Mathematical Tools for Engineering and Management

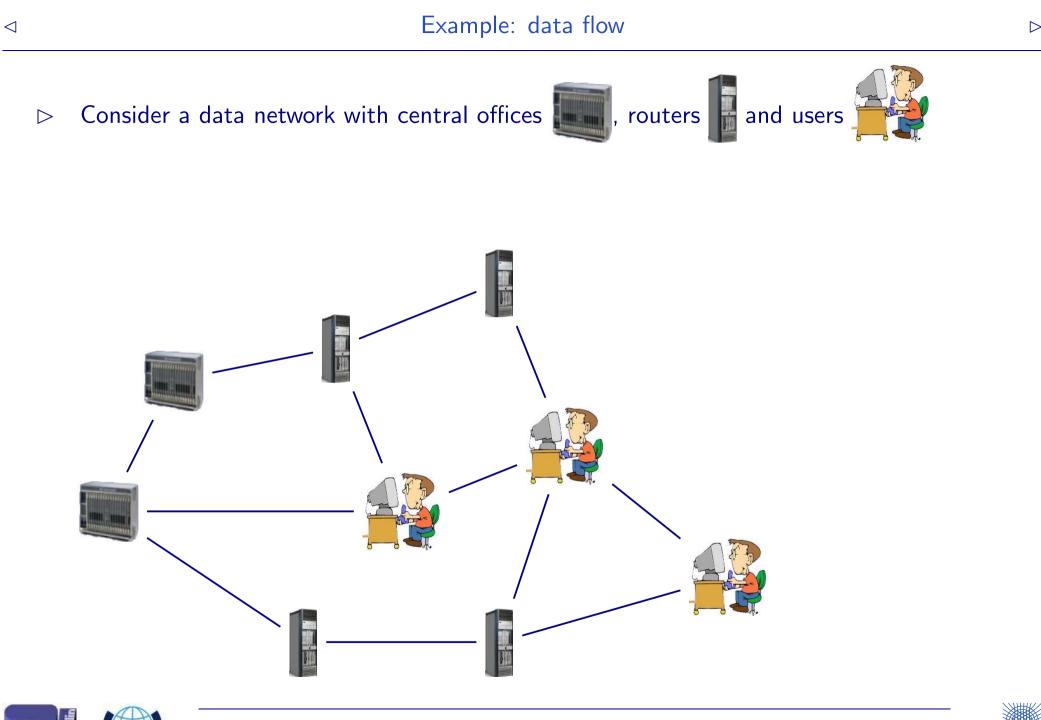
Lecture 9

14 Dec 2011

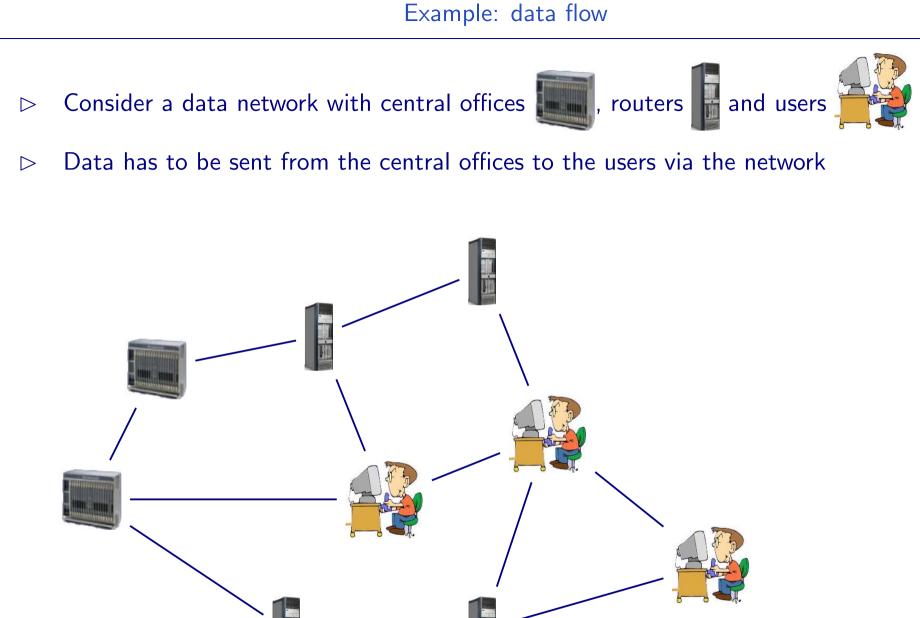
- ▷ Models, Data and Algorithms
- ▷ Linear Optimization

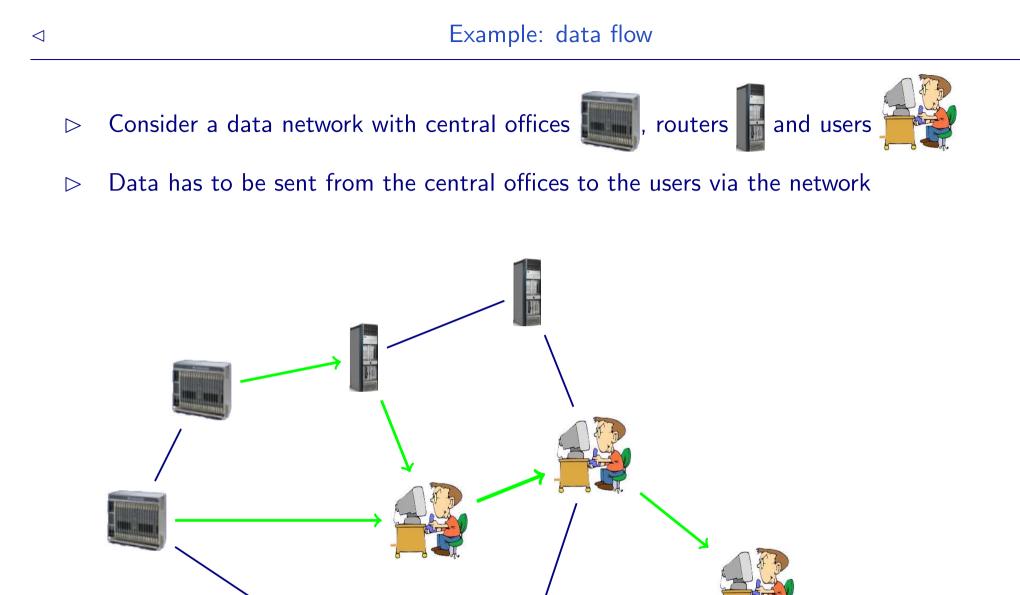
- ▷ Mathematical Background: Polyhedra, Simplex-Algorithm
- Sensitivity Analysis; (Mixed) Integer Programming
- ▷ MIP Modelling
- ▷ MIP Modelling: More Examples; Branch & Bound
- > Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms
- ▷ TSP-Heuristics
- ▷ Network Flows
- Shortest Path Problem, Complexity Theory
- Nonlinear Optimization
- \triangleright Scheduling, Lot Sizing
- Multicriteria Optimization
- ▷ Oral exam

