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� Overview �

� Models, Data and Algorithms

� Linear Optimization

� Mathematical Background: Polyhedra, Simplex-Algorithm

� Sensitivity Analysis; (Mixed) Integer Programming

� MIP Modelling

� MIP Modelling: More Examples; Branch & Bound

� Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms

� TSP-Heuristics

� Network Flows

� Shortest Path Problem

� Complexity Theory

� Nonlinear Optimization

� Scheduling (Jan 25)

� Lot Sizing (Feb 01)

� Summary (Feb 08)

� Oral exam (Feb 15)
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� Nonlinear optimization �

Real World Mathematical World

Real-World Problem Mathematical Model

Solution Solution Algorithms

Representation

Implementation

Execution

Interpretation
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� Production Planning revisited �

� Production Planning in Automobile Industry

Product Beetle Cabrio

Revenue $10000 $20000

Manufacturing 5h 3h

Assembly 4h 7h

Raw material 400kg 400kg

Plant capacity and available raw materials:

• Manufacturing capacity: 50h

• Assembly capacity: 70h

• Raw material: 4500kg
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� Production Planning in Automobile Industry

Product Beetle Cabrio

Revenue $10000 $20000

Manufacturing 5h 3h

Assembly 4h 7h

Raw material 400kg 400kg

Plant capacity and available raw materials:

• Manufacturing capacity: 50h

• Assembly capacity: 70h

• Raw material: 4500kg

✘

� More realistic: Price of Cabrio depending on the demand
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� Some assumptions �

� Relation between price p of cabrio and demand x: p = K · x1/E

······················



� Some assumptions �

� Relation between price p of cabrio and demand x: p = K · x1/E

➡ Price elasticity E < 0 (assume E is constant within the price and demand range

considered)

······················



� Some assumptions �

� Relation between price p of cabrio and demand x: p = K · x1/E

➡ Price elasticity E < 0 (assume E is constant within the price and demand range

considered)

➡ K: the price where demand reduces to 1 unit

······················



� Some assumptions �

� Relation between price p of cabrio and demand x: p = K · x1/E

➡ Price elasticity E < 0 (assume E is constant within the price and demand range

considered)

➡ K: the price where demand reduces to 1 unit

� Assume we produce exactly the demanded number of cabrios

······················



� Some assumptions �

� Relation between price p of cabrio and demand x: p = K · x1/E

➡ Price elasticity E < 0 (assume E is constant within the price and demand range

considered)

➡ K: the price where demand reduces to 1 unit

� Assume we produce exactly the demanded number of cabrios

➡ demand x = xc

······················



� Some assumptions �

� Relation between price p of cabrio and demand x: p = K · x1/E

➡ Price elasticity E < 0 (assume E is constant within the price and demand range

considered)

➡ K: the price where demand reduces to 1 unit

� Assume we produce exactly the demanded number of cabrios

➡ demand x = xc

� Fixed production cost k of one cabrio (assume independent of produced number)

······················



� Some assumptions �

� Relation between price p of cabrio and demand x: p = K · x1/E

➡ Price elasticity E < 0 (assume E is constant within the price and demand range

considered)

➡ K: the price where demand reduces to 1 unit

� Assume we produce exactly the demanded number of cabrios

➡ demand x = xc

� Fixed production cost k of one cabrio (assume independent of produced number)

➡ Contribution of cabrios to the revenue:

(p− k) · xc =
(

K · x1/E
c − k

)

· xc = Kx
1+1/E
c − kxc
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� Some assumptions �

� Relation between price p of cabrio and demand x: p = K · x1/E

➡ Price elasticity E < 0 (assume E is constant within the price and demand range

considered)

➡ K: the price where demand reduces to 1 unit

� Assume we produce exactly the demanded number of cabrios

➡ demand x = xc

� Fixed production cost k of one cabrio (assume independent of produced number)

➡ Contribution of cabrios to the revenue:

(p− k) · xc =
(

K · x1/E
c − k

)

· xc = Kx
1+1/E
c − kxc

� Specific values assumed for cabrios: k := 20000, K := 150000, and E := −2
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� Some assumptions �

� Relation between price p of cabrio and demand x: p = K · x1/E

➡ Price elasticity E < 0 (assume E is constant within the price and demand range

considered)

➡ K: the price where demand reduces to 1 unit

� Assume we produce exactly the demanded number of cabrios

➡ demand x = xc

� Fixed production cost k of one cabrio (assume independent of produced number)

➡ Contribution of cabrios to the revenue:

(p− k) · xc =
(

K · x1/E
c − k

)

