
� �

Mathematical Tools

for Engineering and Management

Lecture 8

7 Dec 2011

···················

� Overview �

� Models, Data and Algorithms

� Linear Optimization

� Mathematical Background: Polyhedra, Simplex-Algorithm

� Sensitivity Analysis; (Mixed) Integer Programming

� MIP Modelling

� MIP Modelling: More Examples; Branch & Bound

� Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms

� TSP-Heuristics

� Complexity Theory

� Nonlinear Optimization

� Scheduling

� Lot Sizing

� Multicriteria Optimization

� Oral exam

···················

� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

···················

� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

···················

� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

···················

� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

• ...until all cities are visited

···················

� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

• ...until all cities are visited

➡ Straightforward and easy to implement

···················

� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

• ...until all cities are visited

➡ Straightforward and easy to implement

➡ But: might produce arbitrarily bad solutions – or even the worst possible tour!

···················

� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

• ...until all cities are visited

➡ Straightforward and easy to implement

➡ But: might produce arbitrarily bad solutions – or even the worst possible tour!

� Tour expansion heuristic:

···················

� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

• ...until all cities are visited

➡ Straightforward and easy to implement

➡ But: might produce arbitrarily bad solutions – or even the worst possible tour!

� Tour expansion heuristic:

• Order the cities in some way

···················

� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

• ...until all cities are visited

➡ Straightforward and easy to implement

➡ But: might produce arbitrarily bad solutions – or even the worst possible tour!

� Tour expansion heuristic:

• Order the cities in some way

• Start with the tour through the first two cities

···················

� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

• ...until all cities are visited

➡ Straightforward and easy to implement

➡ But: might produce arbitrarily bad solutions – or even the worst possible tour!

� Tour expansion heuristic:

• Order the cities in some way

• Start with the tour through the first two cities

• Insert the next city at the best position...

···················

� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

• ...until all cities are visited

➡ Straightforward and easy to implement

➡ But: might produce arbitrarily bad solutions – or even the worst possible tour!

� Tour expansion heuristic:

• Order the cities in some way

• Start with the tour through the first two cities

• Insert the next city at the best position...

• ...until all cities are inserted

···················

� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

• ...until all cities are visited

➡ Straightforward and easy to implement

➡ But: might produce arbitrarily bad solutions – or even the worst possible tour!

� Tour expansion heuristic:

• Order the cities in some way

• Start with the tour through the first two cities

• Insert the next city at the best position...

• ...until all cities are inserted

➡ Can be improved by smart ordering and definition of “best position”

···················

� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

• ...until all cities are visited

➡ Straightforward and easy to implement

➡ But: might produce arbitrarily bad solutions – or even the worst possible tour!

� Tour expansion heuristic:

• Order the cities in some way

• Start with the tour through the first two cities

• Insert the next city at the best position...

• ...until all cities are inserted

➡ Can be improved by smart ordering and definition of “best position”

➡ But: might also produce bad solutions in general

···················

� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

• ...until all cities are visited

➡ Straightforward and easy to implement

➡ But: might produce arbitrarily bad solutions – or even the worst possible tour!

� Tour expansion heuristic:

• Order the cities in some way

• Start with the tour through the first two cities

• Insert the next city at the best position...

• ...until all cities are inserted

➡ Can be improved by smart ordering and definition of “best position”

➡ But: might also produce bad solutions in general

� Try to prove quality of solution ➡ approximation algorithms

···················

� Graphs �

A graph G = (V,E) consists of a set of vertices V and a set of edges E between the vertices

···················

� Graphs �

A graph G = (V,E) consists of a set of vertices V and a set of edges E between the vertices

� Directed graph: edges (or arcs) have a direction

➡ E ⊆ {(i, j) | i, j ∈ V, i 6= j}

···················

� Graphs �

A graph G = (V,E) consists of a set of vertices V and a set of edges E between the vertices

� Directed graph: edges (or arcs) have a direction

➡ E ⊆ {(i, j) | i, j ∈ V, i 6= j} i

j
(i, j)

(j, i)

···················

� Graphs �

A graph G = (V,E) consists of a set of vertices V and a set of edges E between the vertices

� Directed graph: edges (or arcs) have a direction

➡ E ⊆ {(i, j) | i, j ∈ V, i 6= j} i

j
(i, j)

(j, i)