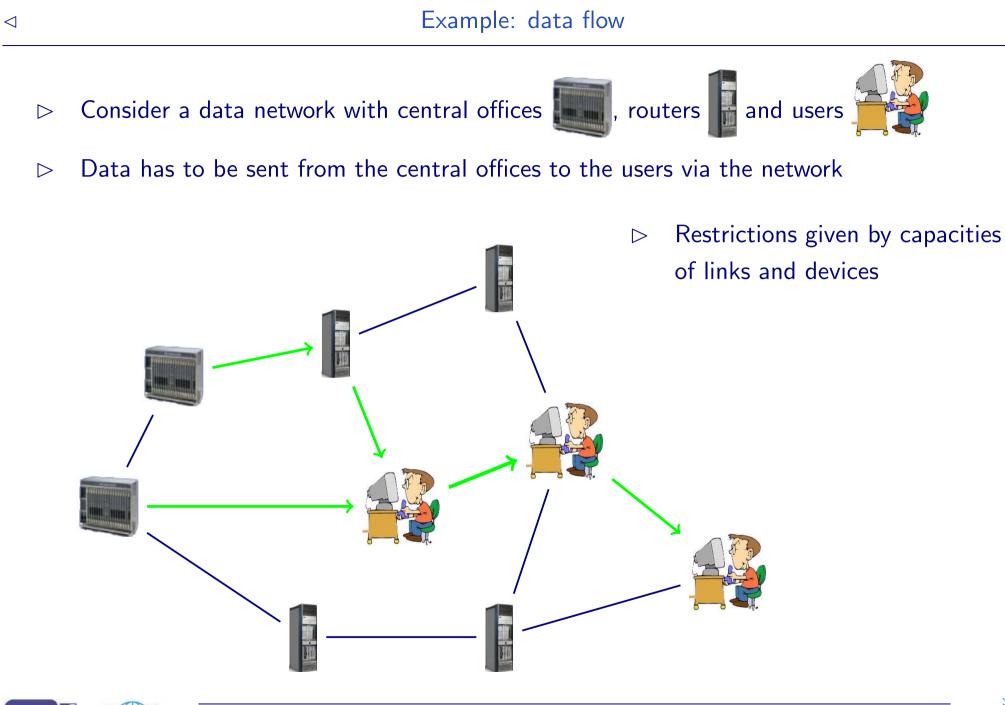
▷ Consider a data network with

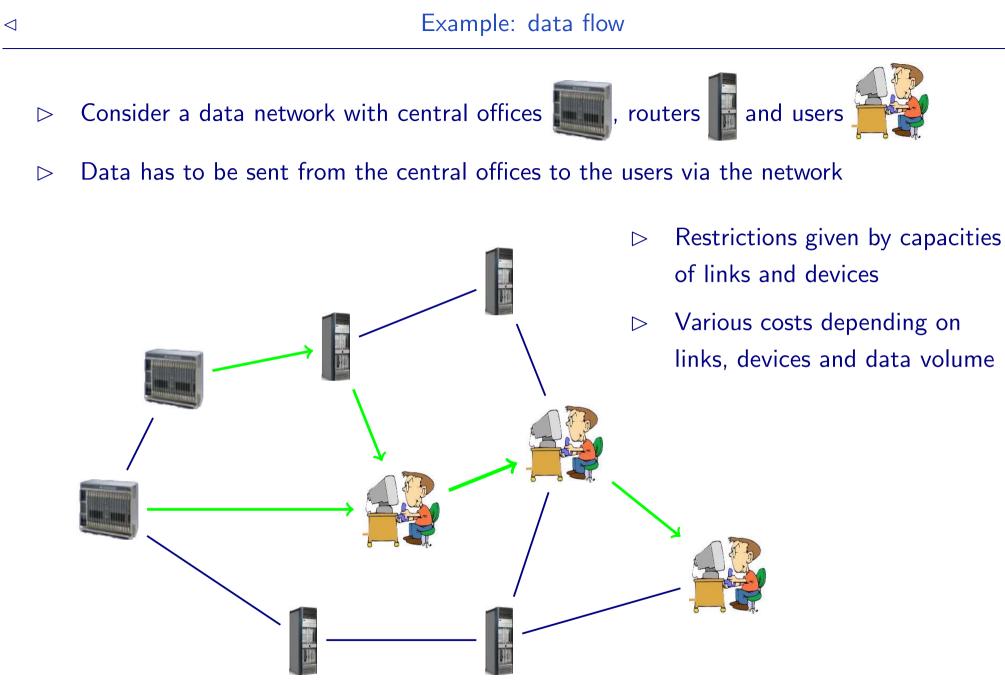


.







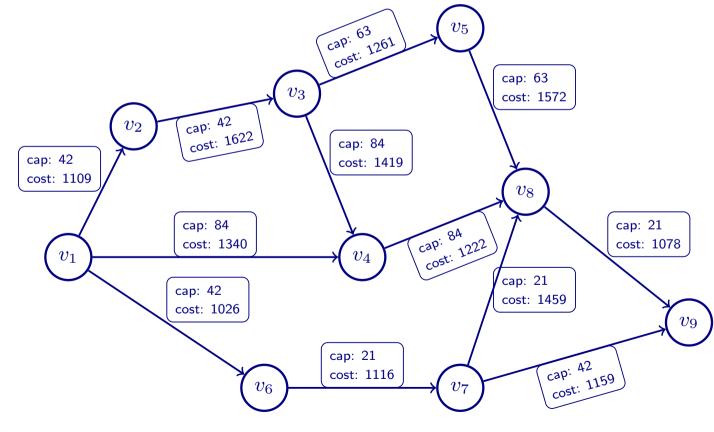


• • • • • • • • • • •

▷ Given a network – i.e. a directed graph

▷ Given a network – i.e. a directed graph, possibly with more parameters, such as capacities and costs for nodes and arcs

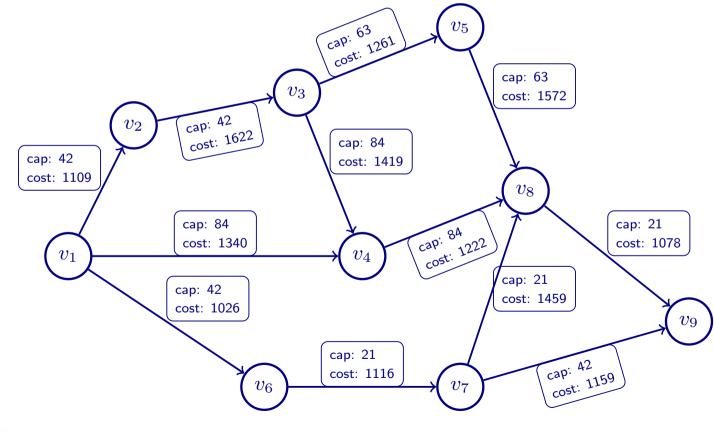
▷ Given a network – i.e. a directed graph, possibly with more parameters, such as capacities and costs for nodes and arcs



 \triangleleft

••••

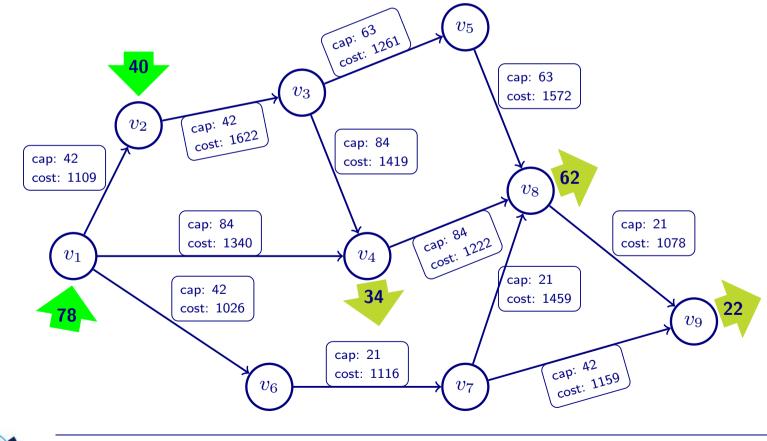
▷ Given a network – i.e. a directed graph, possibly with more parameters, such as capacities and costs for nodes and arcs – and certain demands...



