Mathematical Tools for Engineering and Management

Lecture 12

18 Jan 2012

- \triangleright Models, Data and Algorithms
- ▷ Linear Optimization
- ▷ Mathematical Background: Polyhedra, Simplex-Algorithm
- Sensitivity Analysis; (Mixed) Integer Programming
- ▷ MIP Modelling

- ▷ MIP Modelling: More Examples; Branch & Bound
- > Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms
- ▷ TSP-Heuristics
- ▷ Network Flows
- Shortest Path Problem
- ▷ Complexity Theory
- ▷ Nonlinear Optimization
- ▷ Scheduling (Jan 25)
- ▷ Lot Sizing (Feb 01)
- ▷ Summary (Feb 08)
- ▷ Oral exam (Feb 15)

▷ Production Planning in Automobile Industry

Product	Beetle	Cabrio
Revenue	\$10000	\$20000
Manufacturing	5h	3h
Assembly	4h	7h
Raw material	400kg	400kg

Plant capacity and available raw materials:

- Manufacturing capacity: 50h
- Assembly capacity: 70h
- Raw material: 4500kg

Production Planning in Automobile Industry

Product	Beetle	Cabrio
Revenue	\$10000	\$20,00
Manufacturing	5h	3h
Assembly	4h	7h
Raw material	400kg	400kg

Plant capacity and available raw materials:

- Manufacturing capacity: 50h
- Assembly capacity: 70h
- Raw material: 4500kg
- ▷ More realistic: Price of Cabrio depending on the demand

- \triangleright Relation between price p of cabrio and demand x: $p = K \cdot x^{1/E}$
 - ➡ Price elasticity E < 0 (assume E is constant within the price and demand range considered)

- \triangleright Relation between price p of cabrio and demand x: $p = K \cdot x^{1/E}$
 - ➡ Price elasticity E < 0 (assume E is constant within the price and demand range considered)
 - \blacktriangleright K: the price where demand reduces to 1 unit

- \triangleright Relation between price p of cabric and demand x: $p = K \cdot x^{1/E}$
 - ➡ Price elasticity E < 0 (assume E is constant within the price and demand range considered)
 - \blacktriangleright K: the price where demand reduces to 1 unit
- ▷ Assume we produce exactly the demanded number of cabrios

- \triangleright Relation between price p of cabric and demand x: $p = K \cdot x^{1/E}$
 - ➡ Price elasticity E < 0 (assume E is constant within the price and demand range considered)
 - \blacktriangleright K: the price where demand reduces to 1 unit
- ▷ Assume we produce exactly the demanded number of cabrios
 - ightarrow demand $x = x_{c}$

- \triangleright Relation between price p of cabric and demand x: $p = K \cdot x^{1/E}$
 - ➡ Price elasticity E < 0 (assume E is constant within the price and demand range considered)
 - \blacktriangleright K: the price where demand reduces to 1 unit
- ▷ Assume we produce exactly the demanded number of cabrios
 - ightarrow demand $x = x_{c}$
- \triangleright Fixed production cost k of one cabrio (assume independent of produced number)

- \triangleright Relation between price p of cabric and demand x: $p = K \cdot x^{1/E}$
 - ➡ Price elasticity E < 0 (assume E is constant within the price and demand range considered)
 - \blacktriangleright K: the price where demand reduces to 1 unit
- ▷ Assume we produce exactly the demanded number of cabrios
 - ightarrow demand $x = x_c$
- \triangleright Fixed production cost k of one cabrio (assume independent of produced number)
 - ➡ Contribution of cabrios to the revenue:

$$(p-k)\cdot x_{\mathsf{c}} = \left(K\cdot x_{\mathsf{c}}^{1/E} - k\right)\cdot x_{\mathsf{c}} = Kx_{\mathsf{c}}^{1+1/E} - kx_{\mathsf{c}}$$

- \triangleright Relation between price p of cabric and demand x: $p = K \cdot x^{1/E}$
 - ➡ Price elasticity E < 0 (assume E is constant within the price and demand range considered)
 - \blacktriangleright K: the price where demand reduces to 1 unit
- ▷ Assume we produce exactly the demanded number of cabrios
 - ightarrow demand $x = x_c$
- \triangleright Fixed production cost k of one cabrio (assume independent of produced number)
 - ➡ Contribution of cabrios to the revenue:

$$(p-k) \cdot x_{\mathsf{c}} = \left(K \cdot x_{\mathsf{c}}^{1/E} - k \right) \cdot x_{\mathsf{c}} = K x_{\mathsf{c}}^{1+1/E} - k x_{\mathsf{c}}$$

 \triangleright Specific values assumed for cabrios: k := 20000, K := 150000, and E := -2

- Relation between price p of cabric and demand x: $p = K \cdot x^{1/E}$ \triangleright
 - \rightarrow Price elasticity E < 0 (assume E is constant within the price and demand range considered)
 - \rightarrow K: the price where demand reduces to 1 unit
- Assume we produce exactly the demanded number of cabrios \triangleright
 - ightarrow demand $x = x_{c}$
- Fixed production cost k of one cabric (assume independent of produced number) \triangleright
 - Contribution of cabrios to the revenue:

$$(p-k) \cdot x_{\mathsf{c}} = \left(K \cdot x_{\mathsf{c}}^{1/E} - k \right) \cdot x_{\mathsf{c}} = K x_{\mathsf{c}}^{1+1/E} - k x_{\mathsf{c}}$$