� Undirected graph: edges have no direction

➡ E ⊆ {{i, j} | i, j ∈ V, i 6= j}

···················

� Graphs �

A graph G = (V,E) consists of a set of vertices V and a set of edges E between the vertices

� Directed graph: edges (or arcs) have a direction

➡ E ⊆ {(i, j) | i, j ∈ V, i 6= j} i

j
(i, j)

(j, i)

� Undirected graph: edges have no direction

➡ E ⊆ {{i, j} | i, j ∈ V, i 6= j} i

j{i, j}

= {j, i}

···················

� Graphs �

A graph G = (V,E) consists of a set of vertices V and a set of edges E between the vertices

� Directed graph: edges (or arcs) have a direction

➡ E ⊆ {(i, j) | i, j ∈ V, i 6= j} i

j
(i, j)

(j, i)

� Undirected graph: edges have no direction

➡ E ⊆ {{i, j} | i, j ∈ V, i 6= j} i

j{i, j}

= {j, i}

� Examples:

complete graph

on n vertices: Kn

1

2

3

4

5

K5

···················

� Graphs �

A graph G = (V,E) consists of a set of vertices V and a set of edges E between the vertices

� Directed graph: edges (or arcs) have a direction

➡ E ⊆ {(i, j) | i, j ∈ V, i 6= j} i

j
(i, j)

(j, i)

� Undirected graph: edges have no direction

➡ E ⊆ {{i, j} | i, j ∈ V, i 6= j} i

j{i, j}

= {j, i}

� Examples:

complete graph

on n vertices: Kn

1

2

3

4

5

K5

complete bipartite graph:

Km,n

1

2

3

i

ii

K3,2

···················

� Graphs �

A graph G = (V,E) consists of a set of vertices V and a set of edges E between the vertices

� Directed graph: edges (or arcs) have a direction

➡ E ⊆ {(i, j) | i, j ∈ V, i 6= j} i

j
(i, j)

(j, i)

� Undirected graph: edges have no direction

➡ E ⊆ {{i, j} | i, j ∈ V, i 6= j} i

j{i, j}

= {j, i}

� Examples:

complete graph

on n vertices: Kn

1

2

3

4

5

K5

complete bipartite graph:

Km,n

1

2

3

i

ii

K3,2

path: Pn

1

2

3

4

5

P5

···················

� Graphs �

A graph G = (V,E) consists of a set of vertices V and a set of edges E between the vertices

� Directed graph: edges (or arcs) have a direction

➡ E ⊆ {(i, j) | i, j ∈ V, i 6= j} i

j
(i, j)

(j, i)

� Undirected graph: edges have no direction

➡ E ⊆ {{i, j} | i, j ∈ V, i 6= j} i

j{i, j}

= {j, i}

� Examples:

complete graph

on n vertices: Kn

1

2

3

4

5

K5

complete bipartite graph:

Km,n

1

2

3

i

ii

K3,2

path: Pn

1

2

3

4

5

P5

cycle

on n vertices: Cn

1

2
3

4
5

6

7

C7

···················

� Trees �

A tree T is a graph with the following properties:

• T contains no cycles

• T is connected (i.e. every two vertices can be connected by a path in T)

• There is exactly one more vertex than there are edges (i.e. |V | = |E|+ 1)

···················

� Trees �

A tree T is a graph with the following properties:

• T contains no cycles

• T is connected (i.e. every two vertices can be connected by a path in T)

• There is exactly one more vertex than there are edges (i.e. |V | = |E|+ 1)

1

2

3

4

5

6

78

9

···················

� Trees �

A tree T is a graph with the following properties:

• T contains no cycles

• T is connected (i.e. every two vertices can be connected by a path in T)

• There is exactly one more vertex than there are edges (i.e. |V | = |E|+ 1)

1

2

3

4

5

6

78

9 ➡ Removing one edge makes the tree

disconnected

···················

� Trees �

A tree T is a graph with the following properties:

• T contains no cycles

• T is connected (i.e. every two vertices can be connected by a path in T)

• There is exactly one more vertex than there are edges (i.e. |V | = |E|+ 1)

1

2

3

4

5

6

78

9 ➡ Removing one edge makes the tree

disconnected

➡ Adding a new edge creates a cycle

···················

� Minimum Spanning Tree Problem (MST) �

� Given a graph G = (V,E) with non-negative edge-weights we for all e ∈ E...