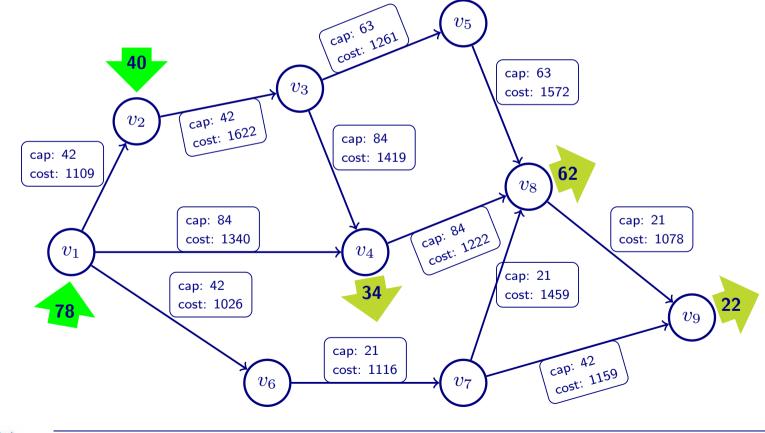
 \triangleleft

••••

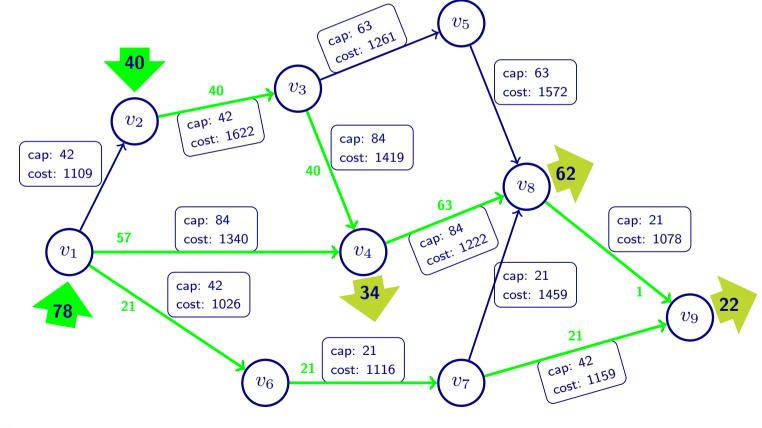
▷ Given a network – i.e. a directed graph, possibly with more parameters, such as capacities and costs for nodes and arcs – and certain demands...



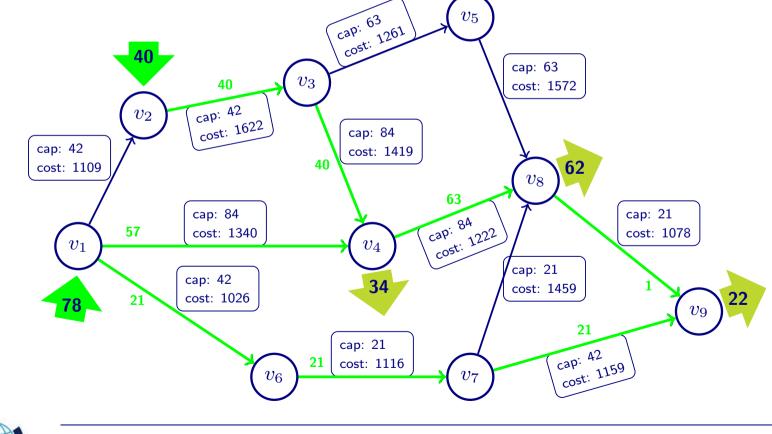
- ▷ Given a network i.e. a directed graph, possibly with more parameters, such as capacities and costs for nodes and arcs and certain demands...
- ▷ ...compute a flow through the network satisfying the demand



- ▷ Given a network i.e. a directed graph, possibly with more parameters, such as capacities and costs for nodes and arcs and certain demands...
- ▷ ...compute a flow through the network satisfying the demand



- ▷ Given a network i.e. a directed graph, possibly with more parameters, such as capacities and costs for nodes and arcs and certain demands...
- ...compute a flow through the network satisfying the demand, respecting the capacities, with minimal total cost



 \triangleright Network: directed graph (V, A)

- \triangleright Network: directed graph (V, A)
- \triangleright Nodes of the network: $i \in V$ (vertices of the graph)

- \triangleright Network: directed graph (V, A)
- \triangleright Nodes of the network: $i \in V$ (vertices of the graph)
- ▷ Links of the network: $(i, j) \in A$ (arcs (edges) of the graph)

 \triangleright

(i, j)

- \triangleright Network: directed graph (V, A)
- \triangleright Nodes of the network: $i \in V$ (vertices of the graph)
- ▷ Links of the network: $(i, j) \in A$ (arcs (edges) of the graph)

S

(i, j)

- \triangleright Network: directed graph (V, A)
- \triangleright Nodes of the network: $i \in V$ (vertices of the graph)
- ▷ Links of the network: $(i, j) \in A$ (arcs (edges) of the graph)
- \triangleright Variables: $f_{(i,j)} \ge 0 \implies$ amount of flow along the arc (i,j)

S

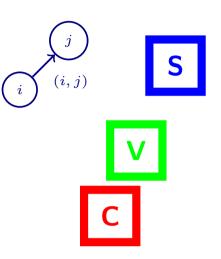
(i, j)

- \triangleright Network: directed graph (V, A)
- \triangleright Nodes of the network: $i \in V$ (vertices of the graph)
- ▷ Links of the network: $(i, j) \in A$ (arcs (edges) of the graph)
- \triangleright Variables: $f_{(i,j)} \ge 0 \implies$ amount of flow along the arc (i,j)

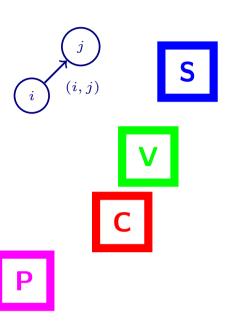
S

(i, j)

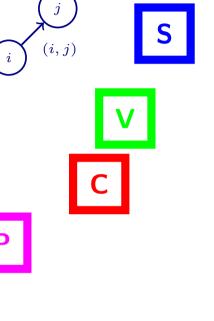
- \triangleright Network: directed graph (V, A)
- \triangleright Nodes of the network: $i \in V$ (vertices of the graph)
- ▷ Links of the network: $(i, j) \in A$ (arcs (edges) of the graph)
- \triangleright Variables: $f_{(i,j)} \ge 0 \implies$ amount of flow along the arc (i,j)
- \vartriangleright Capacity constraints: $f_{(i,j)} \leq u_{(i,j)}$ for all arcs $(i,j) \in A$



- \triangleright Network: directed graph (V, A)
- \triangleright Nodes of the network: $i \in V$ (vertices of the graph)
- \triangleright Links of the network: $(i, j) \in A$ (arcs (edges) of the graph)
- \triangleright Variables: $f_{(i,j)} \ge 0 \implies$ amount of flow along the arc (i,j)
- \triangleright Capacity constraints: $f_{(i,j)} \leq u_{(i,j)}$ for all arcs $(i,j) \in A$
 - $u_{(i,j)}$ \blacktriangleright capacity of link (i,j)



- \triangleright Network: directed graph (V, A)
- \triangleright Nodes of the network: $i \in V$ (vertices of the graph)
- \triangleright Links of the network: $(i, j) \in A$ (arcs (edges) of the graph)
- \triangleright Variables: $f_{(i,j)} \ge 0$ \implies amount of flow along the arc (i,j)
- \triangleright Capacity constraints: $f_{(i,j)} \leq u_{(i,j)}$ for all arcs $(i,j) \in A$
 - $u_{(i,j)}$ \Rightarrow capacity of link (i,j)
- ▷ Possibly: constraints given by node capacities...