- Specific values assumed for cabrios: k := 20000, K := 150000, and E := -2 \triangleright
 - \rightarrow Objective (total revenue): $10000x_b + 150000\sqrt{x_c} 20000x_c$

maximize	$10x_{b} + 150\sqrt{x_{c}} - 20x_{c}$	
subject to	$4x_{b} + 4x_{c} \leq 45$	(total raw material)
	$5x_{b} + 3x_{c} \leq 50$	(time in manufacturing)
	$4x_{b} + 7x_{c} \leq 70$	(time in assembly)
	$x_{b}, x_{c} \geq 0$	(non-negativity)

Objective	maximize	$10x_{b} + 150\sqrt{x_{c}} - 20x_{c}$	
_	subject to	$4x_{b} + 4x_{c} \leq 45$	(total raw material)
С		$5x_{b} + 3x_{c} \leq 50$	(time in manufacturing)
		$4x_{b} + 7x_{c} \leq 70$	(time in assembly)
V		$x_{b}, x_{c} \geq 0$	(non-negativity)

Objective	maximize	$10x_{b} + 150\sqrt{x_{c}} - 20x_{c}$	
_	subject to	$4x_{b} + 4x_{c} \leq 45$	(total raw material)
С		$5x_{b} + 3x_{c} \leq 50$	(time in manufacturing)
		$4x_{b} + 7x_{c} \leq 70$	(time in assembly)
V		$x_{b}, x_{c} \geq 0$	(non-negativity)

 \triangleright Optimal solution: $(x_b, x_c) = (5, 6.25)$

Objective	maximize	$10x_{b} + 150\sqrt{x_{c}} - 20x_{c}$	
_	subject to	$4x_{b} + 4x_{c} \leq 45$	(total raw material)
С		$5x_{b} + 3x_{c} \leq 50$	(time in manufacturing)
		$4x_{b} + 7x_{c} \leq 70$	(time in assembly)
V		$x_{b}, x_{c} \geq 0$	(non-negativity)

- \triangleright Optimal solution: $(x_b, x_c) = (5, 6.25)$
 - ➡ Price for one cabrio at this demand: 60000
 - ➡ Profit for one cabrio: 40000

•••••••

B

➡ Linear objective and linear constraints

- ➡ Linear objective and linear constraints
- ➡ Sum of linear terms: $\ldots + a_i \cdot x_i + \ldots$

- ➡ Linear objective and linear constraints
- ➡ Sum of linear terms: $\ldots + a_i \cdot x_i + \ldots$

parameter variable

- ▷ Non-linear optimization
 - ➡ Non-linear objective and/or non-linear constraints

- ➡ Linear objective and linear constraints
- ➡ Sum of linear terms: $\ldots + a_i \cdot x_i + \ldots$

parameter variable

- ▷ Non-linear optimization
 - ➡ Non-linear objective and/or non-linear constraints
 - ➡ Examples:

- ➡ Linear objective and linear constraints
- ➡ Sum of linear terms: $\ldots + a_i \cdot x_i + \ldots$

parameter variable

- ▷ Non-linear optimization
 - ➡ Non-linear objective and/or non-linear constraints
 - ➡ Examples:
 - Products of variables: $x_i \cdot x_j$

- ➡ Linear objective and linear constraints
- Sum of linear terms: $\ldots + a_i \cdot x_i + \ldots$

parameter	variable
7	K
U	U

- ▷ Non-linear optimization
 - ➡ Non-linear objective and/or non-linear constraints
 - ➡ Examples:
 - Products of variables: $x_i \cdot x_j$
 - Squares of variables: x_i^2

Linear optimization \triangleright

- → Linear objective and linear constraints
- Sum of linear terms: $\ldots + a_i \cdot x_i + \ldots$

parameter	variable
7	K
	U

- Non-linear optimization \triangleright
 - ➡ Non-linear objective and/or non-linear constraints
 - Examples:
 - Products of variables: $x_i \cdot x_j$ Squares of variables: x_i^2 $\left. \right\}$ quadratic expressions

Linear optimization \triangleright

- → Linear objective and linear constraints
- Sum of linear terms: $\ldots + a_i \cdot x_i + \ldots$

parameter	variable
7	K
l u	U

- Non-linear optimization \triangleright
 - Non-linear objective **and/or** non-linear constraints
 - Examples:
 - Products of variables: $x_i \cdot x_j$ Squares of variables: x_i^2 } quadratic expressions

 - Higher-order terms of variables: $x_i \cdot x_j \cdot x_k$, $x_j^5 \cdot x_j$

Linear optimization \triangleright

- → Linear objective and linear constraints
- Sum of linear terms: $\ldots + a_i \cdot x_i + \ldots$

narameter	variable
7	R
l U	e i

- Non-linear optimization \triangleright
 - Non-linear objective **and/or** non-linear constraints
 - Examples:
 - Products of variables: $x_i \cdot x_j$ Squares of variables: x_i^2 $\left. \right\}$ quadratic expressions

- Higher-order terms of variables: $x_i \cdot x_j \cdot x_k$, $x_j^5 \cdot x_j$
- Absolute values or maxima/minima: $|x_i|$, $\max x_i$

- ➡ Linear objective and linear constraints
- Sum of linear terms: $\ldots + a_i \cdot x_i + \ldots + a_i$

parameter	variable
7	R
\cdots ω_l	ω_l · · ·

- Non-linear optimization \triangleright
 - Non-linear objective **and/or** non-linear constraints
 - Examples:

 - Products of variables: $x_i \cdot x_j$ Squares of variables: x_i^2 $\left. \right\}$ quadratic expressions

- Higher-order terms of variables: $x_i \cdot x_j \cdot x_k$, $x_j^5 \cdot x_j$
- Absolute values or maxima/minima: $|x_i|$, $\max x_i$
- Terms including elementary functions: $\sin x_i$, $2^{x_i \cdot x_j}$, $\frac{1}{\sqrt{x_i}}$, $\log(x_i + x_j^{x_k})$

