Mathematical Tools for Engineering and Management

Lecture 8

7 Dec 2011

- ▷ Models, Data and Algorithms
- ▷ Linear Optimization
- ▷ Mathematical Background: Polyhedra, Simplex-Algorithm
- Sensitivity Analysis; (Mixed) Integer Programming
- ▷ MIP Modelling

 \triangleleft

- ▷ MIP Modelling: More Examples; Branch & Bound
- > Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms
- ▷ TSP-Heuristics
- ▷ Complexity Theory
- ▷ Nonlinear Optimization
- ▷ Scheduling
- \triangleright Lot Sizing
- Multicriteria Optimization
- ▷ Oral exam

▷ Nearest neighbour heuristic (greedy algorithm):

- ▷ Nearest neighbour heuristic (greedy algorithm):
 - Start with an arbitrary city

- ▷ Nearest neighbour heuristic (greedy algorithm):
 - Start with an arbitrary city
 - Append the city (or one of the cities) closest to the last visited city to the tour...

- ▷ Nearest neighbour heuristic (greedy algorithm):
 - Start with an arbitrary city
 - Append the city (or one of the cities) closest to the last visited city to the tour...
 - ...until all cities are visited

- ▷ Nearest neighbour heuristic (greedy algorithm):
 - Start with an arbitrary city
 - Append the city (or one of the cities) closest to the last visited city to the tour...
 - ...until all cities are visited
- Straightforward and easy to implement

- ▷ Nearest neighbour heuristic (greedy algorithm):
 - Start with an arbitrary city
 - Append the city (or one of the cities) closest to the last visited city to the tour...
 - ...until all cities are visited
- Straightforward and easy to implement
- But: might produce arbitrarily bad solutions or even the worst possible tour!

- ▷ Nearest neighbour heuristic (greedy algorithm):
 - Start with an arbitrary city
 - Append the city (or one of the cities) closest to the last visited city to the tour...
 - ...until all cities are visited
- Straightforward and easy to implement
- But: might produce arbitrarily bad solutions or even the worst possible tour!
- ▷ Tour expansion heuristic:

- ▷ Nearest neighbour heuristic (greedy algorithm):
 - Start with an arbitrary city
 - Append the city (or one of the cities) closest to the last visited city to the tour...
 - ...until all cities are visited
- Straightforward and easy to implement
- ➡ But: might produce arbitrarily bad solutions or even the worst possible tour!
- ▷ Tour expansion heuristic:
 - Order the cities in some way

- ▷ Nearest neighbour heuristic (greedy algorithm):
 - Start with an arbitrary city
 - Append the city (or one of the cities) closest to the last visited city to the tour...
 - ...until all cities are visited
- Straightforward and easy to implement
- ➡ But: might produce arbitrarily bad solutions or even the worst possible tour!
- ▷ Tour expansion heuristic:
 - Order the cities in some way
 - Start with the tour through the first two cities

- ▷ Nearest neighbour heuristic (greedy algorithm):
 - Start with an arbitrary city
 - Append the city (or one of the cities) closest to the last visited city to the tour...
 - ...until all cities are visited
- Straightforward and easy to implement
- ➡ But: might produce arbitrarily bad solutions or even the worst possible tour!
- ▷ Tour expansion heuristic:
 - Order the cities in some way
 - Start with the tour through the first two cities
 - Insert the next city at the best position...

- ▷ Nearest neighbour heuristic (greedy algorithm):
 - Start with an arbitrary city
 - Append the city (or one of the cities) closest to the last visited city to the tour...
 - ...until all cities are visited
- Straightforward and easy to implement
- ➡ But: might produce arbitrarily bad solutions or even the worst possible tour!
- ▷ Tour expansion heuristic:
 - Order the cities in some way
 - Start with the tour through the first two cities
 - Insert the next city at the best position...
 - ...until all cities are inserted

- ▷ Nearest neighbour heuristic (greedy algorithm):
 - Start with an arbitrary city
 - Append the city (or one of the cities) closest to the last visited city to the tour...
 - ...until all cities are visited
- Straightforward and easy to implement
- ➡ But: might produce arbitrarily bad solutions or even the worst possible tour!
- ▷ Tour expansion heuristic:
 - Order the cities in some way
 - Start with the tour through the first two cities
 - Insert the next city at the best position...
 - ...until all cities are inserted
- Can be improved by smart ordering and definition of "best position"

- ▷ Nearest neighbour heuristic (greedy algorithm):
 - Start with an arbitrary city
 - Append the city (or one of the cities) closest to the last visited city to the tour...
 - ...until all cities are visited
- Straightforward and easy to implement
- ➡ But: might produce arbitrarily bad solutions or even the worst possible tour!
- ▷ Tour expansion heuristic:
 - Order the cities in some way
 - Start with the tour through the first two cities
 - Insert the next city at the best position...
 - ...until all cities are inserted
- Can be improved by smart ordering and definition of "best position"
- ➡ But: might also produce bad solutions in general

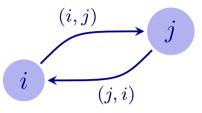
 \triangleleft

- ▷ Nearest neighbour heuristic (greedy algorithm):
 - Start with an arbitrary city
 - Append the city (or one of the cities) closest to the last visited city to the tour...
 - ...until all cities are visited
- Straightforward and easy to implement
- ➡ But: might produce arbitrarily bad solutions or even the worst possible tour!
- ▷ Tour expansion heuristic:
 - Order the cities in some way
 - Start with the tour through the first two cities
 - Insert the next city at the best position...
 - ...until all cities are inserted
- Can be improved by smart ordering and definition of "best position"
- But: might also produce bad solutions in general
- ▷ Try to prove quality of solution ➡ approximation algorithms

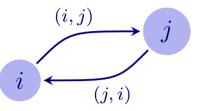
 \triangleleft

- ▷ Directed graph: edges (or arcs) have a direction
 - $\implies E \subseteq \{(i,j) \mid i,j \in V, i \neq j\}$

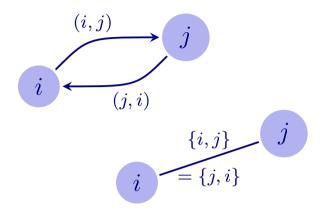
- ▷ Directed graph: edges (or arcs) have a direction
 - $\bullet \ E \subseteq \{(i,j) \mid i,j \in V, i \neq j\}$



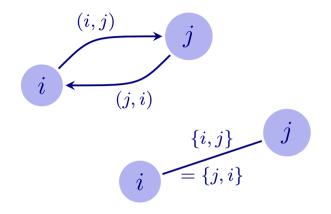
- ▷ Directed graph: edges (or arcs) have a direction
 - $\implies E \subseteq \{(i,j) \mid i,j \in V, \, i \neq j\}$
- ▷ Undirected graph: edges have no direction
 - $\implies E \subseteq \{\{i, j\} \mid i, j \in V, i \neq j\}$



- ▷ Directed graph: edges (or arcs) have a direction
 - $\implies E \subseteq \{(i,j) \mid i,j \in V, \, i \neq j\}$
- ▷ Undirected graph: edges have no direction
 - $\implies E \subseteq \{\{i,j\} \mid i,j \in V, i \neq j\}$



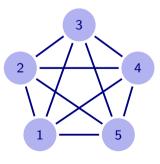
- Directed graph: edges (or arcs) have a direction \triangleright
 - $\implies E \subseteq \{(i,j) \mid i,j \in V, i \neq j\}$
- Undirected graph: edges have no direction \triangleright
 - $\implies E \subseteq \{\{i, j\} \mid i, j \in V, i \neq j\}$



Examples: \triangleright

 \triangleleft

complete graph on n vertices: K_n

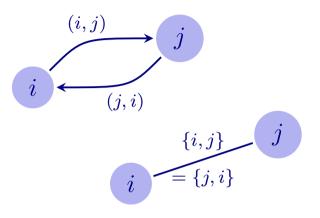


 K_5

Graphs

A graph G = (V, E) consists of a set of vertices V and a set of edges E between the vertices

