Mathematical Tools
 for Engineering and Management

Lecture 12

18 Jan 2012
$\left(\frac{\text { GPE }}{(G)}\right)$
\triangleright Models, Data and Algorithms
\triangleright Linear Optimization
\triangleright Mathematical Background: Polyhedra, Simplex-Algorithm
\triangleright Sensitivity Analysis; (Mixed) Integer Programming
\triangleright MIP Modelling
\triangleright MIP Modelling: More Examples; Branch \& Bound
\triangleright Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms
\triangleright TSP-Heuristics
\triangleright Network Flows
\triangleright Shortest Path Problem
\triangleright Complexity Theory
$\triangleright \quad$ Nonlinear Optimization
\triangleright Scheduling (Jan 25)
\triangleright Lot Sizing (Feb 01)
\triangleright Summary (Feb 08)
\triangleright Oral exam (Feb 15)

Z ZCD
\triangleright Production Planning in Automobile Industry

Product	Beetle	Cabrio
Revenue	$\$ 10000$	$\$ 20000$

Manufacturing	5 h	3 h
Assembly	4 h	7 h
Raw material	400 kg	400 kg

Plant capacity and available raw materials:

- Manufacturing capacity: 50h
- Assembly capacity: 70h
- Raw material: 4500kg
\triangleright Production Planning in Automobile Industry

Product	Beetle	Cabrio
Revenue	$\$ 10000$	$\$ 2000$

Manufacturing	5 h	3 h
Assembly	4 h	7 h
Raw material	400 kg	400 kg

\triangleright More realistic: Price of Cabrio depending on the demand
\qquad
Plant capacity and available raw materials:

- Manufacturing capacity: 50h
- Assembly capacity: 70h
- Raw material: 4500kg
- Relation between price p of cabrio and demand $x: p=K \cdot x^{1 / E}$
\qquad
\triangleright Relation between price p of cabrio and demand $x: p=K \cdot x^{1 / E}$
\Rightarrow Price elasticity $E<0$ (assume E is constant within the price and demand range considered)

E \qquad
\triangleright Relation between price p of cabrio and demand $x: p=K \cdot x^{1 / E}$
\Rightarrow Price elasticity $E<0$ (assume E is constant within the price and demand range considered)
$\Rightarrow K$: the price where demand reduces to 1 unit
(APE) \qquad
\triangleright Relation between price p of cabrio and demand $x: p=K \cdot x^{1 / E}$
\Rightarrow Price elasticity $E<0$ (assume E is constant within the price and demand range considered)
$\Rightarrow K$: the price where demand reduces to 1 unit
\triangleright Assume we produce exactly the demanded number of cabrios
\qquad
\triangleright Relation between price p of cabrio and demand $x: p=K \cdot x^{1 / E}$
\Rightarrow Price elasticity $E<0$ (assume E is constant within the price and demand range considered)
$\Rightarrow K$: the price where demand reduces to 1 unit
\triangleright Assume we produce exactly the demanded number of cabrios
\Rightarrow demand $x=x_{c}$
\qquad
\triangleright Relation between price p of cabrio and demand $x: p=K \cdot x^{1 / E}$
\Rightarrow Price elasticity $E<0$ (assume E is constant within the price and demand range considered)
$\Rightarrow K$: the price where demand reduces to 1 unit
\triangleright Assume we produce exactly the demanded number of cabrios
\Rightarrow demand $x=x_{c}$
$\triangleright \quad$ Fixed production cost k of one cabrio (assume independent of produced number)
\qquad
\triangleright Relation between price p of cabrio and demand $x: p=K \cdot x^{1 / E}$
\Rightarrow Price elasticity $E<0$ (assume E is constant within the price and demand range considered)
$\Rightarrow K$: the price where demand reduces to 1 unit
\triangleright Assume we produce exactly the demanded number of cabrios
\Rightarrow demand $x=x_{c}$
\triangleright Fixed production cost k of one cabrio (assume independent of produced number)
\Rightarrow Contribution of cabrios to the revenue:

$$
(p-k) \cdot x_{\mathrm{c}}=\left(K \cdot x_{\mathrm{c}}^{1 / E}-k\right) \cdot x_{\mathrm{c}}=K x_{\mathrm{c}}^{1+1 / E}-k x_{\mathrm{c}}
$$