▷ Economy of scale

▷ Economy of scale

Production cost per item decrease
 with number x_i of produced items

▷ Economy of scale

- Production cost per item decrease
 with number x_i of produced items
- ➡ Contribution to objective (examples):

 $\dots + \sqrt{x_i} + \dots$ $\dots + \log x_i + \dots$

▷ Economy of scale

- Production cost per item decrease
 with number x_i of produced items
- ➡ Contribution to objective (examples):

 $\dots + \sqrt{x_i} + \dots$ $\dots + \log x_i + \dots$

▷ Diseconomy of scale

▷ Economy of scale

 \triangleleft

- Production cost per item decrease
 with number x_i of produced items
- ➡ Contribution to objective (examples):

 $\dots + \sqrt{x_i} + \dots$ $\dots + \log x_i + \dots$

▷ Diseconomy of scale

Production cost per item increase
 with number x_i of produced items

▷ Economy of scale

 \triangleleft

- Production cost per item decrease
 with number x_i of produced items
- ➡ Contribution to objective (examples):

 $\dots + \sqrt{x_i} + \dots$ $\dots + \log x_i + \dots$

▷ Diseconomy of scale

- Production cost per item increase
 with number x_i of produced items
- Contribution to objective (examples):

$$\dots + x_i^2 + \dots$$
$$\dots + x_i \log x_i + \dots$$

ZIB

B

- ▷ Given: locations at specified coordinates in the plane
- ▷ Task: Find an optimal location for a central unit connecting every given location!

- ▷ Given: locations at specified coordinates in the plane
- ▷ Task: Find an optimal location for a central unit connecting every given location!

- ▷ Given: locations at specified coordinates in the plane
- ▷ Task: Find an optimal location for a central unit connecting every given location!

- \triangleright Given: locations at specified coordinates in the plane
- ▷ Task: Find an optimal location for a central unit connecting every given location!

→ Distance to A:
$$\sqrt{(x-8)^2 + (y-2)^2}$$

- → Distance to A: $\sqrt{(x-8)^2 + (y-2)^2}$
- → Cost for all connections to A: $9 \cdot \sqrt{(x-8)^2 + (y-2)^2}$

 \triangleleft

- ➡ Distance to A: $\sqrt{(x-8)^2 + (y-2)^2}$
- ➡ Cost for all connections to A: $9 \cdot \sqrt{(x-8)^2 + (y-2)^2}$
- \Rightarrow Analogous for **B**, **C**, and **D**

 \triangleleft

- → Distance to A: $\sqrt{(x-8)^2 + (y-2)^2}$
- → Cost for all connections to A: $9 \cdot \sqrt{(x-8)^2 + (y-2)^2}$
- \rightarrow Analogous for **B**, **C**, and **D**
- → Objective: min $9\sqrt{(x-8)^2 + (y-2)^2} + 7\sqrt{(x-3)^2 + (y-10)^2}$ $+ 2\sqrt{(x-8)^2 + (y-15)^2} + 5\sqrt{(x-14)^2 + (y-13)^2}$

Objective: min
$$9\sqrt{(x-8)^2 + (y-2)^2} + 7\sqrt{(x-3)^2 + (y-10)^2}$$

+ $2\sqrt{(x-8)^2 + (y-15)^2} + 5\sqrt{(x-14)^2 + (y-13)^2}$

••••••

Objective: min
$$9\sqrt{(x-8)^2 + (y-2)^2} + 7\sqrt{(x-3)^2 + (y-10)^2}$$

+ $2\sqrt{(x-8)^2 + (y-15)^2} + 5\sqrt{(x-14)^2 + (y-13)^2}$

No explicit constraints!

 \triangleright

••••••

Objective: min
$$9\sqrt{(x-8)^2 + (y-2)^2} + 7\sqrt{(x-3)^2 + (y-10)^2}$$

+ $2\sqrt{(x-8)^2 + (y-15)^2} + 5\sqrt{(x-14)^2 + (y-13)^2}$

No explicit constraints!

→ Optimal solution: (x, y) = (6.25, 7.47) (unique!)

Objective: min
$$9\sqrt{(x-8)^2 + (y-2)^2} + 7\sqrt{(x-3)^2 + (y-10)^2}$$

+ $2\sqrt{(x-8)^2 + (y-15)^2} + 5\sqrt{(x-14)^2 + (y-13)^2}$

 $\mbox{Constraints:} \quad x \geq 4, \quad y \geq 5, \quad y \leq 11, \quad x+y \leq 18$

→ Optimal solution: (x, y) = (6.25, 7.47) (same as before!)

 \triangleleft

▷ A non-linear optimization model...

- ▷ A non-linear optimization model...
 - ...might have no optimal solutions in vertices of the feasible region

- ▷ A non-linear optimization model...
 - ...might have no optimal solutions in vertices of the feasible region
 - ...might have a feasible region without any vertices at all

- ▷ A non-linear optimization model...
 - ...might have no optimal solutions in vertices of the feasible region
 - ...might have a feasible region without any vertices at all
 - ...might have optimal solutions only in the interior of the feasible region

- ▷ A non-linear optimization model...
 - ...might have no optimal solutions in vertices of the feasible region
 - ...might have a feasible region without any vertices at all
 - ...might have optimal solutions only in the interior of the feasible region
 - ...might have different optimal solutions spread over the whole feasible region

- ▷ A non-linear optimization model...
 - ...might have no optimal solutions in vertices of the feasible region
 - ...might have a feasible region without any vertices at all
 - ...might have optimal solutions only in the interior of the feasible region
 - ...might have different optimal solutions spread over the whole feasible region
 - ...might have (even unique) optimal solutions without any constraints