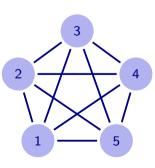
- ▷ Directed graph: edges (or arcs) have a direction
 - $\implies E \subseteq \{(i,j) \mid i,j \in V, i \neq j\}$
- ▷ Undirected graph: edges have no direction
 - $\implies E \subseteq \{\{i,j\} \mid i,j \in V, i \neq j\}$

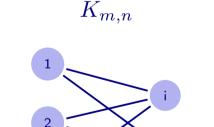


▷ Examples:

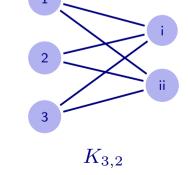
 \triangleleft

complete graph on n vertices: K_n





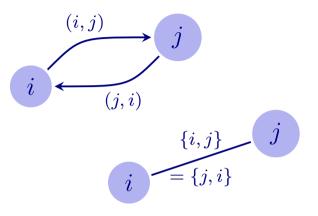
complete bipartite graph:



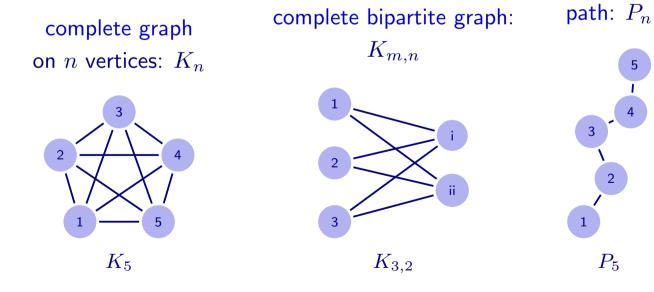
Graphs

A graph G = (V, E) consists of a set of vertices V and a set of edges E between the vertices

- ▷ Directed graph: edges (or arcs) have a direction
 - $\implies E \subseteq \{(i,j) \mid i,j \in V, \, i \neq j\}$
- ▷ Undirected graph: edges have no direction
 - $\implies E \subseteq \{\{i,j\} \mid i,j \in V, \, i \neq j\}$



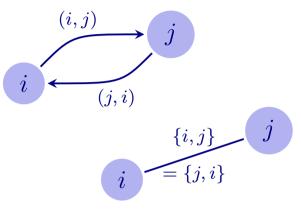
▷ Examples:



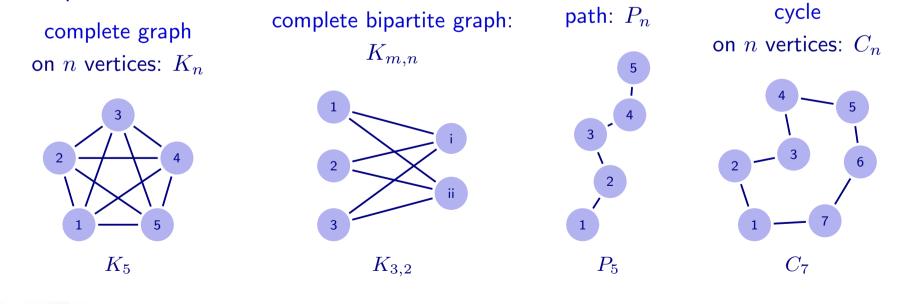
Graphs

A graph G = (V, E) consists of a set of vertices V and a set of edges E between the vertices

- ▷ Directed graph: edges (or arcs) have a direction
 - $\implies E \subseteq \{(i,j) \mid i,j \in V, \, i \neq j\}$
- ▷ Undirected graph: edges have no direction
 - $\implies E \subseteq \{\{i,j\} \mid i,j \in V, i \neq j\}$



▷ Examples:

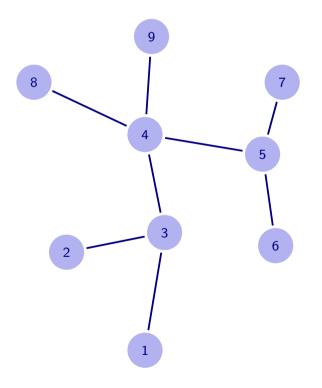


- T contains no cycles
- T is connected (i.e. every two vertices can be connected by a path in T)
- There is exactly one more vertex than there are edges (i.e. |V| = |E| + 1)

• T contains no cycles

 \triangleleft

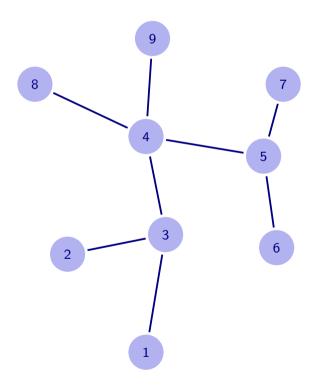
- T is connected (i.e. every two vertices can be connected by a path in T)
- There is exactly one more vertex than there are edges (i.e. |V| = |E| + 1)



• T contains no cycles

 \triangleleft

- T is connected (i.e. every two vertices can be connected by a path in T)
- There is exactly one more vertex than there are edges (i.e. |V| = |E| + 1)

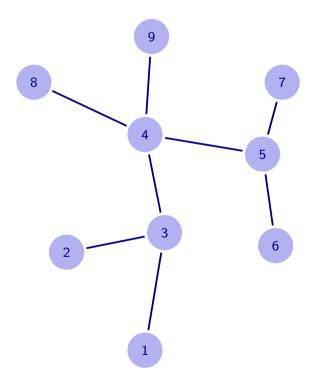


 Removing one edge makes the tree disconnected

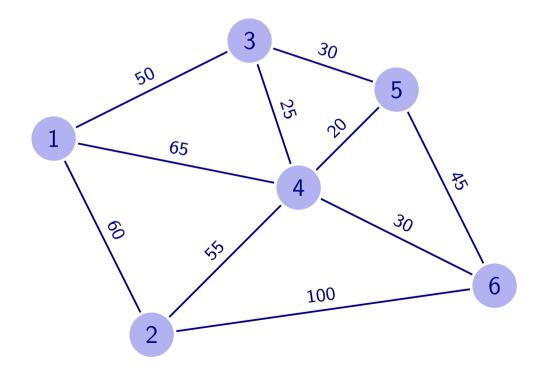
• T contains no cycles

 \triangleleft

- T is connected (i.e. every two vertices can be connected by a path in T)
- There is exactly one more vertex than there are edges (i.e. |V| = |E| + 1)



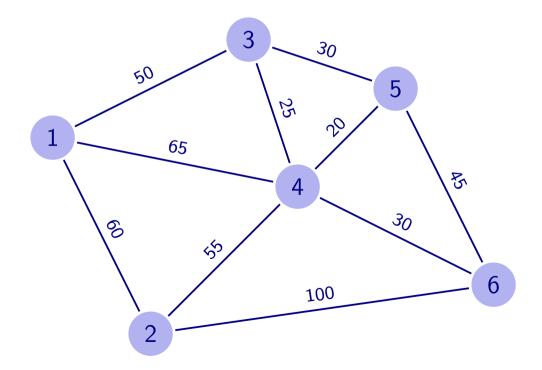
- Removing one edge makes the tree disconnected
- ➡ Adding a new edge creates a cycle



