
� �

Mathematical Tools

for Engineering and Management

Lecture 11

11 Jan 2012

······················

� Overview �

� Models, Data and Algorithms

� Linear Optimization

� Mathematical Background: Polyhedra, Simplex-Algorithm

� Sensitivity Analysis; (Mixed) Integer Programming

� MIP Modelling

� MIP Modelling: More Examples; Branch & Bound

� Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms

� TSP-Heuristics

� Network Flows

� Shortest Path Problem

� Complexity Theory

� Nonlinear Optimization, Scheduling

� Lot Sizing, Multicriteria Optimization

� Oral exam

······················

� Complexity Theory �

Real World Mathematical World

Real-World Problem Mathematical Model

Solution Solution Algorithms

Representation

Implementation

Execution

Interpretation

······················

� Runtimes �

n

input size n

ru
n
ti
m
e

······················

� Runtimes �

n

exp

input size n

ru
n
ti
m
e

······················

� Runtimes �

n

exp

n2

input size n

ru
n
ti
m
e

······················

� Runtimes �

n

exp

n2

2n

input size n

ru
n
ti
m
e

······················

� Runtimes �

n

exp

n2

2n

6n

input size n

ru
n
ti
m
e

······················

� Runtimes �

n

exp

n2

2n

6n
n!

input size n

ru
n
ti
m
e

······················

� Runtimes �

n

exp

n2

2n

6n
n!

input size n

ru
n
ti
m
e

linear — polynomial — exponential

······················

� Efficient and exact algorithms �

An algorithm is called efficient if it has polynomial runtime (i.e. its runtime can be bounded

by a polynomial in the input size).

······················

� Efficient and exact algorithms �

An algorithm is called efficient if it has polynomial runtime (i.e. its runtime can be bounded

by a polynomial in the input size).

� Examples:

• Efficient: Dijkstra’s algorithm, Kruskal’s algorithm, TSP heuristic using MST

······················

� Efficient and exact algorithms �

An algorithm is called efficient if it has polynomial runtime (i.e. its runtime can be bounded

by a polynomial in the input size).

� Examples:

• Efficient: Dijkstra’s algorithm, Kruskal’s algorithm, TSP heuristic using MST

• Not efficient: Branch & bound method, Simplex algorithm (?)

······················

� Efficient and exact algorithms �

An algorithm is called efficient if it has polynomial runtime (i.e. its runtime can be bounded

by a polynomial in the input size).

� Examples:

• Efficient: Dijkstra’s algorithm, Kruskal’s algorithm, TSP heuristic using MST

• Not efficient: Branch & bound method, Simplex algorithm (?)

An algorithm is called exact if it guarantees to return an optimal solution (i.e. it can be

proved that it always (i.e. for every input!) returns a solution with best possible objective).

······················

� Efficient and exact algorithms �

An algorithm is called efficient if it has polynomial runtime (i.e. its runtime can be bounded

by a polynomial in the input size).

� Examples:

• Efficient: Dijkstra’s algorithm, Kruskal’s algorithm, TSP heuristic using MST

• Not efficient: Branch & bound method, Simplex algorithm (?)

An algorithm is called exact if it guarantees to return an optimal solution (i.e. it can be

proved that it always (i.e. for every input!) returns a solution with best possible objective).

• Exact: Dijkstra, Kruskal, Simplex, Branch & bound, Complete enumeration

······················

� Efficient and exact algorithms �

An algorithm is called efficient if it has polynomial runtime (i.e. its runtime can be bounded

by a polynomial in the input size).

� Examples:

• Efficient: Dijkstra’s algorithm, Kruskal’s algorithm, TSP heuristic using MST

• Not efficient: Branch & bound method, Simplex algorithm (?)

An algorithm is called exact if it guarantees to return an optimal solution (i.e. it can be

proved that it always (i.e. for every input!) returns a solution with best possible objective).

• Exact: Dijkstra, Kruskal, Simplex, Branch & bound, Complete enumeration

• Not exact: heuristics, approximation algorithms

······················

� Efficient and exact algorithms �

An algorithm is called efficient if it has polynomial runtime (i.e. its runtime can be bounded

by a polynomial in the input size).

� Examples:

• Efficient: Dijkstra’s algorithm, Kruskal’s algorithm, TSP heuristic using MST

• Not efficient: Branch & bound method, Simplex algorithm (?)

An algorithm is called exact if it guarantees to return an optimal solution (i.e. it can be

proved that it always (i.e. for every input!) returns a solution with best possible objective).

