Mathematical Tools
 for Engineering and Management

Lecture 11

11 Jan 2012
$\left(\frac{\text { GPE }}{(G)}\right)$
\triangleright Models, Data and Algorithms
\triangleright Linear Optimization
\triangleright Mathematical Background: Polyhedra, Simplex-Algorithm
\triangleright Sensitivity Analysis; (Mixed) Integer Programming
\triangleright MIP Modelling
\triangleright MIP Modelling: More Examples; Branch \& Bound
\triangleright Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms
\triangleright TSP-Heuristics

- Network Flows
\triangleright Shortest Path Problem
\triangleright Complexity Theory
\triangleright Nonlinear Optimization, Scheduling
\triangleright Lot Sizing, Multicriteria Optimization
\triangleright Oral exam

\qquad -

input size n

input size n
linear - polynomial - exponential

An algorithm is called efficient if it has polynomial runtime (i.e. its runtime can be bounded by a polynomial in the input size).
\qquad

An algorithm is called efficient if it has polynomial runtime (i.e. its runtime can be bounded by a polynomial in the input size).
\triangleright Examples:

- Efficient: Dijkstra's algorithm, Kruskal's algorithm, TSP heuristic using MST
$\left(\frac{\mathrm{FPE}}{(\mathrm{GPE}}\right):$ \qquad

An algorithm is called efficient if it has polynomial runtime (i.e. its runtime can be bounded by a polynomial in the input size).
\triangleright Examples:

- Efficient: Dijkstra's algorithm, Kruskal's algorithm, TSP heuristic using MST
- Not efficient: Branch \& bound method, Simplex algorithm (?)

An algorithm is called efficient if it has polynomial runtime (i.e. its runtime can be bounded by a polynomial in the input size).

An algorithm is called exact if it guarantees to return an optimal solution (i.e. it can be proved that it always (i.e. for every input!) returns a solution with best possible objective).
\triangleright Examples:

- Efficient: Dijkstra's algorithm, Kruskal's algorithm, TSP heuristic using MST
- Not efficient: Branch \& bound method, Simplex algorithm (?)
(TPE) \qquad

An algorithm is called efficient if it has polynomial runtime (i.e. its runtime can be bounded by a polynomial in the input size).

An algorithm is called exact if it guarantees to return an optimal solution (i.e. it can be proved that it always (i.e. for every input!) returns a solution with best possible objective).
\triangleright Examples:

- Efficient: Dijkstra's algorithm, Kruskal's algorithm, TSP heuristic using MST
- Not efficient: Branch \& bound method, Simplex algorithm (?)
- Exact: Dijkstra, Kruskal, Simplex, Branch \& bound, Complete enumeration
\qquad

An algorithm is called efficient if it has polynomial runtime (i.e. its runtime can be bounded by a polynomial in the input size).

An algorithm is called exact if it guarantees to return an optimal solution (i.e. it can be proved that it always (i.e. for every input!) returns a solution with best possible objective).
\triangleright Examples:

- Efficient: Dijkstra's algorithm, Kruskal's algorithm, TSP heuristic using MST
- Not efficient: Branch \& bound method, Simplex algorithm (?)
- Exact: Dijkstra, Kruskal, Simplex, Branch \& bound, Complete enumeration
- Not exact: heuristics, approximation algorithms
\qquad

An algorithm is called efficient if it has polynomial runtime (i.e. its runtime can be bounded by a polynomial in the input size).

An algorithm is called exact if it guarantees to return an optimal solution (i.e. it can be proved that it always (i.e. for every input!) returns a solution with best possible objective).
\triangleright Examples:

	efficient	not efficient
exact	Dijkstra's algorithm	Simplex algorithm (?)
	Kruskal's algorithm Ellipsoid method	Branch \& bound
not exact	TSP heuristic using MST	
	approximation algorithms	

\qquad

An algorithm is called efficient if it has polynomial runtime (i.e. its runtime can be bounded by a polynomial in the input size).