 \triangleleft

••••

 $\ldots {\rm find}$ a minimum spanning tree for G

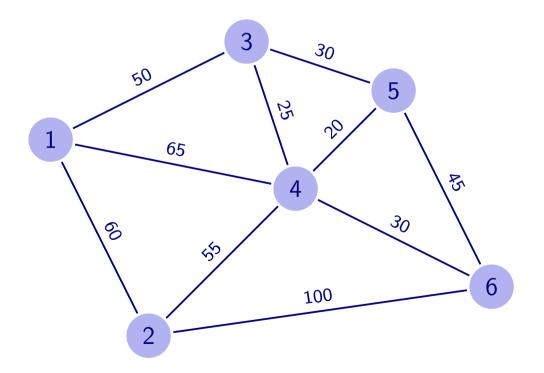


 \triangleleft

••••

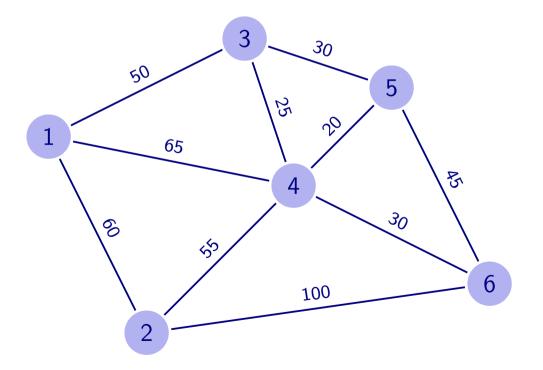
...find a minimum spanning tree for G, that is: a subset E' of the edges such that

• the edges in E' form a tree



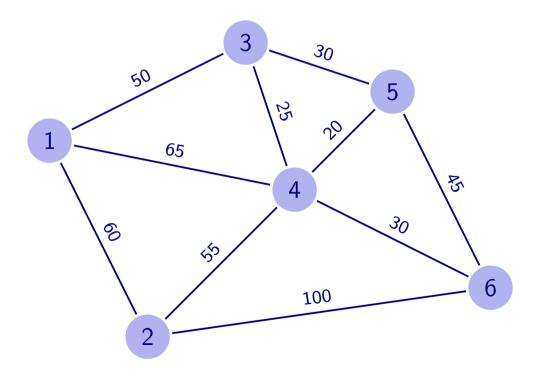
...find a minimum spanning tree for G, that is: a subset E' of the edges such that

- the edges in E' form a tree
- $\bullet\,$ all vertices of G are in the tree



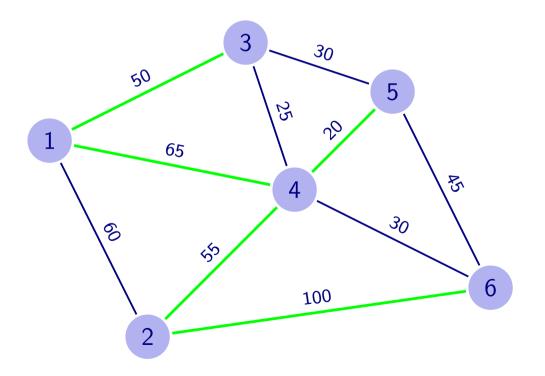
...find a minimum spanning tree for G, that is: a subset E' of the edges such that

- the edges in E' form a tree
- all vertices of G are in the tree
- the total weight of the tree edges is minimal

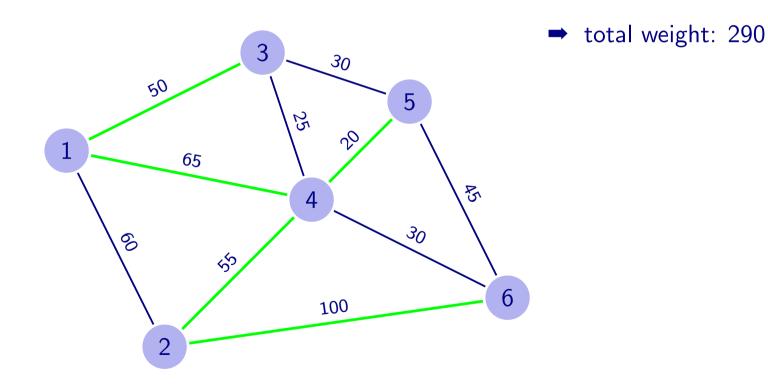


...find a minimum spanning tree for G, that is: a subset E' of the edges such that

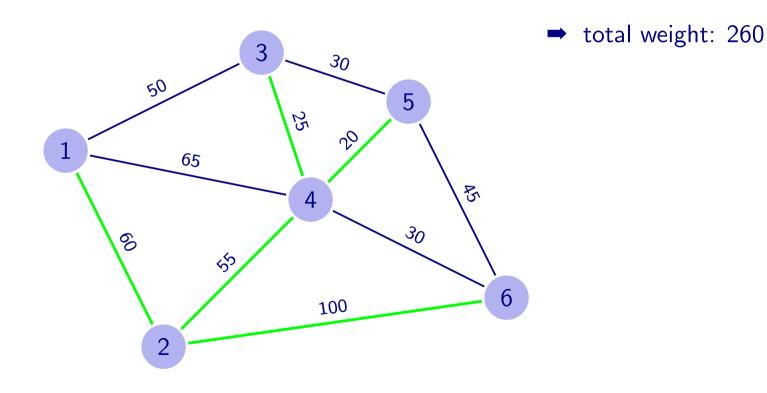
- the edges in E' form a tree
- all vertices of G are in the tree
- the total weight of the tree edges is minimal



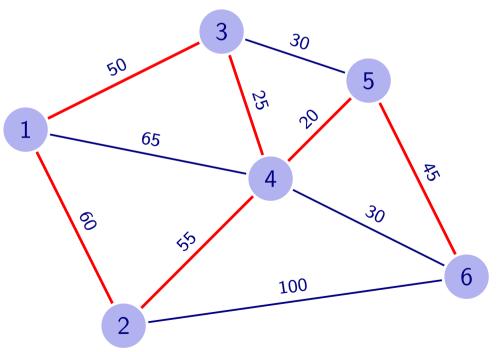
- the edges in E' form a tree
- $\bullet\,$ all vertices of G are in the tree
- the total weight of the tree edges is minimal



- the edges in E^\prime form a tree
- $\bullet\,$ all vertices of G are in the tree
- the total weight of the tree edges is minimal

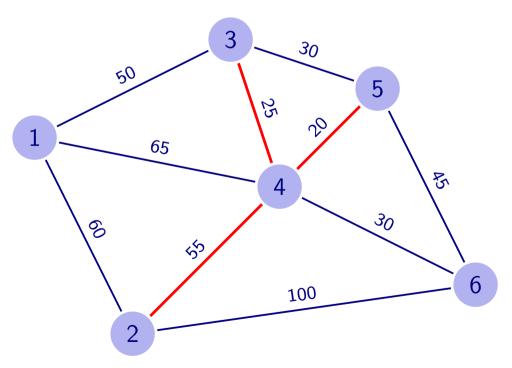


- the edges in E^\prime form a tree
- $\bullet\,$ all vertices of G are in the tree
- the total weight of the tree edges is minimal



...find a minimum spanning tree for G, that is: a subset E' of the edges such that

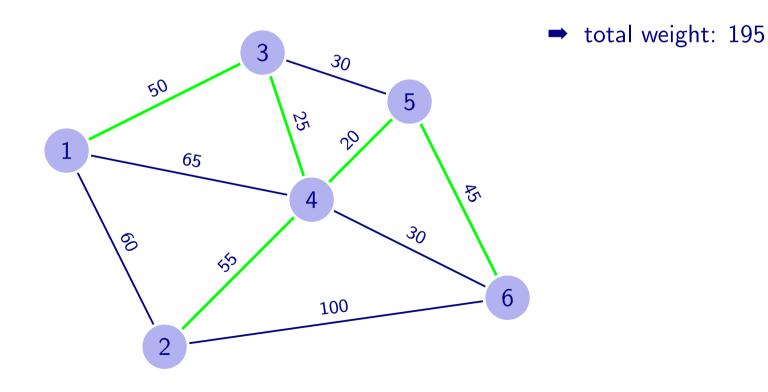
- the edges in E^\prime form a tree
- $\bullet\,$ all vertices of G are in the tree
- the total weight of the tree edges is minimal



 \triangleright

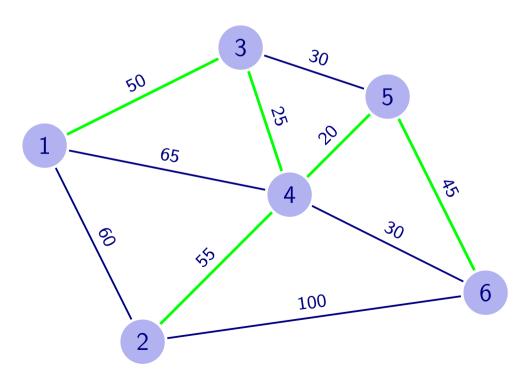
➡ not allowed: misses vertices!

