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� Overview �

� Models, Data and Algorithms

� Linear Optimization

� Mathematical Background: Polyhedra, Simplex-Algorithm

� Sensitivity Analysis; (Mixed) Integer Programming

� MIP Modelling

� MIP Modelling: More Examples; Branch & Bound

� Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms

� TSP-Heuristics

� Complexity Theory

� Nonlinear Optimization

� Scheduling

� Lot Sizing

� Multicriteria Optimization

� Oral exam

···················



� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

···················



� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

···················



� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

···················



� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

• ...until all cities are visited

···················



� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

• ...until all cities are visited

➡ Straightforward and easy to implement

···················



� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

• ...until all cities are visited

➡ Straightforward and easy to implement

➡ But: might produce arbitrarily bad solutions – or even the worst possible tour!

···················



� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

• ...until all cities are visited

➡ Straightforward and easy to implement

➡ But: might produce arbitrarily bad solutions – or even the worst possible tour!

� Tour expansion heuristic:

···················



� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

• ...until all cities are visited

➡ Straightforward and easy to implement

➡ But: might produce arbitrarily bad solutions – or even the worst possible tour!

� Tour expansion heuristic:

• Order the cities in some way

···················



� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

• ...until all cities are visited

➡ Straightforward and easy to implement

➡ But: might produce arbitrarily bad solutions – or even the worst possible tour!

� Tour expansion heuristic:

• Order the cities in some way

• Start with the tour through the first two cities

···················



� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

• ...until all cities are visited

➡ Straightforward and easy to implement

➡ But: might produce arbitrarily bad solutions – or even the worst possible tour!

� Tour expansion heuristic:

• Order the cities in some way

• Start with the tour through the first two cities

• Insert the next city at the best position...

···················



� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

• ...until all cities are visited

➡ Straightforward and easy to implement

➡ But: might produce arbitrarily bad solutions – or even the worst possible tour!

� Tour expansion heuristic:

• Order the cities in some way

• Start with the tour through the first two cities

• Insert the next city at the best position...

• ...until all cities are inserted

···················



� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

• ...until all cities are visited

➡ Straightforward and easy to implement

➡ But: might produce arbitrarily bad solutions – or even the worst possible tour!

� Tour expansion heuristic:

• Order the cities in some way

• Start with the tour through the first two cities

• Insert the next city at the best position...

• ...until all cities are inserted

➡ Can be improved by smart ordering and definition of “best position”

···················



� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

• ...until all cities are visited

➡ Straightforward and easy to implement

➡ But: might produce arbitrarily bad solutions – or even the worst possible tour!

� Tour expansion heuristic:

• Order the cities in some way

• Start with the tour through the first two cities

• Insert the next city at the best position...

• ...until all cities are inserted

➡ Can be improved by smart ordering and definition of “best position”

➡ But: might also produce bad solutions in general

···················



� TSP – heuristics �

� Nearest neighbour heuristic (greedy algorithm):

• Start with an arbitrary city

• Append the city (or one of the cities) closest to the last visited city to the tour...

• ...until all cities are visited

➡ Straightforward and easy to implement

➡ But: might produce arbitrarily bad solutions – or even the worst possible tour!

� Tour expansion heuristic:

• Order the cities in some way

• Start with the tour through the first two cities

• Insert the next city at the best position...

• ...until all cities are inserted

➡ Can be improved by smart ordering and definition of “best position”

➡ But: might also produce bad solutions in general

� Try to prove quality of solution ➡ approximation algorithms

···················



� Graphs �

A graph G = (V,E) consists of a set of vertices V and a set of edges E between the vertices

···················



� Graphs �

A graph G = (V,E) consists of a set of vertices V and a set of edges E between the vertices

� Directed graph: edges (or arcs) have a direction

➡ E ⊆ {(i, j) | i, j ∈ V, i 6= j}

···················



� Graphs �

A graph G = (V,E) consists of a set of vertices V and a set of edges E between the vertices

� Directed graph: edges (or arcs) have a direction

➡ E ⊆ {(i, j) | i, j ∈ V, i 6= j} i

j
(i, j)

(j, i)

···················



� Graphs �

A graph G = (V,E) consists of a set of vertices V and a set of edges E between the vertices