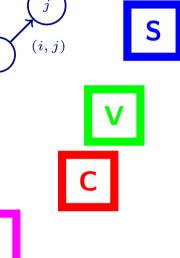


- \triangleright Network: directed graph (V, A)
- \triangleright Nodes of the network: $i \in V$ (vertices of the graph)
- \triangleright Links of the network: $(i, j) \in A$ (arcs (edges) of the graph)
- \triangleright Variables: $f_{(i,j)} \ge 0 \implies$ amount of flow along the arc (i,j)
- \triangleright Capacity constraints: $f_{(i,j)} \leq u_{(i,j)}$ for all arcs $(i,j) \in A$

 $u_{(i,j)} \rightarrow \text{capacity of link } (i,j)$

- ▷ Possibly: constraints given by node capacities...
- \triangleright **Objective**: minimize total cost $\sum c_{(i,j)} \cdot f_{(i,j)}$

 $\sum_{(i,j)\in A} c_{(i,j)} \cdot f_{(i,j)}$

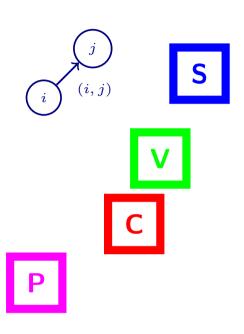


- \triangleright Network: directed graph (V, A)
- \triangleright Nodes of the network: $i \in V$ (vertices of the graph)
- \triangleright Links of the network: $(i, j) \in A$ (arcs (edges) of the graph)
- \triangleright Variables: $f_{(i,j)} \ge 0 \implies$ amount of flow along the arc (i,j)
- \triangleright Capacity constraints: $f_{(i,j)} \leq u_{(i,j)}$ for all arcs $(i,j) \in A$

 $u_{(i,j)}$ \Rightarrow capacity of link (i,j)

- ▷ Possibly: constraints given by node capacities...
- \triangleright **Objective**: minimize total cost $\sum_{(i,j)\in A} c_{(i,j)} \cdot f_{(i,j)}$

 $c_{(i,j)} \implies \text{cost per flow unit on arc } (i,j)$

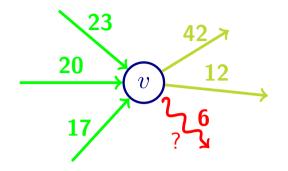


▷ Flow may not "leak" from the network!

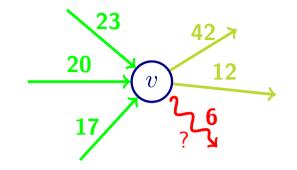
▷ Flow may not "leak" from the network!



▷ Flow may not "leak" from the network!

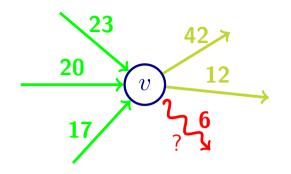


- ▷ Flow may not "leak" from the network!
 - ➡ outgoing flow must equal incoming flow



- ▷ Flow may not "leak" from the network!
 - ➡ outgoing flow must equal incoming flow

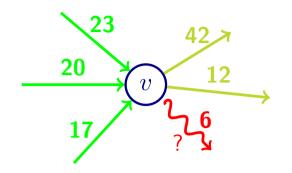
$$\Rightarrow \sum_{(v,j)\in A} f_{(v,j)} - \sum_{(i,v)\in A} f_{(i,v)} = 0 \quad \text{for all } v \in V$$



- ▷ Flow may not "leak" from the network!
 - ➡ outgoing flow must equal incoming flow

$$\Rightarrow \sum_{(v,j)\in A} f_{(v,j)} - \sum_{(i,v)\in A} f_{(i,v)} = 0 \quad \text{for all } v \in V$$

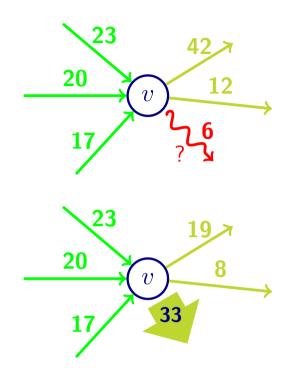
 \triangleright ...except for nodes with a demand d_v



- ▷ Flow may not "leak" from the network!
 - ➡ outgoing flow must equal incoming flow

$$\Rightarrow \sum_{(v,j)\in A} f_{(v,j)} - \sum_{(i,v)\in A} f_{(i,v)} = 0 \quad \text{ for all } v \in V$$

 \triangleright ...except for nodes with a demand d_v



 \triangleright

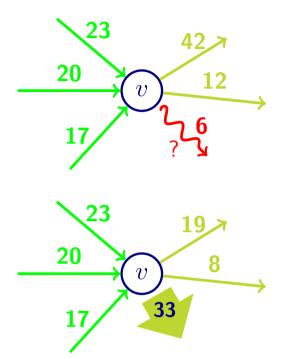
.

- ▷ Flow may not "leak" from the network!
 - ➡ outgoing flow must equal incoming flow

$$\Rightarrow \sum_{(v,j)\in A} f_{(v,j)} - \sum_{(i,v)\in A} f_{(i,v)} = 0 \quad \text{for all } v \in V$$

 $Descript{interval}$...except for nodes with a demand d_v

$$\Rightarrow \sum_{(v,j)\in A} f_{(v,j)} - \sum_{(i,v)\in A} f_{(i,v)} = -d_v \quad \text{for all } v \in V$$



- ▷ Flow may not "leak" from the network!
 - ➡ outgoing flow must equal incoming flow

$$\Rightarrow \sum_{(v,j)\in A} f_{(v,j)} - \sum_{(i,v)\in A} f_{(i,v)} = 0 \quad \text{for all } v \in V$$

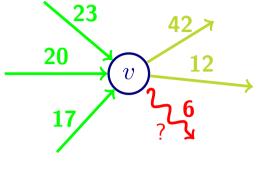
 $Descript{interval}$...except for nodes with a demand d_v

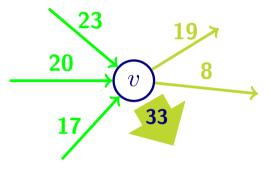
$$\Rightarrow \sum_{(v,j)\in A} f_{(v,j)} - \sum_{(i,v)\in A} f_{(i,v)} = -d_v \quad \text{for all } v \in V$$

 \triangleright In general:

 \triangleleft

$$\sum_{(v,j)\in A} f_{(v,j)} - \sum_{(i,v)\in A} f_{(i,v)} = \begin{cases} -d_v & \text{if } v \text{ is a demand node} \\ s_v & \text{if } v \text{ is a supply node} \\ 0 & \text{otherwise} \end{cases}$$





••••

- ▷ Flow may not "leak" from the network!
 - ➡ outgoing flow must equal incoming flow

$$\Rightarrow \sum_{(v,j)\in A} f_{(v,j)} - \sum_{(i,v)\in A} f_{(i,v)} = 0 \quad \text{for all } v \in V$$

 \triangleright ...except for nodes with a demand d_v

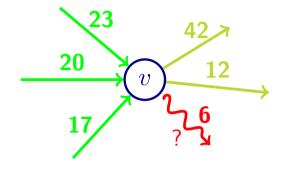
$$\Rightarrow \sum_{(v,j)\in A} f_{(v,j)} - \sum_{(i,v)\in A} f_{(i,v)} = -d_v \quad \text{for all } v \in V$$

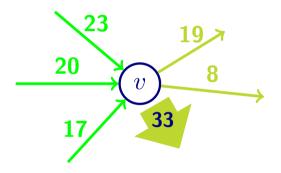
 \triangleright In general:

 d_v

$$\sum_{(v,j)\in A} f_{(v,j)} - \sum_{(i,v)\in A} f_{(i,v)} = \begin{cases} -d_v & \text{if } v \text{ is a demand node} \\ s_v & \text{if } v \text{ is a supply node} \\ 0 & \text{otherwise} \end{cases}$$

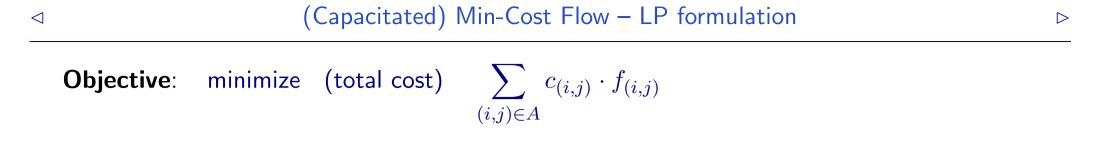
- \blacktriangleright demand of node v
- $s_v \implies$ supply of node v





 \triangleright

....