\qquad

- Relation between price p of cabrio and demand $x: p=K \cdot x^{1 / E}$
\Rightarrow Price elasticity $E<0$ (assume E is constant within the price and demand range considered)
$\Rightarrow K$: the price where demand reduces to 1 unit
\triangleright Assume we produce exactly the demanded number of cabrios
\Rightarrow demand $x=x_{c}$
$\triangleright \quad$ Fixed production cost k of one cabrio (assume independent of produced number)
\Rightarrow Contribution of cabrios to the revenue:

$$
(p-k) \cdot x_{\mathrm{c}}=\left(K \cdot x_{\mathrm{c}}^{1 / E}-k\right) \cdot x_{\mathrm{c}}=K x_{\mathrm{c}}^{1+1 / E}-k x_{\mathrm{c}}
$$

$\triangleright \quad$ Specific values assumed for cabrios: $k:=20000, K:=150000$, and $E:=-2$
\qquad

- Relation between price p of cabrio and demand $x: p=K \cdot x^{1 / E}$
\Rightarrow Price elasticity $E<0$ (assume E is constant within the price and demand range considered)
$\Rightarrow K$: the price where demand reduces to 1 unit
\triangleright Assume we produce exactly the demanded number of cabrios
\Rightarrow demand $x=x_{c}$
$\triangleright \quad$ Fixed production cost k of one cabrio (assume independent of produced number)
\Rightarrow Contribution of cabrios to the revenue:

$$
(p-k) \cdot x_{\mathrm{c}}=\left(K \cdot x_{\mathrm{c}}^{1 / E}-k\right) \cdot x_{\mathrm{c}}=K x_{\mathrm{c}}^{1+1 / E}-k x_{\mathrm{c}}
$$

\triangleright Specific values assumed for cabrios: $k:=20000, K:=150000$, and $E:=-2$
\Rightarrow Objective (total revenue): $10000 x_{\mathrm{b}}+150000 \sqrt{x_{\mathrm{c}}}-20000 x_{\mathrm{c}}$
\qquad

- Model (non-linear program):

$$
\begin{array}{lll}
\text { maximize } & 10 x_{\mathrm{b}}+150 \sqrt{x_{\mathrm{c}}}-20 x_{\mathrm{c}} & \\
\text { subject to } & 4 x_{\mathrm{b}}+4 x_{\mathrm{c}} \leq 45 & \text { (total raw material) } \\
5 x_{\mathrm{b}}+3 x_{\mathrm{c}} \leq 50 & \text { (time in manufacturing) } \\
4 x_{\mathrm{b}}+7 x_{\mathrm{c}} \leq 70 & \text { (time in assembly) } \\
& x_{\mathrm{b}}, x_{\mathrm{c}} \geq 0 & \text { (non-negativity) }
\end{array}
$$

\qquad
\triangleright Model (non-linear program):
Objective maximize $10 x_{\mathrm{b}}+150 \sqrt{x_{\mathrm{c}}}-20 x_{\mathrm{c}}$

C subject to	$4 x_{\mathrm{b}}+4 x_{\mathrm{c}} \leq 45$	(total raw material)
$5 x_{\mathrm{b}}+3 x_{\mathrm{c}} \leq 50$	(time in manufacturing)	
$4 x_{\mathrm{b}}+7 x_{\mathrm{c}} \leq 70$	(time in assembly)	
	$x_{\mathrm{b}}, x_{\mathrm{c}} \geq 0$	(non-negativity)
V		