• Exact: Dijkstra, Kruskal, Simplex, Branch & bound, Complete enumeration

• Not exact: heuristics, approximation algorithms

efficient not efficient

exact Dijkstra’s algorithm Simplex algorithm (?)

Kruskal’s algorithm Branch & bound

Ellipsoid method Complete enumeration

not exact TSP heuristic using MST

approximation algorithms

······················

� Efficient and exact algorithms �

An algorithm is called efficient if it has polynomial runtime (i.e. its runtime can be bounded

by a polynomial in the input size).

� Examples:

• Efficient: Dijkstra’s algorithm, Kruskal’s algorithm, TSP heuristic using MST

• Not efficient: Branch & bound method, Simplex algorithm (?)

An algorithm is called exact if it guarantees to return an optimal solution (i.e. it can be

proved that it always (i.e. for every input!) returns a solution with best possible objective).

• Exact: Dijkstra, Kruskal, Simplex, Branch & bound, Complete enumeration

• Not exact: heuristics, approximation algorithms

efficient not efficient

exact Dijkstra’s algorithm Simplex algorithm (?)

Kruskal’s algorithm Branch & bound

Ellipsoid method Complete enumeration

not exact TSP heuristic using MST

approximation algorithms

efficient not efficient

exact Dijkstra’s algorithm Simplex algorithm (?)

Kruskal’s algorithm Branch & bound

Ellipsoid method Complete enumeration

not exact TSP heuristic using MST

approximation algorithms

······················

� P and NP �

A mathematical problem for which an exact and efficient algorithm is known, is a member

of the complexity class P.

······················

� P and NP �

A mathematical problem for which an exact and efficient algorithm is known, is a member

of the complexity class P.

� Examples:

······················

� P and NP �

A mathematical problem for which an exact and efficient algorithm is known, is a member

of the complexity class P.

� Examples:

• Shortest Path Problem ➡ Dijkstra’s algorithm (O(n2)) ➡ in P

······················

� P and NP �

A mathematical problem for which an exact and efficient algorithm is known, is a member

of the complexity class P.

� Examples:

• Shortest Path Problem ➡ Dijkstra’s algorithm (O(n2)) ➡ in P

• Minimum Spanning Tree ➡ Kruskal’s algorithm (O(n2)) ➡ in P

······················

� P and NP �

A mathematical problem for which an exact and efficient algorithm is known, is a member

of the complexity class P.

� Examples:

• Shortest Path Problem ➡ Dijkstra’s algorithm (O(n2)) ➡ in P

• Minimum Spanning Tree ➡ Kruskal’s algorithm (O(n2)) ➡ in P

• Linear Programming ➡ Ellipsoid method ➡ in P

······················

� P and NP �

A mathematical problem for which an exact and efficient algorithm is known, is a member

of the complexity class P.

� Examples:

• Shortest Path Problem ➡ Dijkstra’s algorithm (O(n2)) ➡ in P

• Minimum Spanning Tree ➡ Kruskal’s algorithm (O(n2)) ➡ in P

• Linear Programming ➡ Ellipsoid method ➡ in P

• Integer Programming ➡ no polynomial algorithm known! ➡ not known if in P

······················

� P and NP �

A mathematical problem for which an exact and efficient algorithm is known, is a member

of the complexity class P.

� Examples:

• Shortest Path Problem ➡ Dijkstra’s algorithm (O(n2)) ➡ in P

• Minimum Spanning Tree ➡ Kruskal’s algorithm (O(n2)) ➡ in P

• Linear Programming ➡ Ellipsoid method ➡ in P

• Integer Programming ➡ no polynomial algorithm known! ➡ not known if in P

➡ How hard can a problem be...?

······················

� P and NP �

A mathematical problem for which an exact and efficient algorithm is known, is a member

of the complexity class P.

� Examples:

• Shortest Path Problem ➡ Dijkstra’s algorithm (O(n2)) ➡ in P

• Minimum Spanning Tree ➡ Kruskal’s algorithm (O(n2)) ➡ in P

• Linear Programming ➡ Ellipsoid method ➡ in P

• Integer Programming ➡ no polynomial algorithm known! ➡ not known if in P

➡ How hard can a problem be...?

A mathematical problem for which it is possible to verify feasibility of a given solution in

polynomial time, is a member of the complexity class NP .

······················

� Example: Stable Set Problem �

� Given an undirected graph, find a stable set with maximal cardinality!