- ▷ A non-linear optimization model...
 - ...might have no optimal solutions in vertices of the feasible region
 - ...might have a feasible region without any vertices at all
 - ...might have optimal solutions only in the interior of the feasible region
 - ...might have different optimal solutions spread over the whole feasible region
 - ...might have (even unique) optimal solutions without any constraints
 - ...might be unbounded, even if the feasible region is bounded

- ▷ A non-linear optimization model...
 - ...might have no optimal solutions in vertices of the feasible region
 - ...might have a feasible region without any vertices at all
 - ...might have optimal solutions only in the interior of the feasible region
 - ...might have different optimal solutions spread over the whole feasible region
 - ...might have (even unique) optimal solutions without any constraints
 - ...might be unbounded, even if the feasible region is bounded
- \triangleright All of this cannot happen with linear optimization models

- ▷ A non-linear optimization model...
 - ...might have no optimal solutions in vertices of the feasible region
 - ...might have a feasible region without any vertices at all
 - ...might have optimal solutions only in the interior of the feasible region
 - ...might have different optimal solutions spread over the whole feasible region
 - ...might have (even unique) optimal solutions without any constraints
 - ...might be unbounded, even if the feasible region is bounded
- \triangleright All of this cannot happen with linear optimization models

How to find an optimal solution...?

 \triangleleft

▷ Linear models

- ▷ Linear models
 - Linear objective
 - Level sets are straight lines
 (in higher dimension: hyperplanes)
 - Linear constraints
 - Feasible region is a polygon
 (in higher dimension: polyhedron)

- ▷ Linear models
 - Linear objective
 - Level sets are straight lines
 (in higher dimension: hyperplanes)
 - Linear constraints
 - Feasible region is a polygon
 (in higher dimension: polyhedron)

- ▷ Linear models
 - Linear objective
 - Level sets are straight lines
 (in higher dimension: hyperplanes)
 - Linear constraints
 - Feasible region is a polygon
 (in higher dimension: polyhedron)

- ▷ Linear models
 - Linear objective
 - Level sets are straight lines
 (in higher dimension: hyperplanes)
 - Linear constraints
 - Feasible region is a polygon
 (in higher dimension: polyhedron)

 Optimal solutions can always be found in vertices

- ▷ Linear models
 - Linear objective
 - Level sets are straight lines
 (in higher dimension: hyperplanes)
 - Linear constraints
 - Feasible region is a polygon
 (in higher dimension: polyhedron)
- ▷ Non-linear models
 - Non-linear objective
 - Level sets can be complicated curves
 - Non-linear constraints
 - ➡ Feasible region can be complicated

 Optimal solutions can always be found in vertices

▷ Linear models

 \triangleleft

- Linear objective
 - Level sets are straight lines
 (in higher dimension: hyperplanes)
- Linear constraints
 - Feasible region is a polygon
 (in higher dimension: polyhedron)
- ▷ Non-linear models
 - Non-linear objective
 - Level sets can be complicated curves
 - Non-linear constraints
 - ➡ Feasible region can be complicated

 Optimal solutions can always be found in vertices

Finding optimal solution can be difficult

$$\max \sqrt{(x-4)^2 + (y-4)^2}$$
s.t. $x \ge 2$
 $x \le 5$
 $-x+y \le 2$
 $x+y \le 10$
 $x-3y \le -4$

$\max \sqrt{(x-4)^2 + (y-4)^2}$ s.t. $x \ge 2$ $x \le 5$ $-x+y \le 2$ $x+y \le 10$ $x-3y \le -4$

$\max \sqrt{(x-4)^2 + (y-4)^2}$ s.t. $x \ge 2$ $x \le 5$ $-x+y \le 2$ $x+y \le 10$ $x-3y \le -4$

$\max \sqrt{(x-4)^2 + (y-4)^2}$ s.t. $x \ge 2$ $x \le 5$ $-x+y \le 2$ $x+y \le 10$ $x-3y \le -4$

Local and global optima

$$\max \sqrt{(x-4)^2 + (y-4)^2}$$
s.t. $x \ge 2$
 $x \le 5$
 $-x+y \le 2$
 $x+y \le 10$
 $x-3y \le -4$

$$\max \sqrt{(x-4)^2 + (y-4)^2}$$
s.t. $x \ge 2$
 $x \le 5$
 $-x+y \le 2$
 $x+y \le 10$
 $x-3y \le -4$

A feasible solution is called locally optimal if there is no nearby feasible solution with a better objective function value

$$\max \sqrt{(x-4)^2 + (y-4)^2}$$
s.t. $x \ge 2$
 $x \le 5$
 $-x+y \le 2$
 $x+y \le 10$
 $x-3y \le -4$

A feasible solution is called locally optimal if there is no nearby feasible solution with a better objective function value

$$\max \sqrt{(x-4)^2 + (y-4)^2}$$
s.t. $x \ge 2$
 $x \le 5$
 $-x+y \le 2$
 $x+y \le 10$
 $x-3y \le -4$

A feasible solution is called locally optimal if there is no nearby feasible solution with a better objective function value

$$\max \sqrt{(x-4)^2 + (y-4)^2}$$
s.t. $x \ge 2$
 $x \le 5$
 $-x+y \le 2$
 $x+y \le 10$
 $x-3y \le -4$

A feasible solution is called locally optimal if there is no nearby feasible solution with a better objective function value

A feasible solution is called globally optimal if there is no feasible solution at all with a better objective function value

- \triangleright In general:
 - Every global optimum is also a local optimum

- \triangleright In general:
 - Every global optimum is also a local optimum
 - Not every local optimum is a global optimum!