$\left(\frac{\text { GPE }}{(G)}\right.$ \qquad
\triangleright Model (non-linear program):
Objective maximize $10 x_{\mathrm{b}}+150 \sqrt{x_{\mathrm{c}}}-20 x_{\mathrm{c}}$

$$
\text { subject to } \quad 4 x_{\mathrm{b}}+4 x_{\mathrm{c}} \leq 45 \quad \text { (total raw material) }
$$

$$
5 x_{\mathrm{b}}+3 x_{\mathrm{c}} \leq 50 \quad \text { (time in manufacturing) }
$$

$$
4 x_{\mathrm{b}}+7 x_{\mathrm{c}} \leq 70 \quad \text { (time in assembly) }
$$

$$
x_{\mathrm{b}}, x_{\mathrm{c}} \geq 0 \quad \text { (non-negativity) }
$$

\triangleright Optimal solution: $\left(x_{\mathrm{b}}, x_{\mathrm{c}}\right)=(5,6.25)$
\qquad

- Model (non-linear program):

Objective maximize $10 x_{\mathrm{b}}+150 \sqrt{x_{\mathrm{c}}}-20 x_{\mathrm{c}}$
c

$$
\text { subject to } \quad \begin{array}{rll}
4 x_{\mathrm{b}}+4 x_{\mathrm{c}} & \leq 45 & \text { (total raw material) } \\
5 x_{\mathrm{b}}+3 x_{\mathrm{c}} \leq 50 & \text { (time in manufacturing) } \\
4 x_{\mathrm{b}}+7 x_{\mathrm{c}} \leq 70 & \text { (time in assembly) } \\
x_{\mathrm{b}}, x_{\mathrm{c}} & \geq 0 & \text { (non-negativity) }
\end{array}
$$

\triangleright Optimal solution: $\left(x_{\mathrm{b}}, x_{\mathrm{c}}\right)=(5,6.25)$
\Rightarrow Price for one cabrio at this demand: 60000
\Rightarrow Profit for one cabrio: 40000
\qquad

$\triangleright \quad$ Linear optimization

- Linear objective and linear constraints
$\triangleright \quad$ Linear optimization
\Rightarrow Linear objective and linear constraints
\Rightarrow Sum of linear terms: $\quad \ldots+a_{i} \cdot x_{i}+\ldots$
parameter variable

E \qquad
\qquad
$\triangleright \quad$ Linear optimization
\Rightarrow Linear objective and linear constraints
\Rightarrow Sum of linear terms: $\quad \ldots+a_{i} \cdot x_{i}+\ldots$ parameter variable
$\triangleright \quad$ Non-linear optimization
\Rightarrow Non-linear objective and/or non-linear constraints

E \qquad
$\triangleright \quad$ Linear optimization
\Rightarrow Linear objective and linear constraints
\Rightarrow Sum of linear terms: $\quad \ldots+a_{i} \cdot x_{i}+\ldots$ parameter variable
$\triangleright \quad$ Non-linear optimization

- Non-linear objective and/or non-linear constraints
- Examples:

E \qquad
$\triangleright \quad$ Linear optimization
\Rightarrow Linear objective and linear constraints
\Rightarrow Sum of linear terms: $\quad \ldots+a_{i} \cdot x_{i}+\ldots$ parameter variable
$\triangleright \quad$ Non-linear optimization

- Non-linear objective and/or non-linear constraints
- Examples:
- Products of variables: $x_{i} \cdot x_{j}$

E \qquad
$\triangleright \quad$ Linear optimization
\Rightarrow Linear objective and linear constraints
\Rightarrow Sum of linear terms: $\ldots+a_{i} \cdot x_{i}+\ldots$ parameter variable
$\triangleright \quad$ Non-linear optimization