- the edges in E' form a tree
- all vertices of G are in the tree
- the total weight of the tree edges is minimal



...find a minimum spanning tree for G, that is: a subset E' of the edges such that

- the edges in E' form a tree
- $\bullet\,$ all vertices of G are in the tree
- the total weight of the tree edges is minimal



 \triangleright

Real-world problem: Connect a set of given computers to form a local

network, at minimal cost

 \triangleleft

- ▷ Idea: select cheap edges, as long as they don't result in a cycle (greedy)
 - Set of potential edges := E, tree T := empty

- ▷ Idea: select cheap edges, as long as they don't result in a cycle (greedy)
 - Set of potential edges := E, tree T := empty
 - Until all vertices are in the tree T...

- ▷ Idea: select cheap edges, as long as they don't result in a cycle (greedy)
 - Set of potential edges := E, tree T := empty
 - Until all vertices are in the tree T...
 - ...determine cheapest remaining potential edge: $\rightarrow e$

- ▷ Idea: select cheap edges, as long as they don't result in a cycle (greedy)
 - Set of potential edges := E, tree T := empty
 - Until all vertices are in the tree T...
 - ...determine cheapest remaining potential edge: $\rightarrow e$
 - ... if adding edge e to the tree T does not result in a cycle:

- ▷ Idea: select cheap edges, as long as they don't result in a cycle (greedy)
 - Set of potential edges := E, tree T := empty
 - Until all vertices are in the tree T...
 - ...determine cheapest remaining potential edge: $\rightarrow e$
 - ...if adding edge e to the tree T does not result in a cycle: add e to T

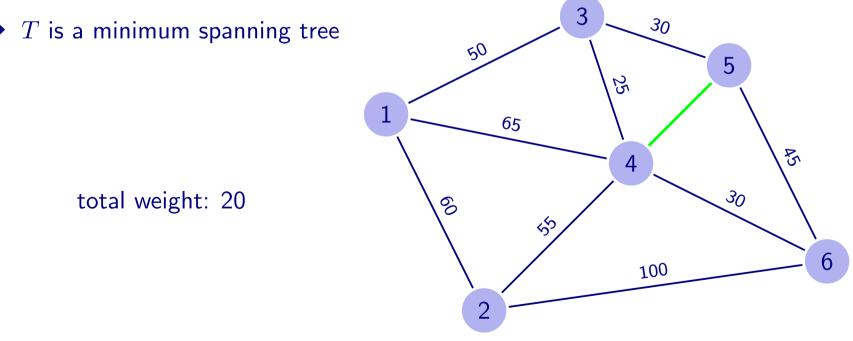
- ▷ Idea: select cheap edges, as long as they don't result in a cycle (greedy)
 - Set of potential edges := E, tree T := empty
 - Until all vertices are in the tree T...
 - ...determine cheapest remaining potential edge: $\rightarrow e$
 - ...if adding edge e to the tree T does not result in a cycle: add e to T
 - ...remove e from the set of potential edges

- ▷ Idea: select cheap edges, as long as they don't result in a cycle (greedy)
 - Set of potential edges := E, tree T := empty
 - Until all vertices are in the tree T...
 - ...determine cheapest remaining potential edge: $\rightarrow e$
 - ...if adding edge e to the tree T does not result in a cycle: add e to T
 - ...remove e from the set of potential edges
 - ightarrow T is a minimum spanning tree

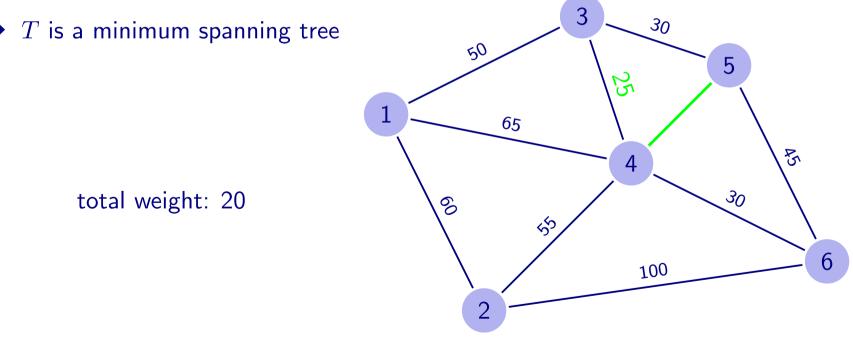
- ▷ Idea: select cheap edges, as long as they don't result in a cycle (greedy)
 - Set of potential edges := E, tree T := empty
 - Until all vertices are in the tree T...
 - ...determine cheapest remaining potential edge: $\rightarrow e$
 - ...if adding edge e to the tree T does not result in a cycle: add e to T
 - ...remove e from the set of potential edges
 - 3 30 T is a minimum spanning tree 50 5 3 2 65 牙 4 30 S స్తు 6 100 2

- ▷ Idea: select cheap edges, as long as they don't result in a cycle (greedy)
 - Set of potential edges := E, tree T := empty
 - Until all vertices are in the tree T...
 - ...determine cheapest remaining potential edge: $\rightarrow e$
 - ...if adding edge e to the tree T does not result in a cycle: add e to T
 - ...remove e from the set of potential edges
 - → T is a minimum spanning tree 50 3 30 5 5 1 65 4 30 5 30 5 5 1 5 30 5 5 30 5 5 30 5 5 30 5 5 30 5 5 1 5 30 5 5 30 5 5 1 5 30 5 30 5 30 5 30 5 30 5 30 5 30 5 30 5 30 5 30 5 5 1 5 30 5 30 5 30 5 5 30 5 5 100 6 2

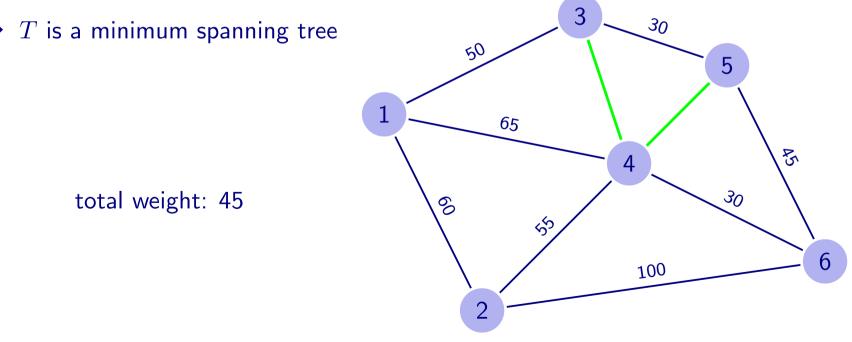
- Set of potential edges := E, tree T := empty
- Until all vertices are in the tree T...
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle: add e to T
- ...remove e from the set of potential edges