· xc = Kx
1+1/E
c − kxc

� Specific values assumed for cabrios: k := 20000, K := 150000, and E := −2

➡ Objective (total revenue): 10000xb + 150000
√
xc − 20000xc

······················



� Nonlinear optimization model �

� Model (non-linear program):

maximize 10xb + 150
√
xc − 20xc

subject to 4xb + 4xc ≤ 45 (total raw material)

5xb + 3xc ≤ 50 (time in manufacturing)

4xb + 7xc ≤ 70 (time in assembly)

xb, xc ≥ 0 (non-negativity)
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C
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� Optimal solution: (xb, xc) = (5, 6.25)
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� Nonlinear optimization model �

� Model (non-linear program):

maximize 10xb + 150
√
xc − 20xc

subject to 4xb + 4xc ≤ 45 (total raw material)

5xb + 3xc ≤ 50 (time in manufacturing)

4xb + 7xc ≤ 70 (time in assembly)

xb, xc ≥ 0 (non-negativity)

Objective

C

V

� Optimal solution: (xb, xc) = (5, 6.25)

➡ Price for one cabrio at this demand: 60000

➡ Profit for one cabrio: 40000
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� Geometric interpretation �
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� Linear and non-linear expressions �

� Linear optimization

➡ Linear objective and linear constraints
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� Linear and non-linear expressions �

� Linear optimization

➡ Linear objective and linear constraints

➡ Sum of linear terms: . . .+ ai · xi + . . .

parameter variable

� Non-linear optimization

➡ Non-linear objective and/or non-linear constraints

➡ Examples:

• Products of variables: xi · xj
• Squares of variables: x2i

}

quadratic expressions
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� Linear and non-linear expressions �

� Linear optimization

➡ Linear objective and linear constraints

➡ Sum of linear terms: . . .+ ai · xi + . . .

parameter variable

� Non-linear optimization

➡ Non-linear objective and/or non-linear constraints

➡ Examples:

• Products of variables: xi · xj
• Squares of variables: x2i

}

quadratic expressions

• Higher-order terms of variables: xi · xj · xk, x5j · xj
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� Linear optimization

➡ Linear objective and linear constraints

➡ Sum of linear terms: . . .+ ai · xi + . . .

parameter variable

� Non-linear optimization

➡ Non-linear objective and/or non-linear constraints

➡ Examples:

• Products of variables: xi · xj
• Squares of variables: x2i

}

quadratic expressions

• Higher-order terms of variables: xi · xj · xk, x5j · xj
• Absolute values or maxima/minima: |xi|, maxxj
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� Linear and non-linear expressions �

� Linear optimization

➡ Linear objective and linear constraints

➡ Sum of linear terms: . . .+ ai · xi + . . .

parameter variable

� Non-linear optimization

➡ Non-linear objective and/or non-linear constraints

➡ Examples:

• Products of variables: xi · xj
• Squares of variables: x2i

}

quadratic expressions

• Higher-order terms of variables: xi · xj · xk, x5j · xj
• Absolute values or maxima/minima: |xi|, maxxj

• Terms including elementary functions: sinxi, 2xi·xj , 1
√
xi
, log(xi + x

xk

j )

······················



� Non-linear objective �
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➡ Possible that optimal solutions

cannot be found in vertices!
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� Non-linear objective: economies of scale �

� Economy of scale
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� Non-linear objective: economies of scale �

� Economy of scale

➡ Production cost per item decrease

with number xi of produced items

production

to
ta
l
co
st

➡ Contribution to objective (examples):

. . .+
√
xi + . . .

. . .+ log xi + . . .

� Diseconomy of scale

➡ Production cost per item increase

with number xi of produced items

production

to
ta
l
co
st

➡ Contribution to objective (examples):

. . .+ x2i + . . .

. . .+ xi log xi + . . .
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➡ Possible that different optimal

solutions lie in completely different

parts of the feasible region!
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� Example: facility location �

� Given: locations at specified coordinates in the plane

� Task: Find an optimal location for a central unit connecting every given location!
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� Example: facility location �

� Given: locations at specified coordinates in the plane

� Task: Find an optimal location for a central unit connecting every given location!
lo
ca
ti
on

co
or
di
na
te
s

#
co
nn
ec
ti
on
s

A (8,2) 9

B (3,10) 7

C (8,15) 2

D (14,13) 5

V Variables: x, y ➡ coordinates of central unit

Objective: minimize sum of connection costs to all given locations
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� Facility location – model �

V Variables: x, y ➡ coordinates of central unit
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V Variables: x, y ➡ coordinates of central unit
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D (14,13) 5

➡ Distance to A:
√

(x− 8)2 + (y − 2)2
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V Variables: x, y ➡ coordinates of central unit
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V Variables: x, y ➡ coordinates of central unit
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� Facility location – model �

V Variables: x, y ➡ coordinates of central unit

lo
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ti
on

co
or
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s

#
co
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s

A (8,2) 9

B (3,10) 7

C (8,15) 2

D (14,13) 5

➡ Distance to A:
√

(x− 8)2 + (y − 2)2

➡ Cost for all connections to A: 9 ·
√

(x− 8)2 + (y − 2)2

➡ Analogous for B, C, and D

➡ Objective: min 9
√

(x− 8)2 + (y − 2)2 + 7
√

(x− 3)2 + (y − 10)2

+ 2
√

(x− 8)2 + (y − 15)2 + 5
√

(x− 14)2 + (y − 13)2
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� Facility location – solution �

V Variables: x, y ➡ coordinates of central unit
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� Facility location – solution �

V Variables: x, y ➡ coordinates of central unit
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A (8,2) 9

B (3,10) 7

C (8,15) 2

D (14,13) 5

Objective: min 9
√

(x− 8)2 + (y − 2)2 + 7
√

(x− 3)2 + (y − 10)2

+ 2
√

(x− 8)2 + (y − 15)2 + 5
√

(x− 14)2 + (y − 13)2

C No explicit constraints!
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� Facility location – solution �

V Variables: x, y ➡ coordinates of central unit

lo
ca
ti
on

co
or
di
na
te
s

#
co
nn
ec
ti
on
s

A (8,2) 9

B (3,10) 7

C (8,15) 2

D (14,13) 5

Objective: min 9
√

(x− 8)2 + (y − 2)2 + 7
√

(x− 3)2 + (y − 10)2

+ 2
√

(x− 8)2 + (y − 15)2 + 5
√

(x− 14)2 + (y − 13)2

C No explicit constraints!

➡ Optimal solution: (x, y) = (6.25, 7.47) (unique!)
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� Facility location – additional constraints �

V Variables: x, y ➡ coordinates of central unit
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√

(x− 3)2 + (y − 10)2

+ 2
√
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√

(x− 14)2 + (y − 13)2

C Constraints
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� Facility location – additional constraints �

V Variables: x, y ➡ coordinates of central unit

lo
ca
ti
on

co
or
di
na
te
s

#
co
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s

A (8,2) 9

B (3,10) 7

C (8,15) 2

D (14,13) 5

Objective: min 9
√

(x− 8)2 + (y − 2)2 + 7
√

(x− 3)2 + (y − 10)2

+ 2
√

(x− 8)2 + (y − 15)2 + 5
√

(x− 14)2 + (y − 13)2

C Constraints : x ≥ 4, y ≥ 5, y ≤ 11, x+ y ≤ 18

······················



� Facility location – additional constraints �

V Variables: x, y ➡ coordinates of central unit

lo
ca
ti
on

co
or
di
na
te
s

#
co
nn
ec
ti
on
s

A (8,2) 9

B (3,10) 7

C (8,15) 2

D (14,13) 5

Objective: min 9
√

(x− 8)2 + (y − 2)2 + 7
√

(x− 3)2 + (y − 10)2

+ 2
√

(x− 8)2 + (y − 15)2 + 5
√

(x− 14)2 + (y − 13)2

C Constraints : x ≥ 4, y ≥ 5, y ≤ 11, x+ y ≤ 18

➡ Optimal solution: (x, y) = (6.25, 7.47) (same as before!)
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� Non-linear optimization – observations �

� A non-linear optimization model...
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� Non-linear optimization – observations �

� A non-linear optimization model...

• ...might have no optimal solutions in vertices of the feasible region

• ...might have a feasible region without any vertices at all
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� A non-linear optimization model...

• ...might have no optimal solutions in vertices of the feasible region

• ...might have a feasible region without any vertices at all

• ...might have optimal solutions only in the interior of the feasible region

• ...might have different optimal solutions spread over the whole feasible region

• ...might have (even unique) optimal solutions without any constraints

• ...might be unbounded, even if the feasible region is bounded

� All of this cannot happen with linear optimization models

➡ How to find an optimal solution...?
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(in higher dimension: polyhedron)
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found in vertices

� Non-linear models

• Non-linear objective

➡ Level sets can be complicated curves

• Non-linear constraints

➡ Feasible region can be complicated
➡ Finding optimal solution can be difficult
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A feasible solution is called locally optimal if there is no nearby feasible solution with a

better objective function value

global optimum

A feasible solution is called globally optimal if there is no feasible solution at all with a

better objective function value
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� Local and global optima in linear and non-linear models �

� In general:

• Every global optimum is also a local optimum

• Not every local optimum is a global optimum!