···················

� Minimum Spanning Tree Problem (MST) �

� Given a graph G = (V,E) with non-negative edge-weights we for all e ∈ E...

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

···················

� Minimum Spanning Tree Problem (MST) �

� Given a graph G = (V,E) with non-negative edge-weights we for all e ∈ E...

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

...find a minimum spanning tree for G

···················

� Minimum Spanning Tree Problem (MST) �

� Given a graph G = (V,E) with non-negative edge-weights we for all e ∈ E...

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

...find a minimum spanning tree for G, that is: a subset E′ of the edges such that

• the edges in E′ form a tree

···················

� Minimum Spanning Tree Problem (MST) �

� Given a graph G = (V,E) with non-negative edge-weights we for all e ∈ E...

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

...find a minimum spanning tree for G, that is: a subset E′ of the edges such that

• the edges in E′ form a tree

• all vertices of G are in the tree

···················

� Minimum Spanning Tree Problem (MST) �

� Given a graph G = (V,E) with non-negative edge-weights we for all e ∈ E...

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

...find a minimum spanning tree for G, that is: a subset E′ of the edges such that

• the edges in E′ form a tree

• all vertices of G are in the tree

• the total weight of the tree edges is minimal

···················

� Minimum Spanning Tree Problem (MST) �

� Given a graph G = (V,E) with non-negative edge-weights we for all e ∈ E...

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

...find a minimum spanning tree for G, that is: a subset E′ of the edges such that

• the edges in E′ form a tree

• all vertices of G are in the tree

• the total weight of the tree edges is minimal

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

···················

� Minimum Spanning Tree Problem (MST) �

� Given a graph G = (V,E) with non-negative edge-weights we for all e ∈ E...

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

...find a minimum spanning tree for G, that is: a subset E′ of the edges such that

• the edges in E′ form a tree

• all vertices of G are in the tree

• the total weight of the tree edges is minimal

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

➡ total weight: 290

···················

� Minimum Spanning Tree Problem (MST) �

� Given a graph G = (V,E) with non-negative edge-weights we for all e ∈ E...

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

...find a minimum spanning tree for G, that is: a subset E′ of the edges such that

• the edges in E′ form a tree

• all vertices of G are in the tree

• the total weight of the tree edges is minimal

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

➡ total weight: 290

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

➡ total weight: 260

···················

� Minimum Spanning Tree Problem (MST) �

� Given a graph G = (V,E) with non-negative edge-weights we for all e ∈ E...

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

...find a minimum spanning tree for G, that is: a subset E′ of the edges such that

• the edges in E′ form a tree

• all vertices of G are in the tree

• the total weight of the tree edges is minimal

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

➡ total weight: 290

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

➡ total weight: 260

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

➡ not allowed: not a tree!

···················

� Minimum Spanning Tree Problem (MST) �

� Given a graph G = (V,E) with non-negative edge-weights we for all e ∈ E...

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

...find a minimum spanning tree for G, that is: a subset E′ of the edges such that

• the edges in E′ form a tree

• all vertices of G are in the tree

• the total weight of the tree edges is minimal

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

➡ total weight: 290

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

➡ total weight: 260

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

➡ not allowed: not a tree!

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

➡ not allowed: misses vertices!

···················

� Minimum Spanning Tree Problem (MST) �

� Given a graph G = (V,E) with non-negative edge-weights we for all e ∈ E...

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

...find a minimum spanning tree for G, that is: a subset E′ of the edges such that

• the edges in E′ form a tree

• all vertices of G are in the tree

• the total weight of the tree edges is minimal

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

➡ total weight: 290

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

➡ total weight: 260

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

➡ not allowed: not a tree!

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

➡ not allowed: misses vertices!

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

➡ total weight: 195

···················

� Minimum Spanning Tree Problem (MST) �

� Given a graph G = (V,E) with non-negative edge-weights we for all e ∈ E...

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

...find a minimum spanning tree for G, that is: a subset E′ of the edges such that

• the edges in E′ form a tree

• all vertices of G are in the tree

• the total weight of the tree edges is minimal

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

➡ total weight: 290

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

➡ total weight: 260

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

➡ not allowed: not a tree!

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

➡ not allowed: misses vertices!