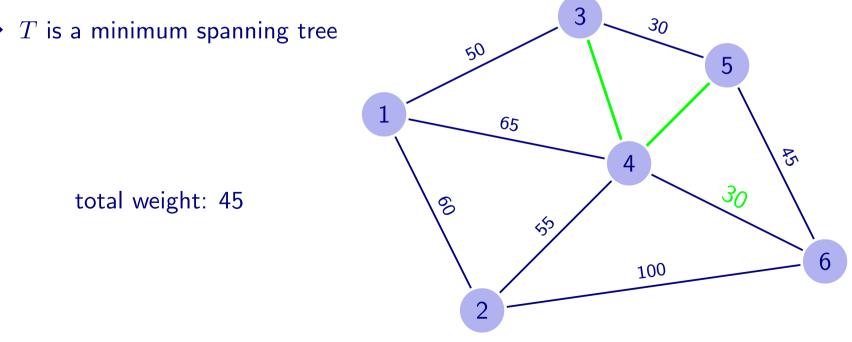
- Set of potential edges := E, tree T := empty
- Until all vertices are in the tree T...
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle: add e to T
- ...remove e from the set of potential edges



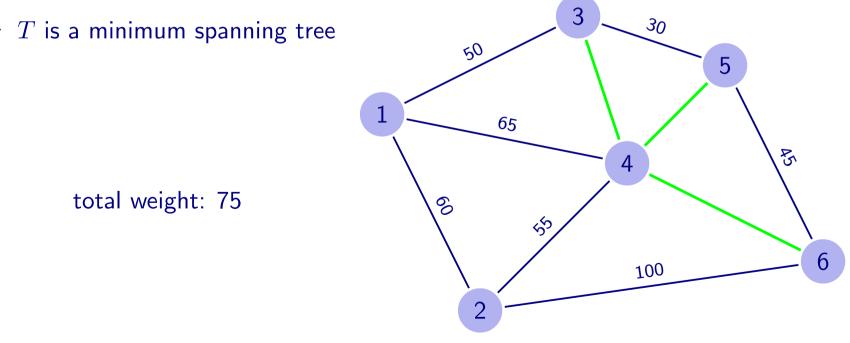
- Set of potential edges := E, tree T := empty
- Until all vertices are in the tree T...
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle: add e to T
- ...remove e from the set of potential edges



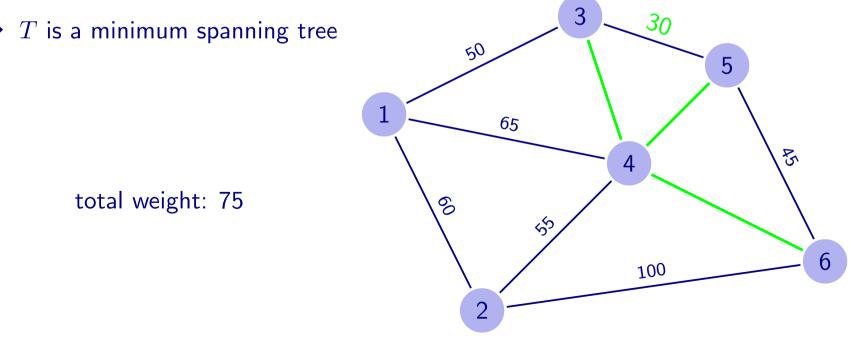
- Set of potential edges := E, tree T := empty
- Until all vertices are in the tree T...
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle: add e to T
- ...remove e from the set of potential edges



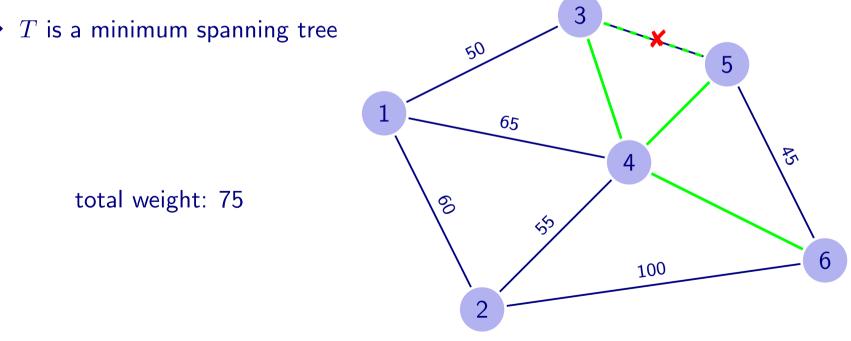
- Set of potential edges := E, tree T := empty
- Until all vertices are in the tree T...
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle: add e to T
- ...remove e from the set of potential edges



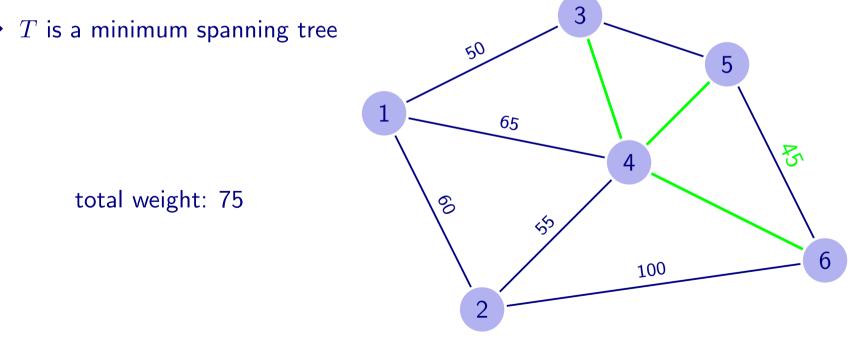
- Set of potential edges := E, tree T := empty
- Until all vertices are in the tree T...
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle: add e to T
- ...remove e from the set of potential edges



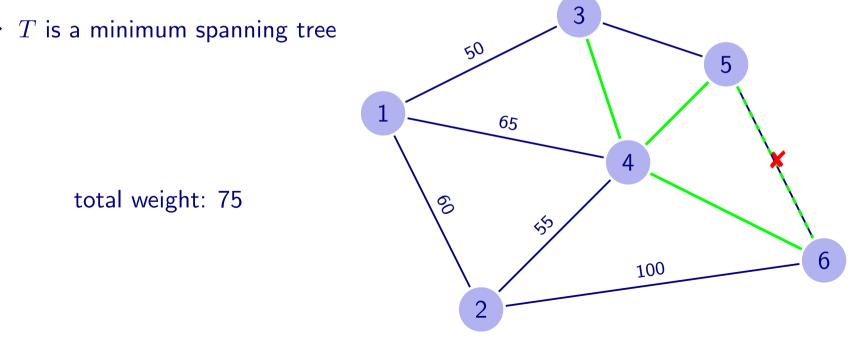
- Set of potential edges := E, tree T := empty
- Until all vertices are in the tree T...
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle: add e to T
- ...remove e from the set of potential edges



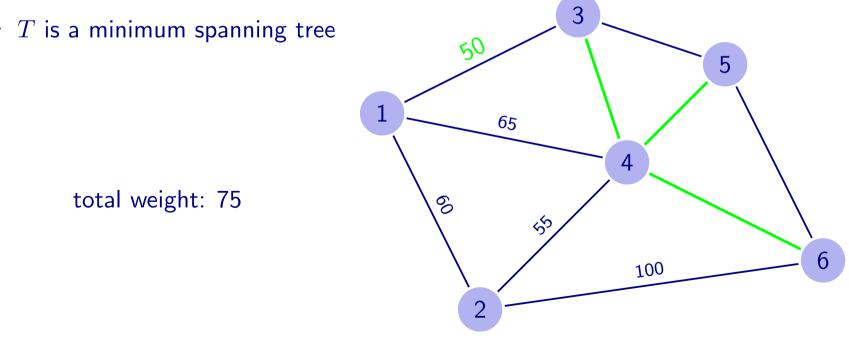
- Set of potential edges := E, tree T := empty
- Until all vertices are in the tree T...
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle: add e to T
- ...remove e from the set of potential edges