➡ Finding a local optimum is not enough for solving the problem!

� In linear programming models:

• Every local optimum is automatically global!

• The simplex algorithm finds a local optimum

➡ Linear problems can always be solved by the simplex algorithm

� Possible strategy for solving a non-linear optimization problem:

• Search for a local optimum...

• ...and hope that it’s global! (Usually it’s not...)
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� Mountain climbing �

� Non-linear optimization is like mountain-climbing in the fog

� How do you know that you’re on the highest mountain if you can’t see the other peaks?
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� Interior point methods and attempts to get out of local maxima �

� Basic principle of interior point methods for finding a local maximum:

• Find a point somewhere in the feasible region

• Follow steps in direction of increasing objective until a local maximum is reached

� Problem: only finds a local maximum!

➡ Heuristic strategies to overcome this:

• Allow for steps in direction of decreasing objective from time to time

• Restart from a different starting point

� Examples:

• Simulated annealing, Tabu search, Genetic algorithms, Ant colony simulation

� Big disadvantage: no optimality information (as gaps in branch & bound)!

➡ You have to rely on luck to get an optimal solution...
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� Convex regions �

� Feasible region: R = {(xb, xc) | 4xb + 4xc ≤ 45

5xb + 3xc ≤ 50

4xb + 7xc ≤ 70

xb, xc ≥ 0}

R

➡ is convex

i.e. every straight line between two points in R also lies completely in R

p
q

λp+ (1− λ)q ∈ R for all p, q ∈ R and 0 ≤ λ ≤ 1

not convex!
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� f is concave

i.e. every straight

line between two
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surface lies beneath
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A function f : R → R is called concave if

f(λp+ (1− λ)q) ≥ λf(p) + (1− λ)f(q) for all p, q ∈ R and 0 ≤ λ ≤ 1.
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A function f : R → R is called convex if

f(λp+ (1− λ)q) ≤ λf(p) + (1− λ)f(q) for all p, q ∈ R and 0 ≤ λ ≤ 1.
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� f is both concave

and convex

➡ optimization sense

doesn’t matter

� Linear constraints ➡ feasible region is always convex

➡ For linear programming local optima are always automatically global
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➡ Non-linear: minimize max
k=1,...,ℓ

fk(x1, . . . , xn) (fk are all linear)

subject to
n
∑

i=1

ajixi ≤ bj ∀j

➡ Rewrite as: minimize z

subject to fk(x1, . . . , xn) ≤ z (1 ≤ k ≤ ℓ)

n
∑

i=1

ajixi ≤ bj ∀j

fk(x1, . . . , xn)− z ≤ 0

� Linear constraints and objective function to minimize is convex of the form
n
∑

i=1

ci|xi| with all ci ≥ 0
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➡ Minimize the largest occuring vertical distance between the wanted line and the data

points!
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� A model for the data fitting problem �

� Minimize the largest occuring vertical distance between the wanted line y = a · x+ b

and the given data points (xi, yi)

V Variables: a, b ∈ R
➡ Vertical distance between line and the i-th data point: |axi + b− yi|

➡ Objective: minimize max
i=1,...,n

|axi + b− yi|

C no constraints

non-linear!

� Reformulate into a linear model, using additional variable z ∈ R:

minimize z

subject to axi + b− yi ≤ z (1 ≤ i ≤ n)

− axi − b+ yi ≤ z (1 ≤ i ≤ n)

a, b, z ∈ R
xi · a+ b− z ≤ yi

−xi · a− b− z ≤ −yi

� Variants: minimize sum of distances, square of distances, fit a higher-order curve
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� Approximate the function y = x2 − 13x+ 45 by piecewise linear functions
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� Last constraint can be expressed in integer variables
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� Separation of variables �

� A (non-linear) function in more than one variable is called separable if it can be

expressed as the sum of (possibly non-linear) functions in one variable each.

� Examples:

x21 + 2x2 + ex3 ➡ separable

x1x2 +
x2

1 + x1
+ x3 ➡ not separable

➡ If a non-linear model contains only separable functions:

Approximate every single-variable expression by piecewise linear functions

➡ Replaced non-linear model with integer linear model

� Disadvantages:

• much larger number of variables

• have to handle approximation errors
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� Sensitivity analysis for non-linear models �

The shadow price of a constraint is the rate of change in the objective function per unit

increase of the constraint’s right-hand side

� Due to non-linearity:

➡ Shadow prices are valid only for

infinitesimal changes of the right-hand side

➡ No range information available for shadow

prices

� Still true:

• Shadow prices of non-binding constraints

are always 0

• Shadow prices of binding constraints may

be 0 if the problem is degenerate
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