- Non-linear objective and/or non-linear constraints
- Examples:
- Products of variables: $x_{i} \cdot x_{j}$
- Squares of variables: x_{i}^{2}
$\left(\frac{\mathrm{FPE}}{(\mathrm{GPE}}\right):$ \qquad
$\triangleright \quad$ Linear optimization
\Rightarrow Linear objective and linear constraints
\Rightarrow Sum of linear terms: $\ldots+a_{i} \cdot x_{i}+\ldots$
parameter variable
$\triangleright \quad$ Non-linear optimization
\Rightarrow Non-linear objective and/or non-linear constraints
- Examples:
$\left.\begin{array}{ll}\text { - } & \text { Products of variables: } \\ \text { - } & x_{i} \cdot x_{j} \\ \text { Squares of variables: } & x_{i}^{2}\end{array}\right\}$ quadratic expressions
\triangleright Linear optimization
\Rightarrow Linear objective and linear constraints
\Rightarrow Sum of linear terms: $\ldots+a_{i} \cdot x_{i}+\ldots$
parameter variable

\triangleright Non-linear optimization

\Rightarrow Non-linear objective and/or non-linear constraints

- Examples:
- Products of variables: $\left.x_{i} \cdot x_{j},\right\}$ quadratic expressions
- Higher-order terms of variables: $x_{i} \cdot x_{j} \cdot x_{k}, x_{j}^{5} \cdot x_{j}$
\qquad
\triangleright Linear optimization
\Rightarrow Linear objective and linear constraints
\Rightarrow Sum of linear terms: $\ldots+a_{i} \cdot x_{i}+\ldots$
parameter variable
$\triangleright \quad$ Non-linear optimization
- Non-linear objective and/or non-linear constraints
- Examples:
- Products of variables: $\left.x_{i} \cdot x_{j},\right\}$ quadratic expressions
- Higher-order terms of variables: $x_{i} \cdot x_{j} \cdot x_{k}, x_{j}^{5} \cdot x_{j}$
- Absolute values or maxima/minima: $\left|x_{i}\right|, \max x_{j}$
\qquad
\triangleright Linear optimization
\Rightarrow Linear objective and linear constraints
\Rightarrow Sum of linear terms: $\quad \ldots+a_{i} \cdot x_{i}+\ldots$
parameter variable
\triangleright Non-linear optimization
- Non-linear objective and/or non-linear constraints
- Examples:
$\left.\begin{array}{ll}\text { - } & \text { Products of variables: } \\ \text { - } & x_{i} \cdot x_{j} \\ \text { Squares of variables: } & x_{i}^{2}\end{array}\right\}$ quadratic expressions
- Higher-order terms of variables: $x_{i} \cdot x_{j} \cdot x_{k}, x_{j}^{5} \cdot x_{j}$
- Absolute values or maxima/minima: $\left|x_{i}\right|, \max x_{j}$
- Terms including elementary functions: $\sin x_{i}, 2^{x_{i} \cdot x_{j}}, \frac{1}{\sqrt{x_{i}}}, \log \left(x_{i}+x_{j}^{x_{k}}\right)$

E \qquad

\triangleright Economy of scale
(GPE) \qquad
\triangleright Economy of scale
\Rightarrow Production cost per item decrease with number x_{i} of produced items

\triangleright Economy of scale

- Production cost per item decrease with number x_{i} of produced items
\Rightarrow Contribution to objective (examples):

$$
\begin{gathered}
\ldots+\sqrt{x_{i}}+\ldots \\
\ldots+\log x_{i}+\ldots
\end{gathered}
$$

\qquad
\triangleright Economy of scale

- Production cost per item decrease with number x_{i} of produced items
\Rightarrow Contribution to objective (examples):

$$
\begin{gathered}
\ldots+\sqrt{x_{i}}+\ldots \\
\ldots+\log x_{i}+\ldots
\end{gathered}
$$

\triangleright Diseconomy of scale

9 \qquad

\triangleright Economy of scale

- Production cost per item decrease with number x_{i} of produced items
\Rightarrow Contribution to objective (examples):

$$
\begin{gathered}
\ldots+\sqrt{x_{i}}+\ldots \\
\ldots+\log x_{i}+\ldots
\end{gathered}
$$