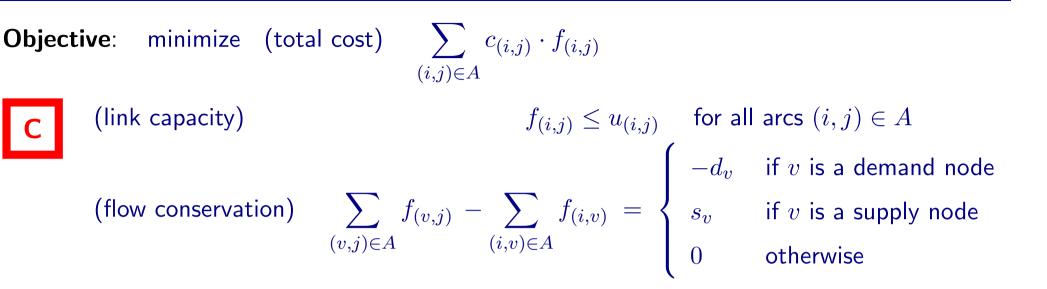


Objective: minimize (total cost)

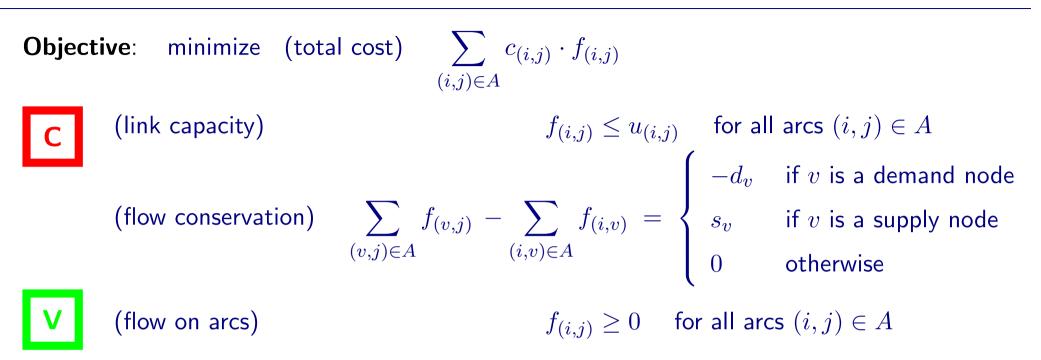
(link capacity)

$$\sum_{(i,j)\in A} c_{(i,j)} \cdot f_{(i,j)}$$

 $f_{(i,j)} \leq u_{(i,j)}$ for all arcs $(i,j) \in A$



(Capacitated) Min-Cost Flow – LP formulation



 \triangleright

•••••

(Capacitated) Min-Cost Flow – LP formulation

Objective: minimize (total cost) $\sum_{(i,j)\in A} c_{(i,j)} \cdot f_{(i,j)}$ **C**(link capacity) $f_{(i,j)} \leq u_{(i,j)}$ for all arcs $(i,j) \in A$ (flow conservation) $\sum_{(v,j)\in A} f_{(v,j)} - \sum_{(i,v)\in A} f_{(i,v)} = \begin{cases} -d_v & \text{if } v \text{ is a demand node} \\ s_v & \text{if } v \text{ is a supply node} \\ 0 & \text{otherwise} \end{cases}$ **V**(flow on arcs) $f_{(i,j)} \geq 0$ for all arcs $(i,j) \in A$

 \triangleleft

Nodes: V Arcs: $A \subseteq \{(i, j) \mid i, j \in V, i \neq j\}$

 \triangleright

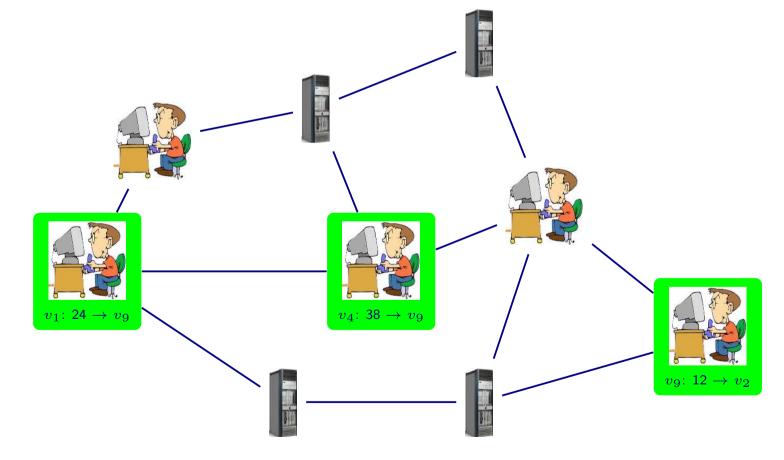
(Capacitated) Min-Cost Flow – LP formulation

minimize (total cost) $\sum c_{(i,j)} \cdot f_{(i,j)}$ **Objective**: $(i,j) \in A$ $f_{(i,j)} \le u_{(i,j)}$ for all arcs $(i,j) \in A$ (link capacity) (flow conservation) $\sum_{(v,j)\in A} f_{(v,j)} - \sum_{(i,v)\in A} f_{(i,v)} = \begin{cases} -d_v & \text{if } v \text{ is a demand node} \\ s_v & \text{if } v \text{ is a supply node} \\ 0 & \text{otherwise} \end{cases}$ $f_{(i,j)} \ge 0$ for all arcs $(i,j) \in A$ (flow on arcs) Nodes: VS Arcs: $A \subseteq \{(i, j) \mid i, j \in V, i \neq j\}$ Link capacities: $u_{(i,j)} \ge 0$ for all arcs $(i,j) \in A$ Costs: $c_{(i,j)}$ for all arcs $(i,j) \in A$ Demand of demand nodes: $d_v \ge 0$ Supply of supply nodes: $s_v \ge 0$

•••••

▷ Data are IP packets with a source and a target node for each packet

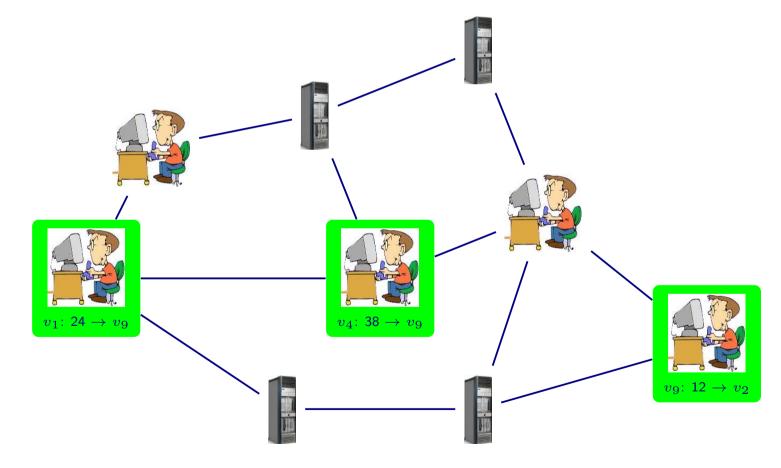
▷ Data are IP packets with a source and a target node for each packet



 \triangleleft

.