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

➡ total weight: 195

� Real-world problem:

Connect a set of given

computers to form a local

network, at minimal cost

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

30total weight: 20

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

30total weight: 20

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

25

30

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

30total weight: 20

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

25

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

30total weight: 45

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

30total weight: 20

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

25

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

30total weight: 45

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

30

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

30total weight: 20

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

25

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

30total weight: 45

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

total weight: 75

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

30total weight: 20

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

25

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

30total weight: 45

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

total weight: 75

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

30total weight: 20

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

25

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

30total weight: 45

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

total weight: 75

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

1

2

3

4

5

6

6
0

100

50

4
5

65

55

✘

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

30total weight: 20

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

25

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

30total weight: 45

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

total weight: 75

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

1

2

3

4

5

6

6
0

100

50

4
5

65

55

✘

1

2

3

4

5

6

6
0

100

50

45

65

55

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

30total weight: 20

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

25

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

30total weight: 45

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

total weight: 75

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

1

2

3

4

5

6

6
0

100

50

4
5

65

55

✘

1

2

3

4

5

6

6
0

100

50

45

65

55

1

2

3

4

5

6

6
0

100

50

65

55

✘

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

30total weight: 20

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

25

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

30total weight: 45

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

total weight: 75

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

1

2

3

4

5

6

6
0

100

50

4
5

65

55

✘

1

2

3

4

5

6

6
0

100

50

45

65

55

1

2

3

4

5

6

6
0

100

50

65

55

✘

1

2

3

4

5

6

6
0

100

50

65

55

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

30total weight: 20

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

25

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

30total weight: 45

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

total weight: 75

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

1

2

3

4

5

6

6
0

100

50

4
5

65

55

✘

1

2

3

4

5

6

6
0

100

50

45

65

55

1

2

3

4

5

6

6
0

100

50

65

55

✘

1

2

3

4

5

6

6
0

100

50

65

55

1

2

3

4

5

6

6
0

100

65

55

total weight: 125

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

30total weight: 20

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

25

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

30total weight: 45

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

total weight: 75

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

1

2

3

4

5

6

6
0

100

50

4
5

65

55

✘

1

2

3

4

5

6

6
0

100

50

45

65

55

1

2

3

4

5

6

6
0

100

50

65

55

✘

1

2

3

4

5

6

6
0

100

50

65

55

1

2

3

4

5

6

6
0

100

65

55

total weight: 125

1

2

3

4

5

6

6
0

100

65

55

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

30total weight: 20

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

25

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

30total weight: 45

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

total weight: 75

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

1

2

3

4

5

6

6
0

100

50

4
5

65

55

✘

1

2

3

4

5

6

6
0

100

50

45

65

55

1

2

3

4

5

6

6
0

100

50

65

55

✘

1

2

3

4

5

6

6
0

100

50

65

55

1

2

3

4

5

6

6
0

100

65

55

total weight: 125

1

2

3

4

5

6

6
0

100

65

55

1

2

3

4

5

6

6
0

100

65

total weight: 180

···················

� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

20

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

2
5

30total weight: 20

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

25

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

30total weight: 45

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

30

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

total weight: 75

1

2

3

4

5

6

6
0

100

50

30

4
5

65

55

1

2

3

4

5

6

6
0

100

50

4
5

65

55

✘

1

2

3

4

5

6

6
0

100

50

45

65

55

1

2

3

4

5

6

6
0

100

50

65

55

✘

1

2

3

4

5

6

6
0

100

50

65

55

1

2

3

4

5

6

6
0

100

65

55

total weight: 125

1

2

3

4

5

6

6
0

100

65

55

1

2

3

4

5

6

6
0

100

65

total weight: 180

➡ T contains all vertices

➡ done!

···················

� Kruskal’s algorithm – summary �

� Kruskal’s algorithm is fast (polynomial runtime)

and relatively easy to implement (greedy algorithm)

···················

� Kruskal’s algorithm – summary �

� Kruskal’s algorithm is fast (polynomial runtime)

and relatively easy to implement (greedy algorithm)

� Still it always computes an optimal tree! (Proof by contradiction)

···················

� Kruskal’s algorithm – summary �

� Kruskal’s algorithm is fast (polynomial runtime)

and relatively easy to implement (greedy algorithm)

� Still it always computes an optimal tree! (Proof by contradiction)

� Published by Joseph B. Kruskal in 1956

Joseph B. Kruskal (1928–2010)

···················

� Symmetric Travelling Salesman Problem �

Problem formulation: Given a set of cities together with travel times to travel

between every two cities, find a tour leading through every city such that the total

travel time is minimized.