- \triangleright In general:
 - Every global optimum is also a local optimum
 - Not every local optimum is a global optimum!
 - ➡ Finding a local optimum is not enough for solving the problem!

- \triangleright In general:
 - Every global optimum is also a local optimum
 - Not every local optimum is a global optimum!
 - Finding a local optimum is not enough for solving the problem!
- ▷ In linear programming models:

- \triangleright In general:
 - Every global optimum is also a local optimum
 - Not every local optimum is a global optimum!
 - ➡ Finding a local optimum is not enough for solving the problem!
- ▷ In linear programming models:
 - Every local optimum is automatically global!

- \triangleright In general:
 - Every global optimum is also a local optimum
 - Not every local optimum is a global optimum!
 - ➡ Finding a local optimum is not enough for solving the problem!
- ▷ In linear programming models:
 - Every local optimum is automatically global!
 - The simplex algorithm finds a local optimum

- \triangleright In general:
 - Every global optimum is also a local optimum
 - Not every local optimum is a global optimum!
 - ➡ Finding a local optimum is not enough for solving the problem!
- ▷ In linear programming models:
 - Every local optimum is automatically global!
 - The simplex algorithm finds a local optimum
 - ➡ Linear problems can always be solved by the simplex algorithm

- \triangleright In general:
 - Every global optimum is also a local optimum
 - Not every local optimum is a global optimum!
 - ➡ Finding a local optimum is not enough for solving the problem!
- ▷ In linear programming models:
 - Every local optimum is automatically global!
 - The simplex algorithm finds a local optimum
 - ➡ Linear problems can always be solved by the simplex algorithm
- ▷ Possible strategy for solving a non-linear optimization problem:

- \triangleright In general:
 - Every global optimum is also a local optimum
 - Not every local optimum is a global optimum!
 - ➡ Finding a local optimum is not enough for solving the problem!
- ▷ In linear programming models:
 - Every local optimum is automatically global!
 - The simplex algorithm finds a local optimum
 - ➡ Linear problems can always be solved by the simplex algorithm
- ▷ Possible strategy for solving a non-linear optimization problem:
 - Search for a local optimum...

- \triangleright In general:
 - Every global optimum is also a local optimum
 - Not every local optimum is a global optimum!
 - ➡ Finding a local optimum is not enough for solving the problem!
- ▷ In linear programming models:
 - Every local optimum is automatically global!
 - The simplex algorithm finds a local optimum
 - ➡ Linear problems can always be solved by the simplex algorithm
- ▷ Possible strategy for solving a non-linear optimization problem:
 - Search for a local optimum...
 - ...and hope that it's global!

- \triangleright In general:
 - Every global optimum is also a local optimum
 - Not every local optimum is a global optimum!
 - ➡ Finding a local optimum is not enough for solving the problem!
- ▷ In linear programming models:
 - Every local optimum is automatically global!
 - The simplex algorithm finds a local optimum
 - ➡ Linear problems can always be solved by the simplex algorithm
- ▷ Possible strategy for solving a non-linear optimization problem:
 - Search for a local optimum...
 - ...and hope that it's global! (Usually it's not...)

▷ Non-linear optimization is like mountain-climbing in the fog

> Non-linear optimization is like mountain-climbing in the fog

▷ How do you know that you're on the highest mountain if you can't see the other peaks?

▷ Basic principle of interior point methods for finding a local maximum:

- ▷ Basic principle of interior point methods for finding a local maximum:
 - Find a point somewhere in the feasible region

- ▷ Basic principle of interior point methods for finding a local maximum:
 - Find a point somewhere in the feasible region
 - Follow steps in direction of increasing objective until a local maximum is reached

- ▷ Basic principle of interior point methods for finding a local maximum:
 - Find a point somewhere in the feasible region
 - Follow steps in direction of increasing objective until a local maximum is reached
- ▷ Problem: only finds a local maximum!

- ▷ Basic principle of interior point methods for finding a local maximum:
 - Find a point somewhere in the feasible region
 - Follow steps in direction of increasing objective until a local maximum is reached
- ▷ Problem: only finds a local maximum!
- ➡ Heuristic strategies to overcome this:
 - Allow for steps in direction of decreasing objective from time to time

- ▷ Basic principle of interior point methods for finding a local maximum:
 - Find a point somewhere in the feasible region
 - Follow steps in direction of increasing objective until a local maximum is reached
- ▷ Problem: only finds a local maximum!
- ➡ Heuristic strategies to overcome this:
 - Allow for steps in direction of decreasing objective from time to time
 - Restart from a different starting point

- ▷ Basic principle of interior point methods for finding a local maximum:
 - Find a point somewhere in the feasible region
 - Follow steps in direction of increasing objective until a local maximum is reached
- ▷ Problem: only finds a local maximum!
- ➡ Heuristic strategies to overcome this:
 - Allow for steps in direction of decreasing objective from time to time
 - Restart from a different starting point
- ▷ Examples:
 - Simulated annealing, Tabu search, Genetic algorithms, Ant colony simulation

- ▷ Basic principle of interior point methods for finding a local maximum:
 - Find a point somewhere in the feasible region
 - Follow steps in direction of increasing objective until a local maximum is reached
- ▷ Problem: only finds a local maximum!
- ➡ Heuristic strategies to overcome this:
 - Allow for steps in direction of decreasing objective from time to time
 - Restart from a different starting point
- ▷ Examples:

 \triangleleft

- Simulated annealing, Tabu search, Genetic algorithms, Ant colony simulation
- ▷ Big disadvantage: no optimality information (as gaps in branch & bound)!
 - ➡ You have to rely on luck to get an optimal solution...