\triangleright Diseconomy of scale

\Rightarrow Production cost per item increase with number x_{i} of produced items

Economy of scale

- Production cost per item decrease with number x_{i} of produced items
\Rightarrow Contribution to objective (examples):

$$
\begin{gathered}
\ldots+\sqrt{x_{i}}+\ldots \\
\ldots+\log x_{i}+\ldots
\end{gathered}
$$

production
\triangleright Diseconomy of scale

- Production cost per item increase with number x_{i} of produced items
\Rightarrow Contribution to objective (examples):

$$
\begin{gathered}
\ldots+x_{i}^{2}+\ldots \\
\ldots+x_{i} \log x_{i}+\ldots
\end{gathered}
$$

\qquad

E
\triangleright Given: locations at specified coordinates in the plane
$\triangleright \quad$ Task: Find an optimal location for a central unit connecting every given location!

GPE \qquad
\triangleright Given: locations at specified coordinates in the plane
\triangleright Task: Find an optimal location for a central unit connecting every given location!

\qquad
\triangleright Given: locations at specified coordinates in the plane
$\triangleright \quad$ Task: Find an optimal location for a central unit connecting every given location!

V Variables: $x, y \quad \Rightarrow$ coordinates of central unit
\triangleright Given: locations at specified coordinates in the plane
\triangleright Task: Find an optimal location for a central unit connecting every given location!

Variables: $x, y \Rightarrow$ coordinates of central unit
Objective: minimize sum of connection costs to all given locations

V Variables: $x, y \Rightarrow$ coordinates of central unit

E

Variables: $x, y \Rightarrow$ coordinates of central unit
\Rightarrow Distance to A: $\sqrt{(x-8)^{2}+(y-2)^{2}}$

$\left(\frac{\mathrm{FPE}}{(\mathrm{GPE}}\right)$

Variables: $x, y \Rightarrow$ coordinates of central unit
\Rightarrow Distance to A: $\sqrt{(x-8)^{2}+(y-2)^{2}}$
\Rightarrow Cost for all connections to A: $9 \cdot \sqrt{(x-8)^{2}+(y-2)^{2}}$

\qquad

Variables: $x, y \Rightarrow$ coordinates of central unit
\Rightarrow Distance to A: $\sqrt{(x-8)^{2}+(y-2)^{2}}$
\Rightarrow Cost for all connections to A: $9 \cdot \sqrt{(x-8)^{2}+(y-2)^{2}}$

- Analogous for B, C, and D

V Variables: $x, y \quad \boldsymbol{c}$ coordinates of central unit
\Rightarrow Distance to A: $\sqrt{(x-8)^{2}+(y-2)^{2}}$
\Rightarrow Cost for all connections to $\mathbf{A}: 9 \cdot \sqrt{(x-8)^{2}+(y-2)^{2}}$
\Rightarrow Analogous for B, C, and D
\Rightarrow Objective: $\quad \min 9 \sqrt{(x-8)^{2}+(y-2)^{2}}+7 \sqrt{(x-3)^{2}+(y-10)^{2}}$

$$
+2 \sqrt{(x-8)^{2}+(y-15)^{2}}+5 \sqrt{(x-14)^{2}+(y-13)^{2}}
$$

Variables: $x, y \Rightarrow$ coordinates of central unit

$$
\text { Objective: } \quad \begin{aligned}
\quad \min \quad & 9 \sqrt{(x-8)^{2}+(y-2)^{2}}+7 \sqrt{(x-3)^{2}+(y-10)^{2}} \\
& +2 \sqrt{(x-8)^{2}+(y-15)^{2}}+5 \sqrt{(x-14)^{2}+(y-13)^{2}}
\end{aligned}
$$

v

Variables: $x, y \Rightarrow$ coordinates of central unit

$$
\text { Objective: } \quad \begin{aligned}
\quad \min \quad & 9 \sqrt{(x-8)^{2}+(y-2)^{2}}+7 \sqrt{(x-3)^{2}+(y-10)^{2}} \\
& +2 \sqrt{(x-8)^{2}+(y-15)^{2}}+5 \sqrt{(x-14)^{2}+(y-13)^{2}}
\end{aligned}
$$

C No explicit constraints!