······················

� Example: Stable Set Problem �

� Given an undirected graph, find a stable set with maximal cardinality!

� Stable set : a subset of the vertices, such that no two vertices of the subset are

directly connected via an edge

······················

� Example: Stable Set Problem �

� Given an undirected graph, find a stable set with maximal cardinality!

� Stable set : a subset of the vertices, such that no two vertices of the subset are

directly connected via an edge

······················

� Example: Stable Set Problem �

� Given an undirected graph, find a stable set with maximal cardinality!

� Stable set : a subset of the vertices, such that no two vertices of the subset are

directly connected via an edge

stable set

······················

� Example: Stable Set Problem �

� Given an undirected graph, find a stable set with maximal cardinality!

� Stable set : a subset of the vertices, such that no two vertices of the subset are

directly connected via an edge

stable setstable set

······················

� Example: Stable Set Problem �

� Given an undirected graph, find a stable set with maximal cardinality!

� Stable set : a subset of the vertices, such that no two vertices of the subset are

directly connected via an edge

stable setstable set

(inclusion-maximal)

stable set

······················

� Example: Stable Set Problem �

� Given an undirected graph, find a stable set with maximal cardinality!

� Stable set : a subset of the vertices, such that no two vertices of the subset are

directly connected via an edge

stable setstable set

(inclusion-maximal)

stable setnot a stable set!

······················

� Example: Stable Set Problem �

� Given an undirected graph, find a stable set with maximal cardinality!

� Stable set : a subset of the vertices, such that no two vertices of the subset are

directly connected via an edge

stable setstable set

(inclusion-maximal)

stable setnot a stable set!

� No efficient exact algorithm known ➡ not known to be in P

······················

� Example: Stable Set Problem �

� Given an undirected graph, find a stable set with maximal cardinality!

� Stable set : a subset of the vertices, such that no two vertices of the subset are

directly connected via an edge

stable setstable set

(inclusion-maximal)

stable setnot a stable set!

� No efficient exact algorithm known ➡ not known to be in P

� But: given a set S of vertices, testing if S is a stable set is easy

······················

� Example: Stable Set Problem �

� Given an undirected graph, find a stable set with maximal cardinality!

� Stable set : a subset of the vertices, such that no two vertices of the subset are

directly connected via an edge

stable setstable set

(inclusion-maximal)

stable setnot a stable set!

� No efficient exact algorithm known ➡ not known to be in P

� But: given a set S of vertices, testing if S is a stable set is easy (O(n2))

······················

� Example: Stable Set Problem �

� Given an undirected graph, find a stable set with maximal cardinality!

� Stable set : a subset of the vertices, such that no two vertices of the subset are

directly connected via an edge

stable setstable set

(inclusion-maximal)

stable setnot a stable set!

� No efficient exact algorithm known ➡ not known to be in P

� But: given a set S of vertices, testing if S is a stable set is easy (O(n2))

➡ Stable Set Problem is in NP

······················

� Problems in NP �

� Examples:

······················

� Problems in NP �

� Examples:

• Stable Set Problem

······················

� Problems in NP �

� Examples:

• Stable Set Problem

• Travelling Salesman Problem

······················

� Problems in NP �

� Examples:

• Stable Set Problem

• Travelling Salesman Problem

• (Mixed) Integer Programming

······················

� Problems in NP �

� Examples:

• Stable Set Problem

• Travelling Salesman Problem

• (Mixed) Integer Programming

• For every problem in P we can obviously check feasibility in polynomial time

······················

� Problems in NP �

� Examples:

• Stable Set Problem

• Travelling Salesman Problem

• (Mixed) Integer Programming

• For every problem in P we can obviously check feasibility in polynomial time

➡ P ⊆ NP

······················

� Problems in NP �

� Examples:

• Stable Set Problem

• Travelling Salesman Problem

• (Mixed) Integer Programming

• For every problem in P we can obviously check feasibility in polynomial time

➡ P ⊆ NP

NPP

······················

� Problems in NP �

� Examples:

• Stable Set Problem

• Travelling Salesman Problem

• (Mixed) Integer Programming

• For every problem in P we can obviously check feasibility in polynomial time

➡ P ⊆ NP

NPP

➡ Question: is P = NP?

······················

� Problems in NP �

� Examples:

• Stable Set Problem

• Travelling Salesman Problem

• (Mixed) Integer Programming

• For every problem in P we can obviously check feasibility in polynomial time

➡ P ⊆ NP

NPP

➡ Question: is P = NP? ➡ $1,000,000 for the answer to this question!

see http://www.claymath.org/millennium/P_vs_NP/

······················

http://www.claymath.org/millennium/P_vs_NP/

� NP-completeness �

A mathematical problem X is called reducible to another problem A if every instance of X

can be transformed into an instance of A by a polynomial-time transformation.

