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A mathematical problem for which an exact and efficient algorithm is known, is a member

of the complexity class P.

� Examples:

• Shortest Path Problem ➡ Dijkstra’s algorithm (O(n2)) ➡ in P

• Minimum Spanning Tree ➡ Kruskal’s algorithm (O(n2)) ➡ in P

• Linear Programming ➡ Ellipsoid method ➡ in P

• Integer Programming ➡ no polynomial algorithm known! ➡ not known if in P

➡ How hard can a problem be...?

A mathematical problem for which it is possible to verify feasibility of a given solution in

polynomial time, is a member of the complexity class NP .
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� Examples:

• Stable Set Problem

• Travelling Salesman Problem

• (Mixed) Integer Programming

• For every problem in P we can obviously check feasibility in polynomial time

➡ P ⊆ NP

NPP

➡ Question: is P = NP? ➡ $1,000,000 for the answer to this question!

see http://www.claymath.org/millennium/P_vs_NP/
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