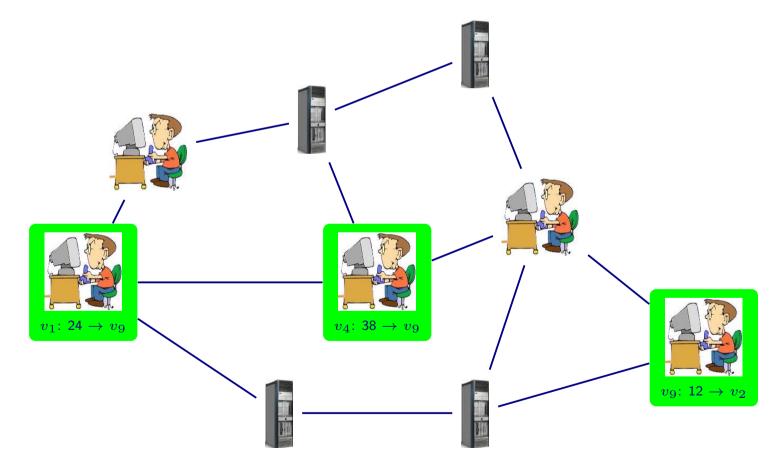
- ▷ Data are IP packets with a source and a target node for each packet
 - ➡ Separate (disaggregated) flow for every pair of nodes



 \triangleleft

• • • • • • • • • • •

- ▷ Data are IP packets with a source and a target node for each packet
 - ➡ Separate (disaggregated) flow for every pair of nodes
 - ➡ Demand matrix with entries $d_{u,v} \ge 0$



 \triangleleft

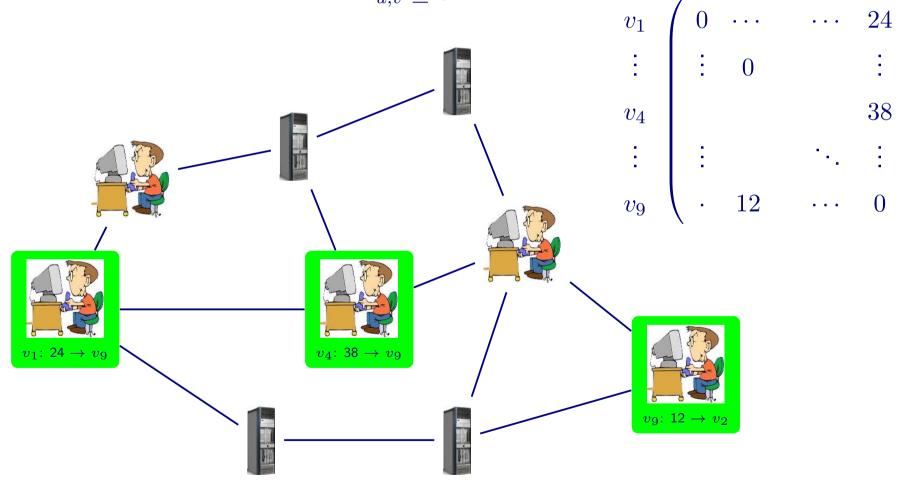
•••••

 v_1

 v_2

- ▷ Data are IP packets with a source and a target node for each packet
 - ➡ Separate (disaggregated) flow for every pair of nodes

→ Demand matrix with entries $d_{u,v} \ge 0$



 \triangleleft

 v_9

.

 \triangleright Disaggregated flow variables: $f_{(i,j),u \rightarrow v} \ge 0$

- \triangleright Disaggregated flow variables: $f_{(i,j),u \rightarrow v} \ge 0$
 - \clubsuit amount of flow for demand $u \rightarrow v$ along the arc (i,j)

.

- \triangleright Disaggregated flow variables: $f_{(i,j),u \rightarrow v} \ge 0$
 - \clubsuit amount of flow for demand $u \rightarrow v$ along the arc (i,j)
- ▷ **Objective**: minimize total cost

$$\sum_{(i,j)\in A} c_{(i,j)} \cdot \sum_{u \neq v} f_{(i,j),u \to v}$$

.

- Disaggregated flow variables: $f_{(i,j),u \rightarrow v} \ge 0$ \triangleright
 - \implies amount of flow for demand $u \rightarrow v$ along the arc (i, j)
- **Objective**: minimize total cost $\sum_{(i,j) \in A} c_{(i,j)} \cdot \sum_{(i,j) \in A} f_{(i,j),u \to v}$ \triangleright
- Capacity constraints: \triangleright

$$\sum_{u \neq v} f_{(i,j),u \to v} \leq u_{(i,j)} \quad \text{for all arcs } (i,j) \in A$$

- \triangleright Disaggregated flow variables: $f_{(i,j),u \rightarrow v} \ge 0$
 - \clubsuit amount of flow for demand $u \rightarrow v$ along the arc (i,j)
- $\triangleright \quad \textbf{Objective: minimize total cost} \quad \sum_{(i,j)\in A} c_{(i,j)} \cdot \sum_{u \neq v} f_{(i,j),u \to v}$
- \triangleright Capacity constraints: $\sum_{u \neq v} f_{(i,j),u \to v} \leq u_{(i,j)}$ for all arcs $(i,j) \in A$
- $\vartriangleright \quad \mathsf{Flow \ conservation \ constraints:} \quad \text{ for all } w \in V, \, u, v \in V, u \neq v \text{,}$

$$\sum_{(w,j)\in A} f_{(w,j),u\to v} - \sum_{(i,w)\in A} f_{(i,w),u\to v} = \begin{cases} d_{u,v} & \text{if } w = u \\ -d_{u,v} & \text{if } w = v \\ 0 & \text{otherwise} \end{cases}$$

- \triangleright Disaggregated flow variables: $f_{(i,j),u \rightarrow v} \ge 0$
 - \clubsuit amount of flow for demand $u \rightarrow v$ along the arc (i,j)

Objective: minimize total cost
$$\sum_{(i,j)\in A} c_{(i,j)} \cdot \sum_{u\neq v} f_{(i,j),u\rightarrow v}$$

$$\vartriangleright$$
 Capacity constraints: $\sum_{u \neq v} f_{(i,j),u \to v} \leq u_{(i,j)}$ for all arcs $(i,j) \in A$

 $\vartriangleright \quad \mathsf{Flow \ conservation \ constraints:} \quad \text{ for all } w \in V, \, u, v \in V, u \neq v \text{,}$

$$\sum_{(w,j)\in A} f_{(w,j),u\to v} - \sum_{(i,w)\in A} f_{(i,w),u\to v} = \begin{cases} d_{u,v} & \text{if } w = u \\ -d_{u,v} & \text{if } w = v \\ 0 & \text{otherwise} \end{cases}$$

.

NOTE: flow for a given demand might be split at nodes!

- \triangleright Disaggregated flow variables: $f_{(i,j),u \rightarrow v} \ge 0$
 - \clubsuit amount of flow for demand $u \rightarrow v$ along the arc (i,j)

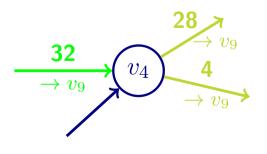
$$\triangleright \quad \textbf{Objective: minimize total cost} \quad \sum_{(i,j)\in A} c_{(i,j)} \cdot \sum_{u \neq v} f_{(i,j),u \to v}$$

$$\triangleright$$
 Capacity constraints: $\sum_{u \neq v} f_{(i,j),u \to v} \leq u_{(i,j)}$ for all arcs $(i,j) \in A$

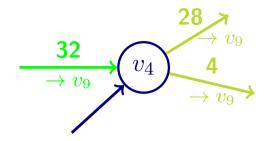
 $\vartriangleright \quad \mathsf{Flow \ conservation \ constraints:} \quad \text{ for all } w \in V, \ u, v \in V, u \neq v \text{,}$

$$\sum_{(w,j)\in A} f_{(w,j),u\to v} - \sum_{(i,w)\in A} f_{(i,w),u\to v} = \begin{cases} d_{u,v} & \text{if } w = u \\ -d_{u,v} & \text{if } w = v \\ 0 & \text{otherwise} \end{cases}$$

NOTE: flow for a given demand might be split at nodes!



▷ How to avoid splitting flow at nodes?

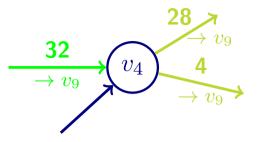


 \triangleright

▷ How to avoid splitting flow at nodes?