······················

� NP-completeness �

A mathematical problem X is called reducible to another problem A if every instance of X

can be transformed into an instance of A by a polynomial-time transformation.

➡ If A can be solved efficiently (i.e. by a polynomial-time algorithm), then also X can

be solved efficiently!

······················

� NP-completeness �

A mathematical problem X is called reducible to another problem A if every instance of X

can be transformed into an instance of A by a polynomial-time transformation.

➡ If A can be solved efficiently (i.e. by a polynomial-time algorithm), then also X can

be solved efficiently!

� Example: Shortest Path Problem is reducible to Integer Programming Problem

······················

� NP-completeness �

A mathematical problem X is called reducible to another problem A if every instance of X

can be transformed into an instance of A by a polynomial-time transformation.

➡ If A can be solved efficiently (i.e. by a polynomial-time algorithm), then also X can

be solved efficiently!

� Example: Shortest Path Problem is reducible to Integer Programming Problem

A mathematical problem A is called NP-complete if every problem in NP is reducible to A.

······················

� NP-completeness �

A mathematical problem X is called reducible to another problem A if every instance of X

can be transformed into an instance of A by a polynomial-time transformation.

➡ If A can be solved efficiently (i.e. by a polynomial-time algorithm), then also X can

be solved efficiently!

� Example: Shortest Path Problem is reducible to Integer Programming Problem

A mathematical problem A is called NP-complete if every problem in NP is reducible to A.

➡ If some NP-complete problem can be solved in polynomial time then P = NP!

······················

� NP-completeness �

A mathematical problem X is called reducible to another problem A if every instance of X

can be transformed into an instance of A by a polynomial-time transformation.

➡ If A can be solved efficiently (i.e. by a polynomial-time algorithm), then also X can

be solved efficiently!

� Example: Shortest Path Problem is reducible to Integer Programming Problem

A mathematical problem A is called NP-complete if every problem in NP is reducible to A.

➡ If some NP-complete problem can be solved in polynomial time then P = NP!

� Nearly every combinatorial optimization problem is known to be either in P or NP-complete

Problems in P NP-complete problems

Minimum Spanning Tree Stable Set

Linear Programming Integer Programming

Shortest Path Travelling Salesman

······················

� NP-completeness �

A mathematical problem X is called reducible to another problem A if every instance of X

can be transformed into an instance of A by a polynomial-time transformation.

➡ If A can be solved efficiently (i.e. by a polynomial-time algorithm), then also X can

be solved efficiently!

� Example: Shortest Path Problem is reducible to Integer Programming Problem

A mathematical problem A is called NP-complete if every problem in NP is reducible to A.

➡ If some NP-complete problem can be solved in polynomial time then P = NP!

� Nearly every combinatorial optimization problem is known to be either in P or NP-complete

Problems in P NP-complete problems

Minimum Spanning Tree Stable Set

Linear Programming Integer Programming

Shortest Path Travelling Salesman

NP

P
NP-

complete

······················

� NP-completeness �

A mathematical problem X is called reducible to another problem A if every instance of X

can be transformed into an instance of A by a polynomial-time transformation.

➡ If A can be solved efficiently (i.e. by a polynomial-time algorithm), then also X can

be solved efficiently!

� Example: Shortest Path Problem is reducible to Integer Programming Problem

A mathematical problem A is called NP-complete if every problem in NP is reducible to A.

➡ If some NP-complete problem can be solved in polynomial time then P = NP!

� Nearly every combinatorial optimization problem is known to be either in P or NP-complete

Problems in P NP-complete problems

Minimum Spanning Tree Stable Set

Linear Programming Integer Programming

Shortest Path Travelling Salesman

NP

P
NP-

complete?

······················

� Overview �

� Models, Data and Algorithms

� Linear Optimization

� Mathematical Background: Polyhedra, Simplex-Algorithm

� Sensitivity Analysis; (Mixed) Integer Programming

� MIP Modelling

� MIP Modelling: More Examples; Branch & Bound

� Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms

� TSP-Heuristics

� Network Flows

� Shortest Path Problem

� Complexity Theory

� Nonlinear Optimization

� Scheduling, Lot Sizing, Multicriteria Optimization

� Oral exam

······················