V Variables: $x, y \Rightarrow$ coordinates of central unit

$$
\text { Objective: } \quad \begin{aligned}
\quad \min \quad & 9 \sqrt{(x-8)^{2}+(y-2)^{2}}+7 \sqrt{(x-3)^{2}+(y-10)^{2}} \\
& +2 \sqrt{(x-8)^{2}+(y-15)^{2}}+5 \sqrt{(x-14)^{2}+(y-13)^{2}}
\end{aligned}
$$

C No explicit constraints!
\Rightarrow Optimal solution: $(x, y)=(6.25,7.47) \quad$ (unique!)

Variables: $x, y \Rightarrow$ coordinates of central unit

$$
\text { Objective: } \quad \begin{aligned}
\quad \min \quad & 9 \sqrt{(x-8)^{2}+(y-2)^{2}}+7 \sqrt{(x-3)^{2}+(y-10)^{2}} \\
& +2 \sqrt{(x-8)^{2}+(y-15)^{2}}+5 \sqrt{(x-14)^{2}+(y-13)^{2}}
\end{aligned}
$$

C Constraints

Variables: $x, y \Rightarrow$ coordinates of central unit

$$
\text { Objective: } \quad \begin{aligned}
\quad \min \quad & 9 \sqrt{(x-8)^{2}+(y-2)^{2}}+7 \sqrt{(x-3)^{2}+(y-10)^{2}} \\
& +2 \sqrt{(x-8)^{2}+(y-15)^{2}}+5 \sqrt{(x-14)^{2}+(y-13)^{2}}
\end{aligned}
$$

C Constraints: $x \geq 4, \quad y \geq 5, \quad y \leq 11, \quad x+y \leq 18$

Variables: $x, y \Rightarrow$ coordinates of central unit
Objective: $\quad \min 9 \sqrt{(x-8)^{2}+(y-2)^{2}}+7 \sqrt{(x-3)^{2}+(y-10)^{2}}$

$$
+2 \sqrt{(x-8)^{2}+(y-15)^{2}}+5 \sqrt{(x-14)^{2}+(y-13)^{2}}
$$

C Constraints: $x \geq 4, \quad y \geq 5, \quad y \leq 11, \quad x+y \leq 18$
\Rightarrow Optimal solution: $(x, y)=(6.25,7.47) \quad$ (same as before!)

\triangleright A non-linear optimization model...

GPE \qquad
\triangleright A non-linear optimization model...