 \triangleright Idea: replace flow variables $f_{(i,j),u \rightarrow v}$ with binary decision variables:

 $y_{(i,j),u \to v} \in \{0,1\} \quad \Rightarrow \quad y_{(i,j),u \to v} = 1 \iff \text{complete flow from } u \text{ to } v \text{ uses arc } (i,j)$

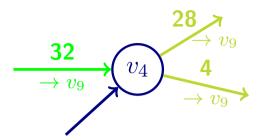


- How to avoid splitting flow at nodes? \triangleright
- Idea: replace flow variables $f_{(i,j),u \rightarrow v}$ with binary \triangleright decision variables:

 $y_{(i,j),u \to v} \in \{0,1\} \quad \Rightarrow \quad y_{(i,j),u \to v} = 1 \iff \text{complete flow from } u \text{ to } v \text{ uses arc } (i,j)$

Set partitioning constraints for outgoing flows at each node w:

$$\sum_{(w,j)\in A} y_{(w,j),u \to v} = 1 \quad \text{ for all demands } u \to v \text{, } u \neq v$$



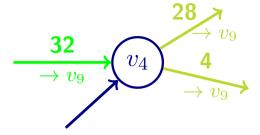
- ▷ How to avoid splitting flow at nodes?
- \triangleright Idea: replace flow variables $f_{(i,j),u \rightarrow v}$ with binary decision variables:

 $y_{(i,j),u \to v} \in \{0,1\} \quad \twoheadrightarrow \ y_{(i,j),u \to v} = 1 \ \Leftrightarrow \ \text{complete flow from } u \text{ to } v \text{ uses arc } (i,j)$

 \rightarrow Set partitioning constraints for outgoing flows at each node w:

$$\sum_{w,j)\in A} y_{(w,j),u \to v} = 1 \quad \text{ for all demands } u \to v \text{, } u \neq v$$

Replace flow $f_{(i,j),u\to v}$ with $d_{u,v} \cdot y_{(i,j),u\to v}$ in all other constraints and in the objective function...



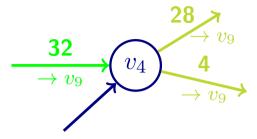
- ▷ How to avoid splitting flow at nodes?
- \triangleright Idea: replace flow variables $f_{(i,j),u \rightarrow v}$ with binary decision variables:

 $y_{(i,j),u \to v} \in \{0,1\} \quad \Longrightarrow \ y_{(i,j),u \to v} = 1 \ \Leftrightarrow \ \text{complete flow from } u \text{ to } v \text{ uses arc } (i,j)$

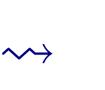
 \rightarrow Set partitioning constraints for outgoing flows at each node w:

$$\sum_{w,j)\in A} y_{(w,j),u \to v} = 1 \quad \text{ for all demands } u \to v, \ u \neq v$$

- Replace flow $f_{(i,j),u\to v}$ with $d_{u,v} \cdot y_{(i,j),u\to v}$ in all other constraints and in the objective function...
- \triangleright Similarly: k-splittable flow allow splitting into at most/exactly/at least k parts at each node

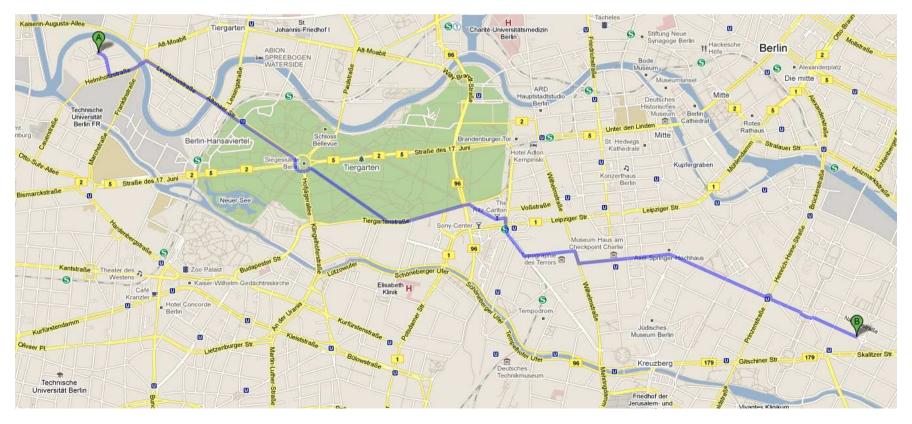


▷ Problem: find a shortest path from PTZ to Kreuzburger



 \triangleright

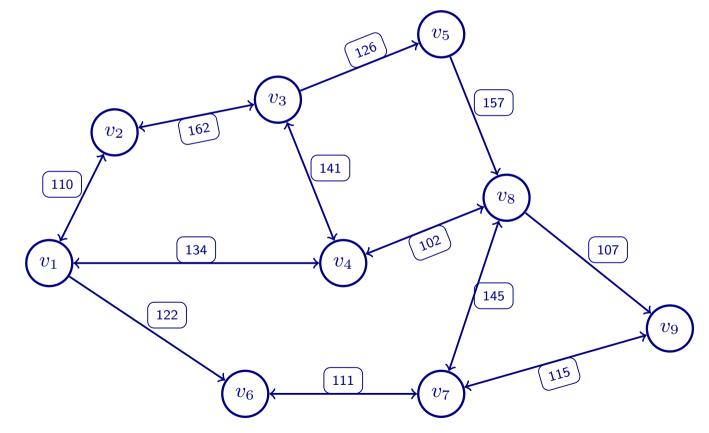
▷ Problem: find a shortest path from PTZ to Kreuzburger



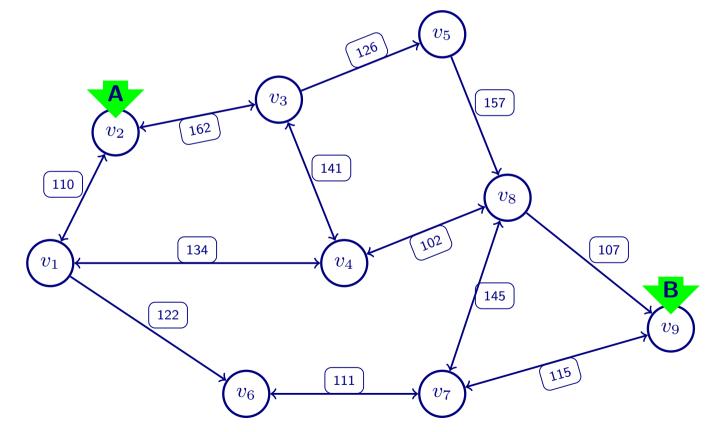
 \triangleright

▷ Given a network – i.e. a directed graph – with a length for each arc, a start node A and a destination B...

▷ Given a network – i.e. a directed graph – with a length for each arc, a start node A and a destination B...

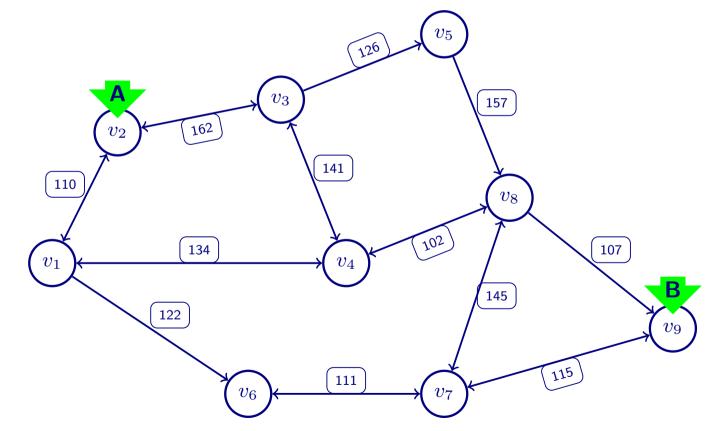


▷ Given a network – i.e. a directed graph – with a length for each arc, a start node A and a destination B...