B

 $5x_{b} + 3x_{c} \le 50$ $4x_{b} + 7x_{c} \le 70$ $x_{b}, x_{c} \ge 0$

 \triangleleft

 \triangleleft

▷ Feasible region: $R = \{(x_{b}, x_{c}) | 4x_{b} + 4x_{c} \le 45$ $5x_{b} + 3x_{c} \le 50$ $4x_{b} + 7x_{c} \le 70$ $x_{b}, x_{c} \ge 0\}$

➡ is convex

i.e. every straight line between two points in R also lies completely in R

➡ is convex

i.e. every straight line between two points in R also lies completely in R

➡ is convex

 \triangleleft

i.e. every straight line between two points in R also lies completely in R

➡ is convex

i.e. every straight line between two points in R also lies completely in R

 $\lambda p + (1 - \lambda)q \in R$ for all $p, q \in R$ and $0 \le \lambda \le 1$

➡ is convex

i.e. every straight line between two points in R also lies completely in R

 $\lambda p + (1 - \lambda)q \in R$ for all $p, q \in R$ and $0 \le \lambda \le 1$

➡ is convex

i.e. every straight line between two points in R also lies completely in R

 $\lambda p + (1 - \lambda)q \in R$ for all $p, q \in R$ and $0 \le \lambda \le 1$

➡ is convex

 \triangleleft

i.e. every straight line between two points in R also lies completely in R

 $\lambda p + (1 - \lambda)q \in R$ for all $p, q \in R$ and $0 \le \lambda \le 1$

i.e. every straightline between twopoints on thesurface lies beneaththe surface

A function $f: R \to \mathbb{R}$ is called concave if $f(\lambda p + (1 - \lambda)q) \ge \lambda f(p) + (1 - \lambda)f(q)$ for all $p, q \in R$ and $0 \le \lambda \le 1$.

 \triangleleft

▷ An optimization problem is called **concave** if

- ▷ An optimization problem is called **concave** if
 - the objective function is a **concave function**

- ▷ An optimization problem is called **concave** if
 - the objective function is a **concave function**
 - the optimization sense is to maximize

- ▷ An optimization problem is called **concave** if
 - the objective function is a **concave function**
 - the optimization sense is to maximize
 - the feasible region is a convex set

- ▷ An optimization problem is called **concave** if
 - the objective function is a **concave function**
 - the optimization sense is to maximize
 - the feasible region is a convex set, i.e.

- ▷ An optimization problem is called **concave** if
 - the objective function is a **concave function**
 - the optimization sense is to maximize
 - the feasible region is a convex set, i.e.
 - the left-hand side of every = constraint is a linear function
 - the left-hand side of every \leq constraint is a convex function
 - the left-hand side of every \geq constraint is a concave function

- ▷ An optimization problem is called concave if
 - the objective function is a **concave function**
 - the optimization sense is to maximize
 - the feasible region is a convex set, i.e.
 - the left-hand side of every = constraint is a linear function
 - the left-hand side of every \leq constraint is a convex function
 - the left-hand side of every \geq constraint is a concave function

For concave optimization problems every local optimum is automatically a global optimum

- ▷ An optimization problem is called **concave** if
 - the objective function is a **concave function**
 - the optimization sense is to maximize
 - the feasible region is a convex set, i.e.
 - the left-hand side of every = constraint is a linear function
 - the left-hand side of every \leq constraint is a convex function
 - the left-hand side of every \geq constraint is a concave function

For concave optimization problems every local optimum is automatically a global optimum

 \triangleleft

 \triangleright

 \triangleright

\triangleright f is convex

i.e. every straightline between twopoints on thesurface lies abovethe surface

i.e. every straightline between twopoints on thesurface lies abovethe surface

A function $f : R \to \mathbb{R}$ is called convex if $f(\lambda p + (1 - \lambda)q) \leq \lambda f(p) + (1 - \lambda)f(q)$ for all $p, q \in R$ and $0 \leq \lambda \leq 1$.

▷ An optimization problem is called **convex** if

- ▷ An optimization problem is called **convex** if
 - the objective function is a **convex function**

- \triangleright An optimization problem is called **convex** if
 - the objective function is a **convex function**
 - the optimization sense is to minimize

- ▷ An optimization problem is called **convex** if
 - the objective function is a **convex function**
 - the optimization sense is to minimize
 - the feasible region is a convex set, i.e.
 - the left-hand side of every = constraint is a linear function
 - the left-hand side of every \leq constraint is a convex function
 - the left-hand side of every \geq constraint is a concave function

- ▷ An optimization problem is called **convex** if
 - the objective function is a **convex function**
 - the optimization sense is to minimize
 - the feasible region is a convex set, i.e.
 - the left-hand side of every = constraint is a linear function
 - the left-hand side of every \leq constraint is a convex function
 - the left-hand side of every \geq constraint is a concave function

For convex optimization problems every local optimum is automatically a global optimum

- ▷ An optimization problem is called **convex** if
 - the objective function is a **convex function**
 - the optimization sense is to minimize
 - the feasible region is a convex set, i.e.
 - the left-hand side of every = constraint is a linear function
 - the left-hand side of every \leq constraint is a convex function
 - the left-hand side of every \geq constraint is a concave function

For convex optimization problems every local optimum is automatically a global optimum

 \triangleright Convex feasible region \checkmark

- \triangleright Convex feasible region \checkmark
- \triangleright Convex objective function \checkmark

- \triangleright Convex feasible region \checkmark
- \triangleright Convex objective function \checkmark
- \triangleright Maximization problem \bigcirc

 \triangleright Linear objective function: f(x,y) = 2x + 3y

 \triangleright Linear objective function: f(x,y) = 2x + 3y

\triangleright Linear objective function: f(x,y) = 2x + 3y

- $\begin{tabular}{ll} $$ & f$ is both concave \\ $$ and convex \\ \end{tabular}$
- optimization sense doesn't matter