An algorithm is called exact if it guarantees to return an optimal solution (i.e. it can be proved that it always (i.e. for every input!) returns a solution with best possible objective).
\triangleright Examples:

	efficient	not efficient
exact	Dijkstra's algorithm	Simplex algorithm (?)
	Kruskal's algorithm	Branch \& bound
	Ellipsoid method	Complete enumeration
not exact	TSP heuristic using MST	
	approximation algorithms	

\qquad

A mathematical problem for which an exact and efficient algorithm is known, is a member of the complexity class \mathcal{P}.
\qquad

A mathematical problem for which an exact and efficient algorithm is known, is a member of the complexity class \mathcal{P}.
\triangleright Examples:
$\left(\frac{\mathrm{FPE}}{(\mathrm{GPE}}\right)$

A mathematical problem for which an exact and efficient algorithm is known, is a member of the complexity class \mathcal{P}.
\triangleright Examples:

- Shortest Path Problem \Rightarrow Dijkstra's algorithm $\left(\mathcal{O}\left(n^{2}\right)\right) \Rightarrow$ in \mathcal{P}
\qquad

A mathematical problem for which an exact and efficient algorithm is known, is a member of the complexity class \mathcal{P}.
\triangleright Examples:

- Shortest Path Problem $\boldsymbol{-}$ Dijkstra's algorithm $\left(\mathcal{O}\left(n^{2}\right)\right) \boldsymbol{-}$ in \mathcal{P}
- Minimum Spanning Tree $\boldsymbol{-}$ Kruskal's algorithm $\left(\mathcal{O}\left(n^{2}\right)\right) \boldsymbol{\rightarrow}$ in \mathcal{P}
\qquad

A mathematical problem for which an exact and efficient algorithm is known, is a member of the complexity class \mathcal{P}.
\triangleright Examples:

- Shortest Path Problem $\boldsymbol{-}$ Dijkstra's algorithm $\left(\mathcal{O}\left(n^{2}\right)\right) \boldsymbol{-}$ in \mathcal{P}
- Minimum Spanning Tree \Rightarrow Kruskal's algorithm $\left(\mathcal{O}\left(n^{2}\right)\right) \Rightarrow$ in \mathcal{P}
- Linear Programming \Rightarrow Ellipsoid method \Rightarrow in \mathcal{P}

A mathematical problem for which an exact and efficient algorithm is known, is a member of the complexity class \mathcal{P}.
\triangleright Examples:

- Shortest Path Problem $\boldsymbol{-}$ Dijkstra's algorithm $\left(\mathcal{O}\left(n^{2}\right)\right) \boldsymbol{-}$ in \mathcal{P}
- Minimum Spanning Tree \Rightarrow Kruskal's algorithm $\left(\mathcal{O}\left(n^{2}\right)\right) \Rightarrow$ in \mathcal{P}
- Linear Programming \Rightarrow Ellipsoid method \Rightarrow in \mathcal{P}
- Integer Programming \Rightarrow no polynomial algorithm known! \Rightarrow not known if in \mathcal{P}
\qquad

A mathematical problem for which an exact and efficient algorithm is known, is a member of the complexity class \mathcal{P}.
\triangleright Examples:

- Shortest Path Problem \Rightarrow Dijkstra's algorithm $\left(\mathcal{O}\left(n^{2}\right)\right) \Rightarrow$ in \mathcal{P}
- Minimum Spanning Tree \Rightarrow Kruskal's algorithm $\left(\mathcal{O}\left(n^{2}\right)\right) \Rightarrow$ in \mathcal{P}
- Linear Programming \Rightarrow Ellipsoid method \Rightarrow in \mathcal{P}
- Integer Programming \Rightarrow no polynomial algorithm known! \Rightarrow not known if in \mathcal{P}
\Rightarrow How hard can a problem be...?
\qquad

A mathematical problem for which an exact and efficient algorithm is known, is a member of the complexity class \mathcal{P}.
\triangleright Examples:

- Shortest Path Problem \Rightarrow Dijkstra's algorithm $\left(\mathcal{O}\left(n^{2}\right)\right) \Rightarrow$ in \mathcal{P}
- Minimum Spanning Tree \Rightarrow Kruskal's algorithm $\left(\mathcal{O}\left(n^{2}\right)\right) \Rightarrow$ in \mathcal{P}
- Linear Programming \Rightarrow Ellipsoid method \Rightarrow in \mathcal{P}
- Integer Programming \Rightarrow no polynomial algorithm known! \Rightarrow not known if in \mathcal{P}
\Rightarrow How hard can a problem be...?