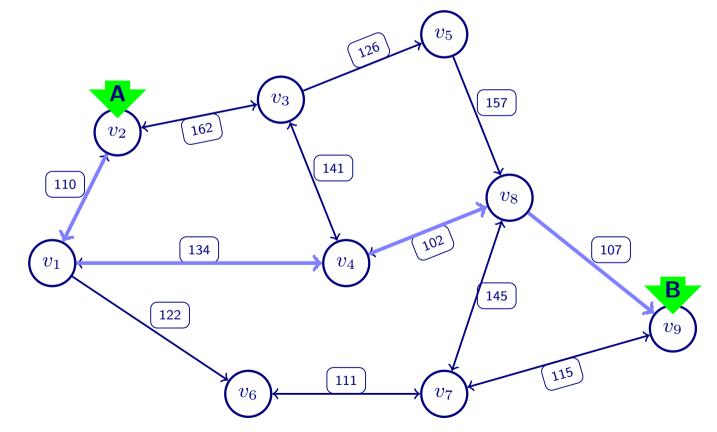


 \triangleright

- ▷ Given a network i.e. a directed graph with a length for each arc, a start node A and a destination B...
- \triangleright ...compute a shortest path through the network from A to B



- ▷ Given a network i.e. a directed graph with a length for each arc, a start node A and a destination B...
- \triangleright ...compute a shortest path through the network from A to B

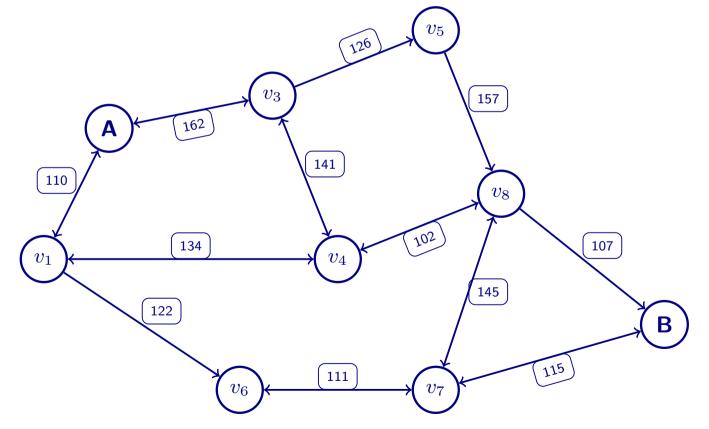


 \triangleleft

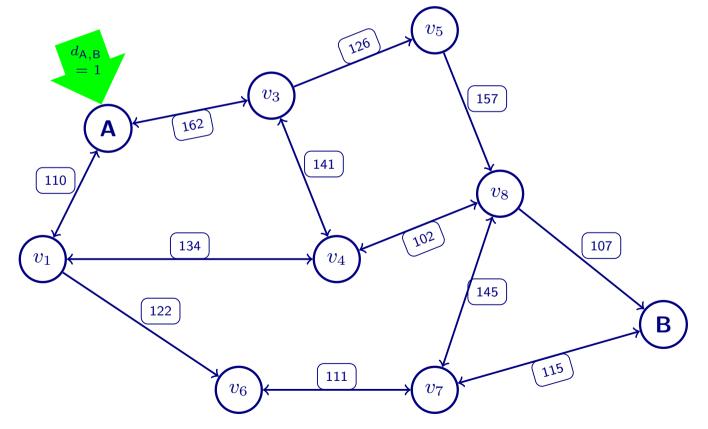
•••••

▷ Shortest Path Problem can be formulated as a network flow problem:

▷ Shortest Path Problem can be formulated as a network flow problem:



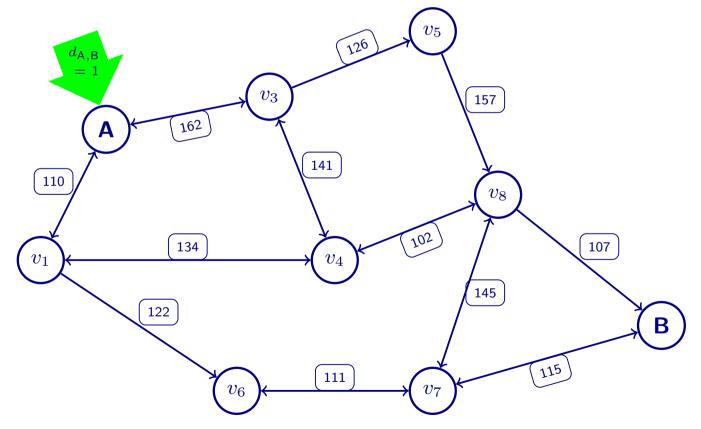
▷ Shortest Path Problem can be formulated as a network flow problem:



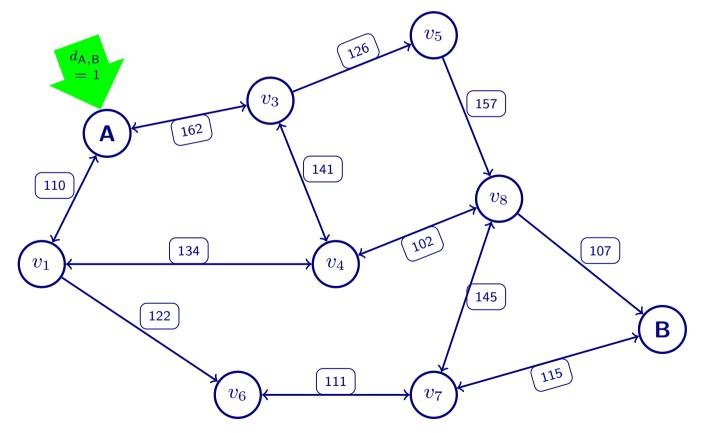
 \triangleleft

.

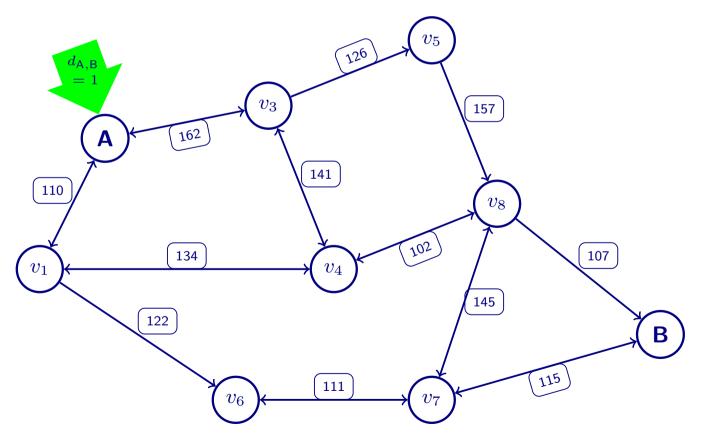
- ▷ Shortest Path Problem can be formulated as a network flow problem:
 - Only one demand: $d_{A,B} = 1$, all other demands $d_{u,v} = 0$



- ▷ Shortest Path Problem can be formulated as a network flow problem:
 - Only one demand: $d_{A,B} = 1$, all other demands $d_{u,v} = 0$
 - Unsplittable flow



- ▷ Shortest Path Problem can be formulated as a network flow problem:
 - Only one demand: $d_{A,B} = 1$, all other demands $d_{u,v} = 0$
 - Unsplittable flow
 - No capacities



 \triangleright

 v_5

102

157

 v_8

145

▷ Shortest Path Problem can be formulated as a network flow problem:

126

141

 v_4

111

• Only one demand: $d_{A,B} = 1$, all other demands $d_{u,v} = 0$

 v_3

162

134

 v_6

122

- Unsplittable flow
- No capacities

 $d_{A,B} = 1$

110

 v_1

Optimal solution:

107

115

Β

 $y_{(A,v_1)} = y_{(v_1,v_4)} = y_{(v_4,v_8)} = y_{(v_8,B)} = 1$, all other variables 0

 \triangleright

 v_7

- Shortest Path Problem can be formulated as a network flow problem: \triangleright
 - Only one demand: $d_{A,B} = 1$, all other demands $d_{u,v} = 0$
 - Unsplittable flow
 - No capacities

 \triangleleft

Optimal solution:



- ▷ Models, Data and Algorithms
- ▷ Linear Optimization
- Mathematical Background: Polyhedra, Simplex-Algorithm
- Sensitivity Analysis; (Mixed) Integer Programming
- ▷ MIP Modelling

- ▷ MIP Modelling: More Examples; Branch & Bound
- > Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms
- ▷ TSP-Heuristics
- ▷ Network Flows
- Shortest Path Problem, Complexity Theory
- Nonlinear Optimization
- \triangleright Scheduling, Lot Sizing
- Multicriteria Optimization
- ▷ Oral exam