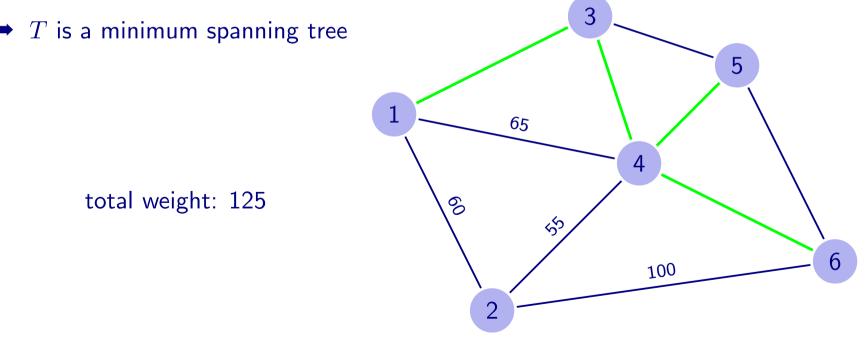
- Set of potential edges := E, tree T := empty
- Until all vertices are in the tree T...
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle: add e to T
- ...remove e from the set of potential edges



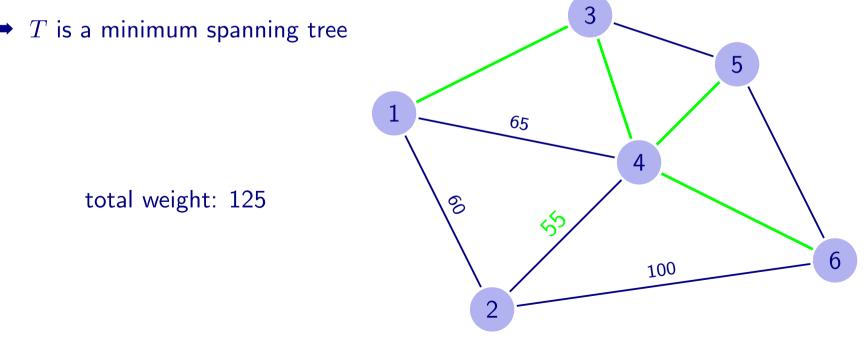
- Set of potential edges := E, tree T := empty
- Until all vertices are in the tree T...
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle: add e to T
- ...remove e from the set of potential edges



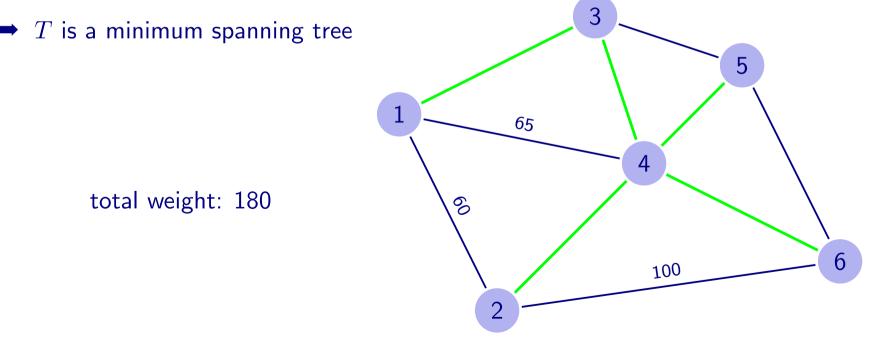
- Set of potential edges := E, tree T := empty
- Until all vertices are in the tree T...
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle: add e to T
- ...remove e from the set of potential edges



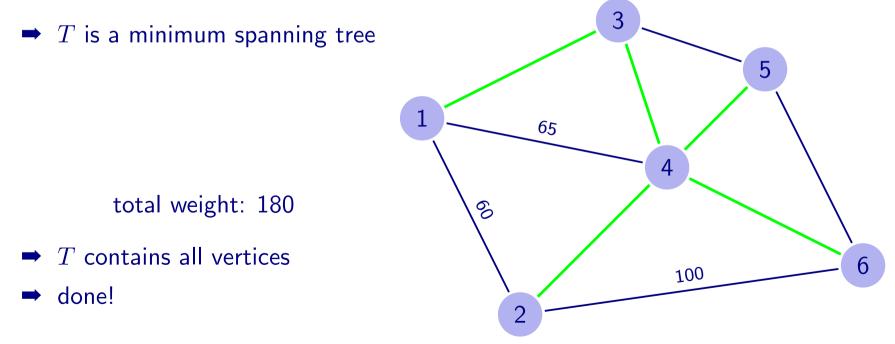
- Set of potential edges := E, tree T := empty
- Until all vertices are in the tree T...
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle: add e to T
- ...remove e from the set of potential edges



- Set of potential edges := E, tree T := empty
- Until all vertices are in the tree T...
- ...determine cheapest remaining potential edge: $\rightarrow e$
- ...if adding edge e to the tree T does not result in a cycle: add e to T
- ...remove e from the set of potential edges



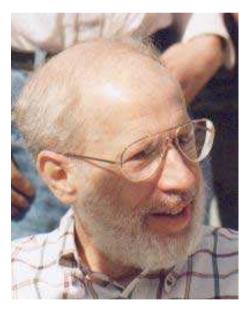
- ▷ Idea: select cheap edges, as long as they don't result in a cycle (greedy)
 - Set of potential edges := E, tree T := empty
 - Until all vertices are in the tree T...
 - ...determine cheapest remaining potential edge: $\rightarrow e$
 - ...if adding edge e to the tree T does not result in a cycle: add e to T
 - ...remove e from the set of potential edges



Kruskal's algorithm is fast (polynomial runtime)
 and relatively easy to implement (greedy algorithm)

- Kruskal's algorithm is fast (polynomial runtime)
 and relatively easy to implement (greedy algorithm)
- ▷ Still it always computes an optimal tree! (Proof by contradiction)

- Kruskal's algorithm is fast (polynomial runtime)
 and relatively easy to implement (greedy algorithm)
- ▷ Still it always computes an optimal tree! (Proof by contradiction)
- ▷ Published by Joseph B. Kruskal in 1956



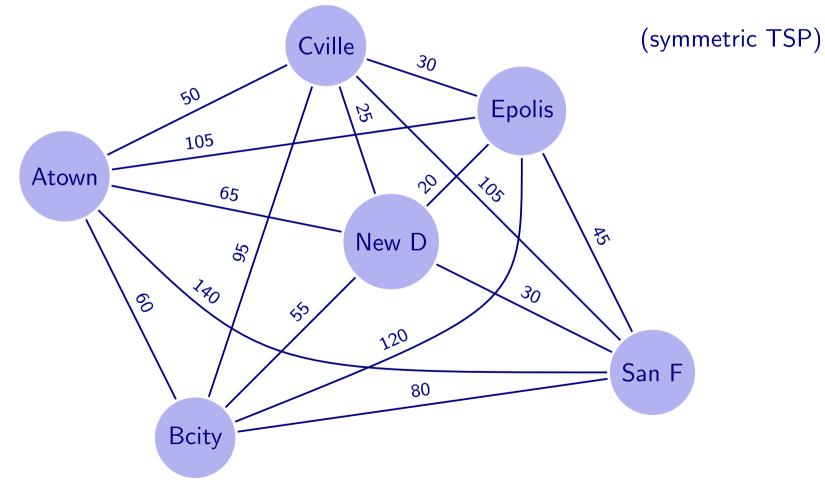
Joseph B. Kruskal (1928–2010)

 \triangleleft

••••••

Problem formulation: Given a set of cities together with travel times to travel *between every two cities*, find a tour leading through every city such that the total travel time is minimized.

Problem formulation: Given a set of cities together with travel times to travel *between every two cities*, find a tour leading through every city such that the total travel time is minimized.