� Directed graph: edges (or arcs) have a direction

➡ E ⊆ {(i, j) | i, j ∈ V, i 6= j} i

j
(i, j)

(j, i)

� Undirected graph: edges have no direction

➡ E ⊆ {{i, j} | i, j ∈ V, i 6= j}

···················



� Graphs �

A graph G = (V,E) consists of a set of vertices V and a set of edges E between the vertices

� Directed graph: edges (or arcs) have a direction

➡ E ⊆ {(i, j) | i, j ∈ V, i 6= j} i

j
(i, j)

(j, i)

� Undirected graph: edges have no direction

➡ E ⊆ {{i, j} | i, j ∈ V, i 6= j} i

j{i, j}

= {j, i}

···················



� Graphs �

A graph G = (V,E) consists of a set of vertices V and a set of edges E between the vertices

� Directed graph: edges (or arcs) have a direction

➡ E ⊆ {(i, j) | i, j ∈ V, i 6= j} i

j
(i, j)

(j, i)

� Undirected graph: edges have no direction

➡ E ⊆ {{i, j} | i, j ∈ V, i 6= j} i

j{i, j}

= {j, i}

� Examples:

complete graph

on n vertices: Kn

1

2

3

4

5

K5

···················



� Graphs �

A graph G = (V,E) consists of a set of vertices V and a set of edges E between the vertices

� Directed graph: edges (or arcs) have a direction

➡ E ⊆ {(i, j) | i, j ∈ V, i 6= j} i

j
(i, j)

(j, i)

� Undirected graph: edges have no direction

➡ E ⊆ {{i, j} | i, j ∈ V, i 6= j} i

j{i, j}

= {j, i}

� Examples:

complete graph

on n vertices: Kn

1

2

3

4

5

K5

complete bipartite graph:

Km,n

1

2

3

i

ii

K3,2

···················



� Graphs �

A graph G = (V,E) consists of a set of vertices V and a set of edges E between the vertices

� Directed graph: edges (or arcs) have a direction

➡ E ⊆ {(i, j) | i, j ∈ V, i 6= j} i

j
(i, j)

(j, i)

� Undirected graph: edges have no direction

➡ E ⊆ {{i, j} | i, j ∈ V, i 6= j} i

j{i, j}

= {j, i}

� Examples:

complete graph

on n vertices: Kn

1

2

3

4

5

K5

complete bipartite graph:

Km,n

1

2

3

i

ii

K3,2

path: Pn

1

2

3

4

5

P5

···················



� Graphs �

A graph G = (V,E) consists of a set of vertices V and a set of edges E between the vertices
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� Trees �

A tree T is a graph with the following properties:

• T contains no cycles

• T is connected (i.e. every two vertices can be connected by a path in T )

• There is exactly one more vertex than there are edges (i.e. |V | = |E|+ 1)
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5

6

78

9 ➡ Removing one edge makes the tree

disconnected

➡ Adding a new edge creates a cycle
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� Real-world problem:

Connect a set of given

computers to form a local

network, at minimal cost
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• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree
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� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree
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� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree
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� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree
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� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree
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� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree
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� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree
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� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree
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� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree
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� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree
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� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree
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� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree
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� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree
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� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree
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� Kruskal’s algorithm �

� Idea: select cheap edges, as long as they don’t result in a cycle (greedy)

• Set of potential edges := E, tree T := empty

• Until all vertices are in the tree T ...

• ...determine cheapest remaining potential edge: → e

• ...if adding edge e to the tree T does not result in a cycle:

add e to T

• ...remove e from the set of potential edges

➡ T is a minimum spanning tree
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➡ T contains all vertices

➡ done!
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� Kruskal’s algorithm is fast (polynomial runtime)

and relatively easy to implement (greedy algorithm)

� Still it always computes an optimal tree! (Proof by contradiction)

� Published by Joseph B. Kruskal in 1956

Joseph B. Kruskal (1928–2010)
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� Symmetric Travelling Salesman Problem �

Problem formulation: Given a set of cities together with travel times to travel

between every two cities, find a tour leading through every city such that the total

travel time is minimized.
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� TSP – approximation algorithm using MST �
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