A mathematical problem for which it is possible to verify feasibility of a given solution in polynomial time, is a member of the complexity class $\mathcal{N P}$.
\qquad
\triangleright Given an undirected graph, find a stable set with maximal cardinality!
\qquad
\triangleright Given an undirected graph, find a stable set with maximal cardinality!
$\triangleright \quad$ Stable set : a subset of the vertices, such that no two vertices of the subset are directly connected via an edge
\triangleright Given an undirected graph, find a stable set with maximal cardinality!
\triangleright Stable set : a subset of the vertices, such that no two vertices of the subset are directly connected via an edge

\qquad
\triangleright Given an undirected graph, find a stable set with maximal cardinality!
\triangleright Stable set : a subset of the vertices, such that no two vertices of the subset are directly connected via an edge

\qquad
\triangleright Given an undirected graph, find a stable set with maximal cardinality!
\triangleright Stable set : a subset of the vertices, such that no two vertices of the subset are directly connected via an edge

\qquad
\triangleright Given an undirected graph, find a stable set with maximal cardinality!
\triangleright Stable set : a subset of the vertices, such that no two vertices of the subset are directly connected via an edge

\qquad
\triangleright Given an undirected graph, find a stable set with maximal cardinality!
\triangleright Stable set : a subset of the vertices, such that no two vertices of the subset are directly connected via an edge

\qquad
\triangleright Given an undirected graph, find a stable set with maximal cardinality!
$\triangleright \quad$ Stable set : a subset of the vertices, such that no two vertices of the subset are directly connected via an edge

\triangleright No efficient exact algorithm known \Rightarrow not known to be in \mathcal{P}
\qquad
\triangleright Given an undirected graph, find a stable set with maximal cardinality!
\triangleright Stable set : a subset of the vertices, such that no two vertices of the subset are directly connected via an edge

not a stable set!
\triangleright No efficient exact algorithm known \Rightarrow not known to be in \mathcal{P}
\triangleright But: given a set S of vertices, testing if S is a stable set is easy
\qquad
\triangleright Given an undirected graph, find a stable set with maximal cardinality!
\triangleright Stable set : a subset of the vertices, such that no two vertices of the subset are directly connected via an edge

not a stable set!
\triangleright No efficient exact algorithm known \Rightarrow not known to be in \mathcal{P}
\triangleright But: given a set S of vertices, testing if S is a stable set is easy $\left(\mathcal{O}\left(n^{2}\right)\right)$
\qquad
\triangleright Given an undirected graph, find a stable set with maximal cardinality!
\triangleright Stable set : a subset of the vertices, such that no two vertices of the subset are directly connected via an edge

\triangleright No efficient exact algorithm known \Rightarrow not known to be in \mathcal{P}
\triangleright But: given a set S of vertices, testing if S is a stable set is easy $\left(\mathcal{O}\left(n^{2}\right)\right)$
\Rightarrow Stable Set Problem is in $\mathcal{N P}$
\triangleright Examples:
(.)

多相

- Examples:
- Stable Set Problem
$\left(\frac{\text { GPE }}{(G)}\right.$ \qquad
- Examples:
- Stable Set Problem
- Travelling Salesman Problem

GPE \qquad
\triangleright Examples:

- Stable Set Problem
- Travelling Salesman Problem
- (Mixed) Integer Programming

E \qquad
\triangleright Examples:

- Stable Set Problem
- Travelling Salesman Problem
- (Mixed) Integer Programming
- For every problem in \mathcal{P} we can obviously check feasibility in polynomial time

GPE \qquad
\triangleright Examples:

- Stable Set Problem
- Travelling Salesman Problem
- (Mixed) Integer Programming
- For every problem in \mathcal{P} we can obviously check feasibility in polynomial time
$\Rightarrow \mathcal{P} \subseteq \mathcal{N} \mathcal{P}$
\triangleright Examples:
- Stable Set Problem
- Travelling Salesman Problem
- (Mixed) Integer Programming
- For every problem in \mathcal{P} we can obviously check feasibility in polynomial time
$\Rightarrow \mathcal{P} \subseteq \mathcal{N} \mathcal{P}$

\triangleright Examples:
- Stable Set Problem
- Travelling Salesman Problem
- (Mixed) Integer Programming
- For every problem in \mathcal{P} we can obviously check feasibility in polynomial time
$\Rightarrow \mathcal{P} \subseteq \mathcal{N} \mathcal{P}$

\Rightarrow Question: is $\mathcal{P}=\mathcal{N} \mathcal{P}$?
\qquad
\triangleright Examples:
- Stable Set Problem
- Travelling Salesman Problem
- (Mixed) Integer Programming
- For every problem in \mathcal{P} we can obviously check feasibility in polynomial time
$\Rightarrow \mathcal{P} \subseteq \mathcal{N} \mathcal{P}$

\Rightarrow Question: is $\mathcal{P}=\mathcal{N} \mathcal{P}$? $\quad \Rightarrow \$ 1,000,000$ for the answer to this question! see http://www. claymath.org/millennium/P_vs_NP/

A mathematical problem \mathbf{X} is called reducible to another problem \mathbf{A} if every instance of \mathbf{X} can be transformed into an instance of \mathbf{A} by a polynomial-time transformation.
\qquad

A mathematical problem \mathbf{X} is called reducible to another problem \mathbf{A} if every instance of \mathbf{X} can be transformed into an instance of \mathbf{A} by a polynomial-time transformation.
\Rightarrow If \mathbf{A} can be solved efficiently (i.e. by a polynomial-time algorithm), then also \mathbf{X} can be solved efficiently!

A mathematical problem \mathbf{X} is called reducible to another problem \mathbf{A} if every instance of \mathbf{X} can be transformed into an instance of \mathbf{A} by a polynomial-time transformation.
\Rightarrow If \mathbf{A} can be solved efficiently (i.e. by a polynomial-time algorithm), then also \mathbf{X} can be solved efficiently!
\triangleright Example: Shortest Path Problem is reducible to Integer Programming Problem

A mathematical problem \mathbf{X} is called reducible to another problem \mathbf{A} if every instance of \mathbf{X} can be transformed into an instance of \mathbf{A} by a polynomial-time transformation.
\Rightarrow If \mathbf{A} can be solved efficiently (i.e. by a polynomial-time algorithm), then also \mathbf{X} can be solved efficiently!
\triangleright Example: Shortest Path Problem is reducible to Integer Programming Problem

A mathematical problem \mathbf{A} is called $\mathcal{N} \mathcal{P}$-complete if every problem in $\mathcal{N} \mathcal{P}$ is reducible to \mathbf{A}.
(APE \qquad

A mathematical problem \mathbf{X} is called reducible to another problem \mathbf{A} if every instance of \mathbf{X} can be transformed into an instance of \mathbf{A} by a polynomial-time transformation.
\Rightarrow If \mathbf{A} can be solved efficiently (i.e. by a polynomial-time algorithm), then also \mathbf{X} can be solved efficiently!
\triangleright Example: Shortest Path Problem is reducible to Integer Programming Problem
A mathematical problem \mathbf{A} is called $\mathcal{N} \mathcal{P}$-complete if every problem in $\mathcal{N} \mathcal{P}$ is reducible to \mathbf{A}.
\Rightarrow If some $\mathcal{N} \mathcal{P}$-complete problem can be solved in polynomial time then $\mathcal{P}=\mathcal{N} \mathcal{P}$!
\qquad

A mathematical problem \mathbf{X} is called reducible to another problem \mathbf{A} if every instance of \mathbf{X} can be transformed into an instance of \mathbf{A} by a polynomial-time transformation.
\Rightarrow If \mathbf{A} can be solved efficiently (i.e. by a polynomial-time algorithm), then also \mathbf{X} can be solved efficiently!
\triangleright Example: Shortest Path Problem is reducible to Integer Programming Problem
A mathematical problem \mathbf{A} is called $\mathcal{N} \mathcal{P}$-complete if every problem in $\mathcal{N} \mathcal{P}$ is reducible to \mathbf{A}.