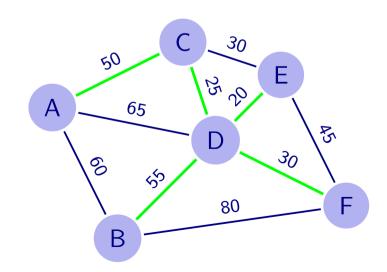
 \triangleleft

•••••

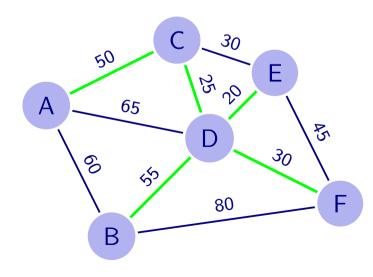
▷ MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:

- ▷ MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
 - Compute an MST for the graph, using distances as edge weights

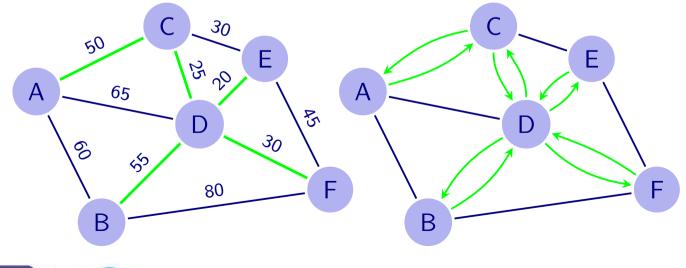
- ▷ MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
 - Compute an MST for the graph, using distances as edge weights



- ▷ MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
 - Compute an MST for the graph, using distances as edge weights
 - Create a "fake tour" by going to and back for every edge of the tree

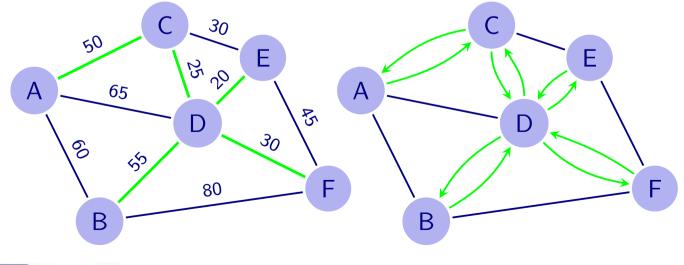


- ▷ MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
 - Compute an MST for the graph, using distances as edge weights
 - Create a "fake tour" by going to and back for every edge of the tree



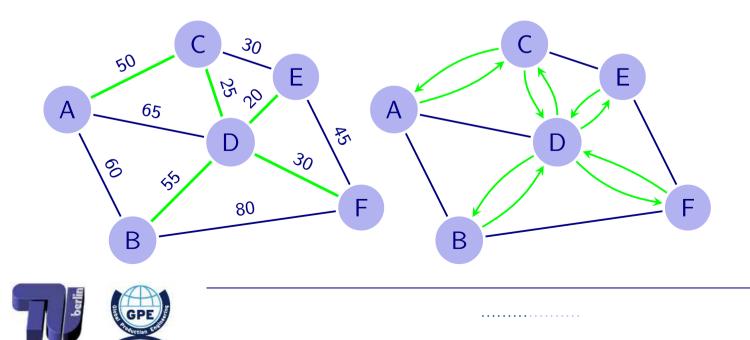
 \triangleright

- ▷ MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
 - Compute an MST for the graph, using distances as edge weights
 - Create a "fake tour" by going to and back for every edge of the tree
 - Start traversing the "tour" at some city



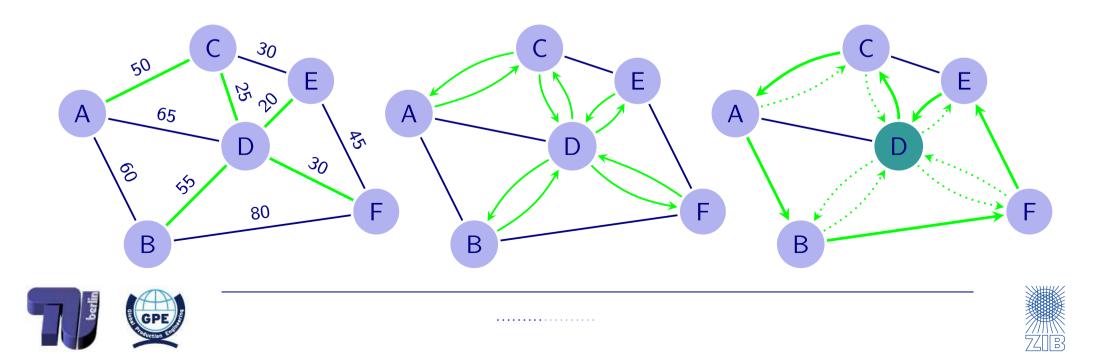
- ▷ MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
 - Compute an MST for the graph, using distances as edge weights
 - Create a "fake tour" by going to and back for every edge of the tree
 - Start traversing the "tour" at some city

• Whenever the tour returns to an already visited city, replace the edge by the shortcut to the following city



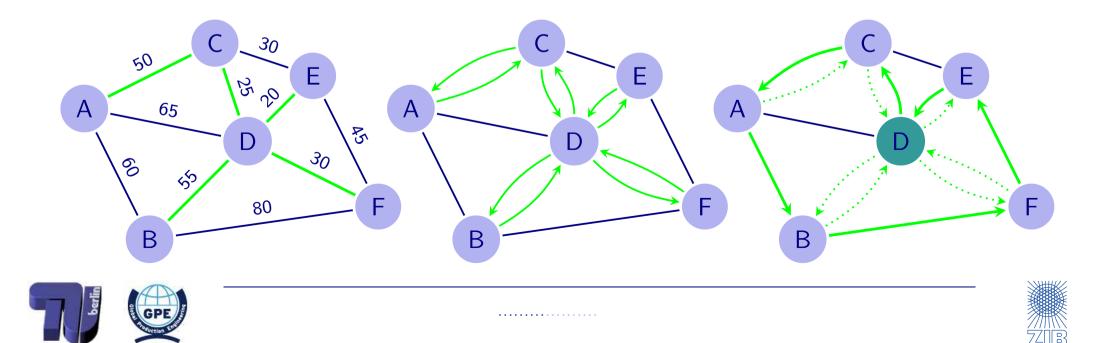
- ▷ MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
 - Compute an MST for the graph, using distances as edge weights
 - Create a "fake tour" by going to and back for every edge of the tree
 - Start traversing the "tour" at some city

• Whenever the tour returns to an already visited city, replace the edge by the shortcut to the following city



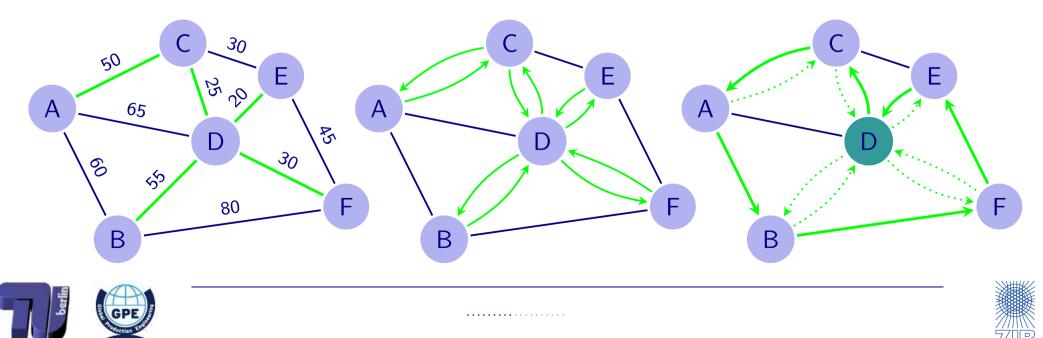
- ▷ MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
 - Compute an MST for the graph, using distances as edge weights
 - Create a "fake tour" by going to and back for every edge of the tree
 - Start traversing the "tour" at some city

- Whenever the tour returns to an already visited city, replace the edge by the shortcut to the following city
- The found solution misses the optimum by a factor of at most 2 (approximation factor)

