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� Overview �

� Models, Data and Algorithms

� Linear Optimization

� Mathematical Background: Polyhedra, Simplex-Algorithm

� Sensitivity Analysis; (Mixed) Integer Programming

� MIP Modelling

� MIP Modelling: More Examples; Branch & Bound

� Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms

� TSP-Heuristics

� Network Flows

� Shortest Path Problem, Complexity Theory

� Nonlinear Optimization

� Scheduling, Lot Sizing

� Multicriteria Optimization

� Oral exam

··········
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� Example: data flow �

� Consider a data network with central offices , routers and users

� Data has to be sent from the central offices to the users via the network

� Restrictions given by capacities

of links and devices

� Various costs depending on

links, devices and data volume
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� ...compute a flow through the network satisfying the demand, respecting the

capacities, with minimal total cost
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� Flow variables & capacities �

� Network: directed graph (V,A)

� Nodes of the network: i ∈ V (vertices of the graph)

� Links of the network: (i, j) ∈ A (arcs (edges) of the graph) i

j

(i, j)
S

� Variables: f(i,j) ≥ 0 ➡ amount of flow along the arc (i, j) V

� Capacity constraints: f(i,j) ≤ u(i,j) for all arcs (i, j) ∈ A C

u(i,j) ➡ capacity of link (i, j) P

� Possibly: constraints given by node capacities...

� Objective: minimize total cost
∑

(i,j)∈A

c(i,j) · f(i,j)

c(i,j) ➡ cost per flow unit on arc (i, j) P
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Objective: minimize (total cost)
∑
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0 otherwise

V (flow on arcs) f(i,j) ≥ 0 for all arcs (i, j) ∈ A

S
Nodes: V

Arcs: A ⊆ {(i, j) | i, j ∈ V, i 6= j}

P
Link capacities: u(i,j) ≥ 0 for all arcs (i, j) ∈ A

Costs: c(i,j) for all arcs (i, j) ∈ A

Demand of demand nodes: dv ≥ 0

Supply of supply nodes: sv ≥ 0
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� Example: IP routing �

� Data are IP packets with a source and a target node for each packet

v1: 24 → v9 v4: 38 → v9

v9: 12 → v2

➡ Separate (disaggregated) flow for every pair of nodes

➡ Demand matrix with entries du,v ≥ 0
v1 v2 · · · v9

v1
...

v4
...

v9























0 · · · · · · 24
... 0

...

38
...

. . .
...

· 12 · · · 0
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� Disaggregated flow variables: f(i,j),u→v ≥ 0

➡ amount of flow for demand u → v along the arc (i, j)
V
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� How to avoid splitting flow at nodes?
v4

32

→ v9

28
→ v9

4

→ v9
� Idea: replace flow variables f(i,j),u→v with binary

decision variables:

y(i,j),u→v ∈ {0, 1} ➡ y(i,j),u→v = 1 ⇔ complete flow from u to v uses arc (i, j)

➡ Set partitioning constraints for outgoing flows at each node w:

∑

(w,j)∈A

y(w,j),u→v = 1 for all demands u → v, u 6= v
C

➡ Replace flow f(i,j),u→v with du,v · y(i,j),u→v in all other constraints and in the

objective function...

� Similarly: k-splittable flow – allow splitting into at most/exactly/at least k parts at

each node
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➡ Optimal solution:

y(A,v1) = y(v1,v4) = y(v4,v8) = y(v8,B) = 1,

all other variables 0

Unsplittability can be

ignored if the model is solved

with the simplex algorithm

→ linear program!
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