Whenever the tour returns to an already visited city, replace the edge by the shortcut to the following city

\triangleright MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
- Compute an MST for the graph, using distances as edge weights
- Create a "fake tour" by going to and back for every edge of the tree
- Start traversing the "tour" at some city
- Whenever the tour returns to an already visited city, replace the edge by the shortcut to the following city

\triangleright MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
- Compute an MST for the graph, using distances as edge weights
- Create a "fake tour" by going to and back for every edge of the tree
- Start traversing the "tour" at some city
- Whenever the tour returns to an already visited city, replace the edge by the shortcut to the following city
\Rightarrow The found solution misses the optimum by a factor of at most 2 (approximation factor)

(PPE)
\triangleright MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
- Compute an MST for the graph, using distances as edge weights
- Create a "fake tour" by going to and back for every edge of the tree
- Start traversing the "tour" at some city
- Whenever the tour returns to an already visited city, replace the edge by the shortcut to the following city
\Rightarrow The found solution misses the optimum by a factor of at most 2 (approximation factor) Proof: $L_{\text {sol }} \leq L$ "fake tour"

(PPE)
\triangleright MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
- Compute an MST for the graph, using distances as edge weights
- Create a "fake tour" by going to and back for every edge of the tree
- Start traversing the "tour" at some city
- Whenever the tour returns to an already visited city, replace the edge by the shortcut to the following city
\Rightarrow The found solution misses the optimum by a factor of at most 2 (approximation factor) Proof: $L_{\text {sol }} \leq L_{\text {"fake tour" }} \leq 2 \cdot L_{\mathrm{MST}}$

(PPE)
\triangleright MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
- Compute an MST for the graph, using distances as edge weights
- Create a "fake tour" by going to and back for every edge of the tree
- Start traversing the "tour" at some city
- Whenever the tour returns to an already visited city, replace the edge by the shortcut to the following city
\Rightarrow The found solution misses the optimum by a factor of at most 2 (approximation factor)
Proof: $L_{\text {sol }} \leq L$ "fake tour" $\leq 2 \cdot L_{\text {MST }} \leq 2 \cdot L_{\text {opt } \backslash \text { edge }}$

\triangleright MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
- Compute an MST for the graph, using distances as edge weights
- Create a "fake tour" by going to and back for every edge of the tree
- Start traversing the "tour" at some city
- Whenever the tour returns to an already visited city, replace the edge by the shortcut to the following city
\Rightarrow The found solution misses the optimum by a factor of at most 2 (approximation factor) Proof: $L_{\text {sol }} \leq L$ "fake tour" $\leq 2 \cdot L_{\mathrm{MST}} \leq 2 \cdot L_{\mathrm{opt} \backslash \text { edge }} \leq 2 \cdot L_{\mathrm{opt}}$

Δ Great flexibility in formulating real-life problems
\triangleright Great flexibility in formulating real-life problems
\triangleright Usually integer-programming formulation is possible, but inefficient
\Rightarrow Specially designed algorithms

GPE \qquad
\qquad
\triangleright Great flexibility in formulating real-life problems
\triangleright Usually integer-programming formulation is possible, but inefficient
\Rightarrow Specially designed algorithms
\triangleright Wide variety of algorithms:
\qquad
\qquad
\triangleright Great flexibility in formulating real-life problems
\triangleright Usually integer-programming formulation is possible, but inefficient
\Rightarrow Specially designed algorithms
\triangleright Wide variety of algorithms:
\Rightarrow Primal algorithms (heuristics):
Provide feasible solutions, but without guarantee of optimality
\qquad
\triangleright Great flexibility in formulating real-life problems
\triangleright Usually integer-programming formulation is possible, but inefficient
\Rightarrow Specially designed algorithms
\triangleright Wide variety of algorithms:
\Rightarrow Primal algorithms (heuristics):
Provide feasible solutions, but without guarantee of optimality

- Dual algorithms (branch \& bound, approximation algorithms):

Provide upper/lower bounds on the optimal solution, but without explicitly giving one
(APE \qquad
\triangleright Great flexibility in formulating real-life problems
\triangleright Usually integer-programming formulation is possible, but inefficient
\Rightarrow Specially designed algorithms
\triangleright Wide variety of algorithms:
\Rightarrow Primal algorithms (heuristics):
Provide feasible solutions, but without guarantee of optimality

- Dual algorithms (branch \& bound, approximation algorithms):

Provide upper/lower bounds on the optimal solution, but without explicitly giving one
\Rightarrow Combination:
Primal-dual algorithms
\qquad
\triangleright Great flexibility in formulating real-life problems
\triangleright Usually integer-programming formulation is possible, but inefficient
\Rightarrow Specially designed algorithms
\triangleright Wide variety of algorithms:
\Rightarrow Primal algorithms (heuristics):
Provide feasible solutions, but without guarantee of optimality

- Dual algorithms (branch \& bound, approximation algorithms):

Provide upper/lower bounds on the optimal solution, but without explicitly giving one
\Rightarrow Combination:
Primal-dual algorithms

(TPE)

\triangleright Models, Data and Algorithms
\triangleright Linear Optimization
\triangleright Mathematical Background: Polyhedra, Simplex-Algorithm
\triangleright Sensitivity Analysis; (Mixed) Integer Programming
\triangleright MIP Modelling
\triangleright MIP Modelling: More Examples; Branch \& Bound
\triangleright Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms
\triangleright TSP-Heuristics
\triangleright Network Flows, Complexity Theory
\triangleright Nonlinear Optimization
\triangleright Scheduling
\triangleright Lot Sizing
\triangleright Multicriteria Optimization
\triangleright Oral exam