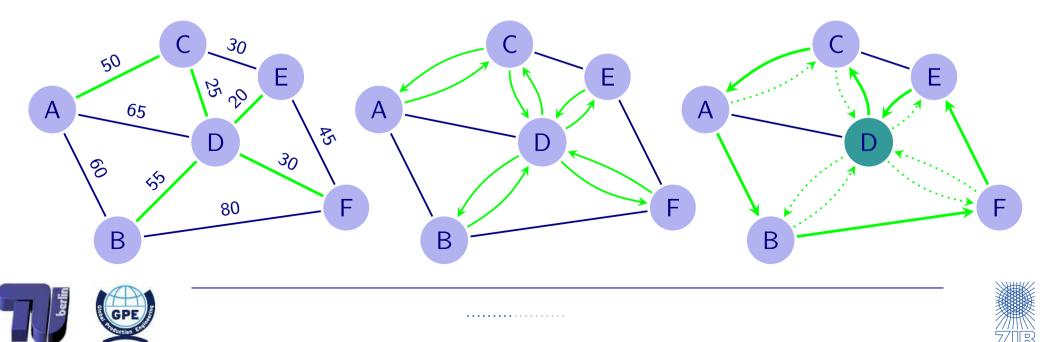


- ▷ MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
 - Compute an MST for the graph, using distances as edge weights
 - Create a "fake tour" by going to and back for every edge of the tree
 - Start traversing the "tour" at some city

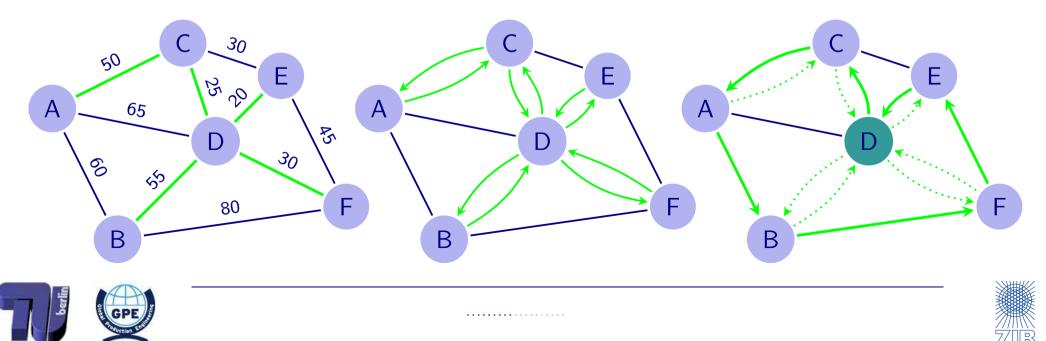
- Whenever the tour returns to an already visited city, replace the edge by the shortcut to the following city
- The found solution misses the optimum by a factor of at most 2 (approximation factor)
 Proof: L_{sol} ≤ L "fake tour"



- ▷ MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
 - Compute an MST for the graph, using distances as edge weights
 - Create a "fake tour" by going to and back for every edge of the tree
 - Start traversing the "tour" at some city
 - Whenever the tour returns to an already visited city, replace the edge by the shortcut to the following city
- The found solution misses the optimum by a factor of at most 2 (approximation factor) Proof: $L_{sol} \leq L_{"fake tour"} \leq 2 \cdot L_{MST}$

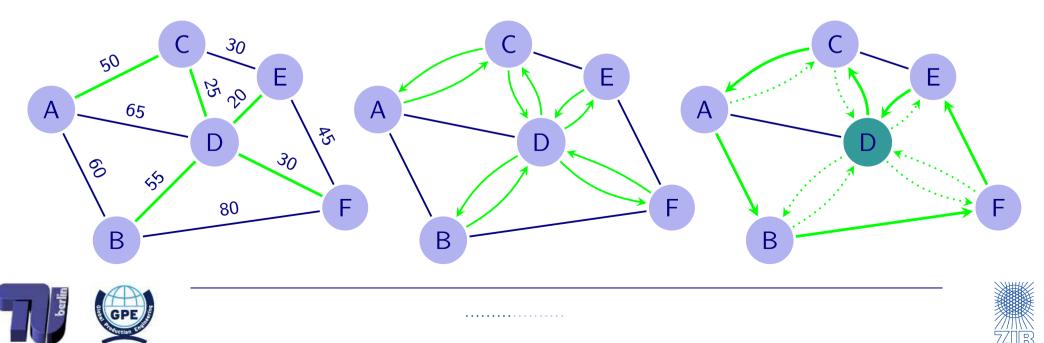


- ▷ MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
 - Compute an MST for the graph, using distances as edge weights
 - Create a "fake tour" by going to and back for every edge of the tree
 - Start traversing the "tour" at some city
 - Whenever the tour returns to an already visited city, replace the edge by the shortcut to the following city
- The found solution misses the optimum by a factor of at most 2 (approximation factor) Proof: $L_{sol} \leq L_{"fake tour"} \leq 2 \cdot L_{MST} \leq 2 \cdot L_{opt \setminus edge}$



- ▷ MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:
 - Compute an MST for the graph, using distances as edge weights
 - Create a "fake tour" by going to and back for every edge of the tree
 - Start traversing the "tour" at some city

- Whenever the tour returns to an already visited city, replace the edge by the shortcut to the following city
- The found solution misses the optimum by a factor of at most 2 (approximation factor) Proof: $L_{sol} \leq L_{"fake tour"} \leq 2 \cdot L_{MST} \leq 2 \cdot L_{opt \setminus edge} \leq 2 \cdot L_{opt}$



▷ Great flexibility in formulating real-life problems

- ▷ Great flexibility in formulating real-life problems
- > Usually integer-programming formulation is possible, but inefficient
 - Specially designed algorithms

 \triangleright

- ▷ Great flexibility in formulating real-life problems
- > Usually integer-programming formulation is possible, but inefficient
 - Specially designed algorithms
- ▷ Wide variety of algorithms:

 \triangleright

- ▷ Great flexibility in formulating real-life problems
- > Usually integer-programming formulation is possible, but inefficient
 - Specially designed algorithms
- ▷ Wide variety of algorithms:
 - ➡ Primal algorithms (heuristics):

- ▷ Great flexibility in formulating real-life problems
- > Usually integer-programming formulation is possible, but inefficient
 - Specially designed algorithms
- ▷ Wide variety of algorithms:
 - ➡ Primal algorithms (heuristics):

➡ Dual algorithms (branch & bound, approximation algorithms):

Provide upper/lower bounds on the optimal solution, but without explicitly giving one

- ▷ Great flexibility in formulating real-life problems
- > Usually integer-programming formulation is possible, but inefficient
 - Specially designed algorithms
- ▷ Wide variety of algorithms:
 - ➡ Primal algorithms (heuristics):

➡ Dual algorithms (branch & bound, approximation algorithms):

Provide upper/lower bounds on the optimal solution, but without explicitly giving one

Combination: Primal-dual algorithms

- ▷ Great flexibility in formulating real-life problems
- > Usually integer-programming formulation is possible, but inefficient
 - Specially designed algorithms
- ▷ Wide variety of algorithms:
 - ➡ Primal algorithms (heuristics):

Dual algorithms (branch & bound, approximation algorithms):

Provide upper/lower bounds on the optimal solution, but without explicitly giving

 \triangleleft

time

- ▷ Models, Data and Algorithms
- ▷ Linear Optimization
- Mathematical Background: Polyhedra, Simplex-Algorithm
- Sensitivity Analysis; (Mixed) Integer Programming
- ▷ MIP Modelling

- ▷ MIP Modelling: More Examples; Branch & Bound
- > Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms
- ▷ TSP-Heuristics
- Network Flows, Complexity Theory
- ▷ Nonlinear Optimization
- ▷ Scheduling
- ▷ Lot Sizing
- Multicriteria Optimization
- ▷ Oral exam