···················

� Symmetric Travelling Salesman Problem �

Problem formulation: Given a set of cities together with travel times to travel

between every two cities, find a tour leading through every city such that the total

travel time is minimized.

Atown

Bcity

Cville

New D

Epolis

San F

6
0

80

50

30

4
5

65

55

2
5

20

30

105

140

9
5

105

120

(symmetric TSP)

···················

� TSP – approximation algorithm using MST �

� MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:

···················

� TSP – approximation algorithm using MST �

� MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:

• Compute an MST for the graph, using distances as edge weights

···················

� TSP – approximation algorithm using MST �

� MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:

• Compute an MST for the graph, using distances as edge weights

A

B

C

D

E

F

6
0

80

50
30

4
5

65

55

2
5

20

30

···················

� TSP – approximation algorithm using MST �

� MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:

• Compute an MST for the graph, using distances as edge weights

A

B

C

D

E

F

6
0

80

50
30

4
5

65

55

2
5

20

30

• Create a “fake tour” by going to and back for every edge of the tree

···················

� TSP – approximation algorithm using MST �

� MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:

• Compute an MST for the graph, using distances as edge weights

A

B

C

D

E

F

6
0

80

50
30

4
5

65

55

2
5

20

30

• Create a “fake tour” by going to and back for every edge of the tree

A

B

C

D

E

F

···················

� TSP – approximation algorithm using MST �

� MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:

• Compute an MST for the graph, using distances as edge weights

A

B

C

D

E

F

6
0

80

50
30

4
5

65

55

2
5

20

30

• Create a “fake tour” by going to and back for every edge of the tree

A

B

C

D

E

F

• Start traversing the “tour” at some city

···················

� TSP – approximation algorithm using MST �

� MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:

• Compute an MST for the graph, using distances as edge weights

A

B

C

D

E

F

6
0

80

50
30

4
5

65

55

2
5

20

30

• Create a “fake tour” by going to and back for every edge of the tree

A

B

C

D

E

F

• Start traversing the “tour” at some city

• Whenever the tour returns to an already visited city, replace the edge by the

shortcut to the following city

···················

� TSP – approximation algorithm using MST �

� MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:

• Compute an MST for the graph, using distances as edge weights

A

B

C

D

E

F

6
0

80

50
30

4
5

65

55

2
5

20

30

• Create a “fake tour” by going to and back for every edge of the tree

A

B

C

D

E

F

• Start traversing the “tour” at some city

• Whenever the tour returns to an already visited city, replace the edge by the

shortcut to the following city

A

B

C

D

E

F

···················

� TSP – approximation algorithm using MST �

� MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:

• Compute an MST for the graph, using distances as edge weights

A

B

C

D

E

F

6
0

80

50
30

4
5

65

55

2
5

20

30

• Create a “fake tour” by going to and back for every edge of the tree

A

B

C

D

E

F

• Start traversing the “tour” at some city

• Whenever the tour returns to an already visited city, replace the edge by the

shortcut to the following city

A

B

C

D

E

F

➡ The found solution misses the optimum by a factor of at most 2 (approximation factor)

···················

� TSP – approximation algorithm using MST �

� MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:

• Compute an MST for the graph, using distances as edge weights

A

B

C

D

E

F

6
0

80

50
30

4
5

65

55

2
5

20

30

• Create a “fake tour” by going to and back for every edge of the tree

A

B

C

D

E

F

• Start traversing the “tour” at some city

• Whenever the tour returns to an already visited city, replace the edge by the

shortcut to the following city

A

B

C

D

E

F

➡ The found solution misses the optimum by a factor of at most 2 (approximation factor)

Proof: Lsol ≤ L“fake tour”

···················

� TSP – approximation algorithm using MST �

� MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:

• Compute an MST for the graph, using distances as edge weights

A

B

C

D

E

F

6
0

80

50
30

4
5

65

55

2
5

20

30

• Create a “fake tour” by going to and back for every edge of the tree

A

B

C

D

E

F

• Start traversing the “tour” at some city

• Whenever the tour returns to an already visited city, replace the edge by the

shortcut to the following city

A

B

C

D

E

F

➡ The found solution misses the optimum by a factor of at most 2 (approximation factor)