 \triangleright Linear objective function: f(x,y) = 2x + 3y

- optimization sense doesn't matter

▷ Linear constraints ➡ feasible region is always convex

 \triangleright Linear objective function: f(x,y) = 2x + 3y

- ▷ Linear constraints ➡ feasible region is always convex
- ➡ For linear programming local optima are always automatically global

 \triangleleft

> Some special cases of non-linear models can be transformed directly into linear models

- > Some special cases of non-linear models can be transformed directly into linear models
- > Linear constraints and objective function to minimize is piecewise linear and convex

- > Some special cases of non-linear models can be transformed directly into linear models
- \triangleright Linear constraints and objective function to minimize is piecewise linear and convex

➡ Non-linear: minimize
$$\max_{k=1,...,\ell} f_k(x_1,...,x_n)$$
 (f_k are all linear)
subject to $\sum_{i=1}^n a_{ji}x_i \leq b_j$ $\forall j$

- > Some special cases of non-linear models can be transformed directly into linear models
- $\,\triangleright\,$ Linear constraints and objective function to minimize is piecewise linear and convex

Non-linear: minimize
$$\max_{k=1,...,\ell} f_k(x_1,\ldots,x_n)$$
 (f_k are all linear)
subject to $\sum_{i=1}^n a_{ji}x_i \leq b_j$ $\forall j$

ightarrow Rewrite as: minimize z

subject to
$$f_k(x_1, \dots, x_n) \leq z$$
 $(1 \leq k \leq \ell)$
 $\sum_{i=1}^n a_{ji} x_i \leq b_j \quad \forall j$

- > Some special cases of non-linear models can be transformed directly into linear models
- $\,\triangleright\,$ Linear constraints and objective function to minimize is piecewise linear and convex

Non-linear: minimize
$$\max_{k=1,...,\ell} f_k(x_1,\ldots,x_n)$$
 (f_k are all linear)
subject to $\sum_{i=1}^n a_{ji}x_i \leq b_j$ $\forall j$

ightarrow Rewrite as: minimize z

subject to
$$f_k(x_1, \dots, x_n) - z \leq 0$$
 $(1 \leq k \leq \ell)$
 $\sum_{i=1}^n a_{ji} x_i \leq b_j \quad \forall j$

- > Some special cases of non-linear models can be transformed directly into linear models
- > Linear constraints and objective function to minimize is piecewise linear and convex

Non-linear: minimize
$$\max_{k=1,...,\ell} f_k(x_1,\ldots,x_n)$$
 (f_k are all linear)
subject to $\sum_{i=1}^n a_{ji}x_i \leq b_j$ $\forall j$

Rewrite as: minimize z

subject to
$$f_k(x_1,\ldots,x_n)-z \leq 0$$
 $(1\leq k\leq \ell)$
 $\sum_{i=1}^n a_{ji}x_i \leq b_j \quad \forall j$

 $\,\triangleright\,$ Linear constraints and objective function to minimize is convex of the form

$$\sum_{i=1}^{n} c_i |x_i| \quad \text{with all } c_i \ge 0$$

- > Some special cases of non-linear models can be transformed directly into linear models
- $\,\triangleright\,$ Linear constraints and objective function to minimize is piecewise linear and convex

Non-linear: minimize
$$\max_{k=1,...,\ell} f_k(x_1,\ldots,x_n)$$
 (f_k are all linear)
subject to $\sum_{i=1}^n a_{ji}x_i \leq b_j$ $\forall j$

Rewrite as: minimize z

subject to
$$f_k(x_1, \dots, x_n) - z \leq 0$$
 $(1 \leq k \leq \ell)$
 $\sum_{i=1}^n a_{ji} x_i \leq b_j \quad \forall j$

 $\,\triangleright\,$ Linear constraints and objective function to minimize is convex of the form

$$\sum_{i=1}^{n} c_i |x_i| \quad \text{with all } c_i \ge 0$$

➡ Can be similarly rewritten into linear constraints

Minimize the largest occuring vertical distance between the wanted line and the data points!

 \triangleleft

Example

→ Vertical distance between line and the *i*-th data point: $|ax_i + b - y_i|$

- → Vertical distance between line and the *i*-th data point: $|ax_i + b y_i|$
- → **Objective**: minimize $\max_{i=1,...,n} |ax_i + b y_i|$

- → Vertical distance between line and the *i*-th data point: $|ax_i + b y_i|$
- → **Objective**: minimize $\max_{i=1,...,n} |ax_i + b y_i|$

no constraints

- → Vertical distance between line and the *i*-th data point: $|ax_i + b y_i|$
- ➡ Objective: minimize $\max_{i=1,...,n} |ax_i + b y_i|$ non-linear!

- → Vertical distance between line and the *i*-th data point: $|ax_i + b y_i|$
- → Objective: minimize $\max_{i=1,...,n} |ax_i + b y_i|$ non-linear!
 C no constraints
- ▷ Reformulate into a linear model

- → Vertical distance between line and the *i*-th data point: $|ax_i + b y_i|$
- → Objective: minimize $\max_{i=1,...,n} |ax_i + b y_i|$ non-linear!
 C no constraints
- \triangleright Reformulate into a linear model, using additional variable $z \in \mathbb{R}$:

- → Vertical distance between line and the *i*-th data point: $|ax_i + b y_i|$
- → Objective: minimize $\max_{i=1,...,n} |ax_i + b y_i|$ non-linear!
 C no constraints
- \triangleright Reformulate into a linear model, using additional variable $z \in \mathbb{R}$:

Variables:
$$a,b\in\mathbb{R}$$

- → Vertical distance between line and the *i*-th data point: $|ax_i + b y_i|$
- → Objective: minimize $\max_{i=1,...,n} |ax_i + b y_i|$ non-linear!
 C no constraints
- \triangleright Reformulate into a linear model, using additional variable $z \in \mathbb{R}$:

 $\begin{array}{lll} \text{minimize} & z\\ \text{subject to} & x_i \cdot a + b - z \leq y_i & (1 \leq i \leq n)\\ & -x_i \cdot a - b - z \leq -y_i & (1 \leq i \leq n)\\ & a, b, z \in \mathbb{R} \end{array}$

Variables:
$$a,b\in\mathbb{R}$$

- → Vertical distance between line and the *i*-th data point: $|ax_i + b y_i|$
- → Objective: minimize $\max_{i=1,...,n} |ax_i + b y_i|$ non-linear!
 C no constraints
- \triangleright Reformulate into a linear model, using additional variable $z \in \mathbb{R}$:

▷ Variants: minimize sum of distances, square of distances, fit a higher-order curve

▷ Last constraint can be expressed in integer variables

▷ A (non-linear) function in more than one variable is called separable if it can be expressed as the sum of (possibly non-linear) functions in one variable each.

- ▷ A (non-linear) function in more than one variable is called separable if it can be expressed as the sum of (possibly non-linear) functions in one variable each.
- \triangleright Examples:

 $x_1^2 + 2x_2 + e^{x_3}$

- ▷ A (non-linear) function in more than one variable is called separable if it can be expressed as the sum of (possibly non-linear) functions in one variable each.
- ▷ Examples:

 $x_1^2 + 2x_2 + e^{x_3} \implies \text{separable}$

 \triangleright

- ▷ A (non-linear) function in more than one variable is called separable if it can be expressed as the sum of (possibly non-linear) functions in one variable each.
- ▷ Examples:

 $x_1^2 + 2x_2 + e^{x_3} \implies$ separable $x_1x_2 + \frac{x_2}{1+x_1} + x_3 \implies$ not separable

 \triangleright

- ▷ A (non-linear) function in more than one variable is called separable if it can be expressed as the sum of (possibly non-linear) functions in one variable each.
- ▷ Examples:

$$x_1^2 + 2x_2 + e^{x_3} \implies$$
 separable
 $x_1x_2 + \frac{x_2}{1+x_1} + x_3 \implies$ not separable

- ▷ A (non-linear) function in more than one variable is called separable if it can be expressed as the sum of (possibly non-linear) functions in one variable each.
- ▷ Examples:

$$x_1^2 + 2x_2 + e^{x_3} \implies$$
 separable
 $x_1x_2 + \frac{x_2}{1+x_1} + x_3 \implies$ not separable

Approximate every single-variable expression by piecewise linear functions

 \triangleright

- ▷ A (non-linear) function in more than one variable is called separable if it can be expressed as the sum of (possibly non-linear) functions in one variable each.
- ▷ Examples:

$$x_1^2 + 2x_2 + e^{x_3} \implies$$
 separable
 $x_1x_2 + \frac{x_2}{1+x_1} + x_3 \implies$ not separable

Approximate every single-variable expression by piecewise linear functions

Replaced non-linear model with integer linear model

- ▷ A (non-linear) function in more than one variable is called separable if it can be expressed as the sum of (possibly non-linear) functions in one variable each.
- ▷ Examples:

$$x_1^2 + 2x_2 + e^{x_3} \implies$$
 separable
 $x_1x_2 + \frac{x_2}{1+x_1} + x_3 \implies$ not separable

Approximate every single-variable expression by piecewise linear functions

- Replaced non-linear model with integer linear model
- \triangleright Disadvantages:
 - much larger number of variables

- ▷ A (non-linear) function in more than one variable is called separable if it can be expressed as the sum of (possibly non-linear) functions in one variable each.
- ▷ Examples:

$$x_1^2 + 2x_2 + e^{x_3} \implies$$
 separable
 $x_1x_2 + \frac{x_2}{1+x_1} + x_3 \implies$ not separable

Approximate every single-variable expression by piecewise linear functions

- Replaced non-linear model with integer linear model
- ▷ Disadvantages:
 - much larger number of variables
 - have to handle approximation errors

- \triangleright Due to non-linearity:
 - Shadow prices are valid only for infinitesimal changes of the right-hand side

- \triangleright Due to non-linearity:
 - Shadow prices are valid only for infinitesimal changes of the right-hand side
 - No range information available for shadow prices

- \triangleright Due to non-linearity:
 - Shadow prices are valid only for infinitesimal changes of the right-hand side
 - No range information available for shadow prices
- \triangleright Still true:
 - Shadow prices of non-binding constraints are always 0

- ▷ Due to non-linearity:
 - Shadow prices are valid only for infinitesimal changes of the right-hand side
 - No range information available for shadow prices
- \triangleright Still true:
 - Shadow prices of non-binding constraints are always 0
 - Shadow prices of binding constraints may be 0 if the problem is degenerate

- ▷ Models, Data and Algorithms
- ▷ Linear Optimization
- ▷ Mathematical Background: Polyhedra, Simplex-Algorithm
- Sensitivity Analysis; (Mixed) Integer Programming
- ▷ MIP Modelling
- ▷ MIP Modelling: More Examples; Branch & Bound
- > Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms
- ▷ TSP-Heuristics
- ▷ Network Flows
- Shortest Path Problem
- Complexity Theory
- Nonlinear Optimization
- ▷ Scheduling (Jan 25)
- ▷ Lot Sizing (Feb 01)
- ▷ Summary (Feb 08)
- ▷ Oral exam (Feb 15)