- If some $\mathcal{N} \mathcal{P}$-complete problem can be solved in polynomial time then $\mathcal{P}=\mathcal{N} \mathcal{P}$!
\triangleright Nearly every combinatorial optimization problem is known to be either in \mathcal{P} or $\mathcal{N} \mathcal{P}$-complete

Problems in \mathcal{P}	$\mathcal{N} \mathcal{P}$-complete problems
Minimum Spanning Tree	Stable Set
Linear Programming	Integer Programming
Shortest Path	Travelling Salesman

A mathematical problem \mathbf{X} is called reducible to another problem \mathbf{A} if every instance of \mathbf{X} can be transformed into an instance of \mathbf{A} by a polynomial-time transformation.
\Rightarrow If \mathbf{A} can be solved efficiently (i.e. by a polynomial-time algorithm), then also \mathbf{X} can be solved efficiently!
\triangleright Example: Shortest Path Problem is reducible to Integer Programming Problem
A mathematical problem \mathbf{A} is called $\mathcal{N} \mathcal{P}$-complete if every problem in $\mathcal{N P}$ is reducible to \mathbf{A}.

- If some $\mathcal{N} \mathcal{P}$-complete problem can be solved in polynomial time then $\mathcal{P}=\mathcal{N} \mathcal{P}$!
$\triangleright \quad$ Nearly every combinatorial optimization problem is known to be either in \mathcal{P} or $\mathcal{N} \mathcal{P}$-complete

Problems in \mathcal{P}	$\mathcal{N} \mathcal{P}$-complete problems
Minimum Spanning Tree	Stable Set
Linear Programming	Integer Programming
Shortest Path	Travelling Salesman

\qquad

A mathematical problem \mathbf{X} is called reducible to another problem \mathbf{A} if every instance of \mathbf{X} can be transformed into an instance of \mathbf{A} by a polynomial-time transformation.
\Rightarrow If \mathbf{A} can be solved efficiently (i.e. by a polynomial-time algorithm), then also \mathbf{X} can be solved efficiently!
\triangleright Example: Shortest Path Problem is reducible to Integer Programming Problem
A mathematical problem \mathbf{A} is called $\mathcal{N} \mathcal{P}$-complete if every problem in $\mathcal{N} \mathcal{P}$ is reducible to \mathbf{A}.

- If some $\mathcal{N} \mathcal{P}$-complete problem can be solved in polynomial time then $\mathcal{P}=\mathcal{N} \mathcal{P}$!
$\triangleright \quad$ Nearly every combinatorial optimization problem is known to be either in \mathcal{P} or $\mathcal{N} \mathcal{P}$-complete

Problems in \mathcal{P}	$\mathcal{N} \mathcal{P}$-complete problems
Minimum Spanning Tree	Stable Set
Linear Programming	Integer Programming
Shortest Path	Travelling Salesman

$\left(\frac{1+1}{(G P E)}\right)$
\triangleright Models, Data and Algorithms
\triangleright Linear Optimization
\triangleright Mathematical Background: Polyhedra, Simplex-Algorithm
\triangleright Sensitivity Analysis; (Mixed) Integer Programming
\triangleright MIP Modelling
\triangleright MIP Modelling: More Examples; Branch \& Bound
\triangleright Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms
\triangleright TSP-Heuristics

- Network Flows
\triangleright Shortest Path Problem
\triangleright Complexity Theory
\triangleright Nonlinear Optimization
\triangleright Scheduling, Lot Sizing, Multicriteria Optimization
\triangleright Oral exam
(GPE):