Proof: Lsol ≤ L“fake tour” ≤ 2 · LMST

···················

� TSP – approximation algorithm using MST �

� MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:

• Compute an MST for the graph, using distances as edge weights

A

B

C

D

E

F

6
0

80

50
30

4
5

65

55

2
5

20

30

• Create a “fake tour” by going to and back for every edge of the tree

A

B

C

D

E

F

• Start traversing the “tour” at some city

• Whenever the tour returns to an already visited city, replace the edge by the

shortcut to the following city

A

B

C

D

E

F

➡ The found solution misses the optimum by a factor of at most 2 (approximation factor)

Proof: Lsol ≤ L“fake tour” ≤ 2 · LMST ≤ 2 · Lopt\edge

···················

� TSP – approximation algorithm using MST �

� MST can be used for an approximation algorithm for the (symmetric, euclidean) TSP:

• Compute an MST for the graph, using distances as edge weights

A

B

C

D

E

F

6
0

80

50
30

4
5

65

55

2
5

20

30

• Create a “fake tour” by going to and back for every edge of the tree

A

B

C

D

E

F

• Start traversing the “tour” at some city

• Whenever the tour returns to an already visited city, replace the edge by the

shortcut to the following city

A

B

C

D

E

F

➡ The found solution misses the optimum by a factor of at most 2 (approximation factor)

Proof: Lsol ≤ L“fake tour” ≤ 2 · LMST ≤ 2 · Lopt\edge ≤ 2 · Lopt

···················

� Combinatorial optimization – summary �

� Great flexibility in formulating real-life problems

···················

� Combinatorial optimization – summary �

� Great flexibility in formulating real-life problems

� Usually integer-programming formulation is possible, but inefficient

➡ Specially designed algorithms

···················

� Combinatorial optimization – summary �

� Great flexibility in formulating real-life problems

� Usually integer-programming formulation is possible, but inefficient

➡ Specially designed algorithms

� Wide variety of algorithms:

···················

� Combinatorial optimization – summary �

� Great flexibility in formulating real-life problems

� Usually integer-programming formulation is possible, but inefficient

➡ Specially designed algorithms

� Wide variety of algorithms:

➡ Primal algorithms (heuristics):

Provide feasible solutions, but without guarantee of optimality

···················

� Combinatorial optimization – summary �

� Great flexibility in formulating real-life problems

� Usually integer-programming formulation is possible, but inefficient

➡ Specially designed algorithms

� Wide variety of algorithms:

➡ Primal algorithms (heuristics):

Provide feasible solutions, but without guarantee of optimality

➡ Dual algorithms (branch & bound, approximation algorithms):

Provide upper/lower bounds on the optimal solution, but without explicitly giving

one

···················

� Combinatorial optimization – summary �

� Great flexibility in formulating real-life problems

� Usually integer-programming formulation is possible, but inefficient

➡ Specially designed algorithms

� Wide variety of algorithms:

➡ Primal algorithms (heuristics):

Provide feasible solutions, but without guarantee of optimality

➡ Dual algorithms (branch & bound, approximation algorithms):

Provide upper/lower bounds on the optimal solution, but without explicitly giving

one

➡ Combination: Primal-dual algorithms

···················

� Combinatorial optimization – summary �

� Great flexibility in formulating real-life problems

� Usually integer-programming formulation is possible, but inefficient

➡ Specially designed algorithms

� Wide variety of algorithms:

➡ Primal algorithms (heuristics):

Provide feasible solutions, but without guarantee of optimality

➡ Dual algorithms (branch & bound, approximation algorithms):

Provide upper/lower bounds on the optimal solution, but without explicitly giving

one

➡ Combination: Primal-dual algorithms

time

m
a
x
im

iz
e
→

↓ −∞ ↓

primal objective

↑ ∞ ↑

dual bound
optimum

···················

� Overview �

� Models, Data and Algorithms

� Linear Optimization

� Mathematical Background: Polyhedra, Simplex-Algorithm

� Sensitivity Analysis; (Mixed) Integer Programming

� MIP Modelling

� MIP Modelling: More Examples; Branch & Bound

� Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms

� TSP-Heuristics

� Network Flows, Complexity Theory

� Nonlinear Optimization

� Scheduling

� Lot Sizing

� Multicriteria Optimization

� Oral exam

···················