- ...might have no optimal solutions in vertices of the feasible region
\triangleright A non-linear optimization model...
- ...might have no optimal solutions in vertices of the feasible region
- ...might have a feasible region without any vertices at all
\triangleright A non-linear optimization model...
- ...might have no optimal solutions in vertices of the feasible region
- ...might have a feasible region without any vertices at all
- ...might have optimal solutions only in the interior of the feasible region
\triangleright A non-linear optimization model...
- ...might have no optimal solutions in vertices of the feasible region
- ...might have a feasible region without any vertices at all
- ...might have optimal solutions only in the interior of the feasible region
- ...might have different optimal solutions spread over the whole feasible region
$\left(\frac{17}{(G P E)}\right)$
\triangleright A non-linear optimization model...
- ...might have no optimal solutions in vertices of the feasible region
- ...might have a feasible region without any vertices at all
- ...might have optimal solutions only in the interior of the feasible region
- ...might have different optimal solutions spread over the whole feasible region
- ...might have (even unique) optimal solutions without any constraints
\qquad
\qquad
- A non-linear optimization model...
- ...might have no optimal solutions in vertices of the feasible region
- ...might have a feasible region without any vertices at all
- ...might have optimal solutions only in the interior of the feasible region
- ...might have different optimal solutions spread over the whole feasible region
- ...might have (even unique) optimal solutions without any constraints
- ...might be unbounded, even if the feasible region is bounded
- A non-linear optimization model...
- ...might have no optimal solutions in vertices of the feasible region
- ...might have a feasible region without any vertices at all
- ...might have optimal solutions only in the interior of the feasible region
- ...might have different optimal solutions spread over the whole feasible region
- ...might have (even unique) optimal solutions without any constraints
- ...might be unbounded, even if the feasible region is bounded
\triangle All of this cannot happen with linear optimization models
\qquad
- A non-linear optimization model...
- ...might have no optimal solutions in vertices of the feasible region
- ...might have a feasible region without any vertices at all
- ...might have optimal solutions only in the interior of the feasible region
- ...might have different optimal solutions spread over the whole feasible region
- ...might have (even unique) optimal solutions without any constraints
- ...might be unbounded, even if the feasible region is bounded
\triangleright All of this cannot happen with linear optimization models
\Rightarrow How to find an optimal solution...?
- Linear models
- Linear models
- Linear objective
\Rightarrow Level sets are straight lines (in higher dimension: hyperplanes)
- Linear constraints
\Rightarrow Feasible region is a polygon (in higher dimension: polyhedron)
- Linear models
- Linear objective
\Rightarrow Level sets are straight lines (in higher dimension: hyperplanes)
- Linear constraints
\Rightarrow Feasible region is a polygon
 (in higher dimension: polyhedron)
- Linear models
- Linear objective
\Rightarrow Level sets are straight lines (in higher dimension: hyperplanes)
- Linear constraints
\Rightarrow Feasible region is a polygon
 (in higher dimension: polyhedron)
- Linear models
- Linear objective
\Rightarrow Level sets are straight lines (in higher dimension: hyperplanes)
- Linear constraints
\Rightarrow Feasible region is a polygon (in higher dimension: polyhedron)

- Linear models
- Linear objective
\Rightarrow Level sets are straight lines (in higher dimension: hyperplanes)
- Linear constraints
\Rightarrow Feasible region is a polygon (in higher dimension: polyhedron)

Non-linear models

- Non-linear objective
\Rightarrow Level sets can be complicated curves
- Non-linear constraints
\Rightarrow Feasible region can be complicated

\Rightarrow Optimal solutions can always be found in vertices

$\triangleright \quad$ Linear models
- Linear objective
\Rightarrow Level sets are straight lines (in higher dimension: hyperplanes)
- Linear constraints
\Rightarrow Feasible region is a polygon (in higher dimension: polyhedron)
\triangleright Non-linear models
- Non-linear objective
- Level sets can be complicated curves
- Non-linear constraints
\Rightarrow Feasible region can be complicated

- Optimal solutions can always be found in vertices

- Non-linear model:

$$
\begin{aligned}
\max & \sqrt{(x-4)^{2}+(y-4)^{2}} \\
\text { s.t. } \quad x & \geq 2 \\
x & \leq 5 \\
-x+y & \leq 2 \\
x+y & \leq 10 \\
x-3 y & \leq-4
\end{aligned}
$$

\triangleright Non-linear model:

$$
\begin{aligned}
\max & \sqrt{(x-4)^{2}+(y-4)^{2}} \\
\text { s.t. } \quad x & \geq 2 \\
x & \leq 5 \\
-x+y & \leq 2 \\
x+y & \leq 10 \\
x-3 y & \leq-4
\end{aligned}
$$

\triangleright Non-linear model:

$$
\begin{aligned}
\max & \sqrt{(x-4)^{2}+(y-4)^{2}} \\
\text { s.t. } \quad x & \geq 2 \\
x & \leq 5 \\
-x+y & \leq 2 \\
x+y & \leq 10 \\
x-3 y & \leq-4
\end{aligned}
$$

\triangleright Non-linear model:

$$
\begin{aligned}
\max & \sqrt{(x-4)^{2}+(y-4)^{2}} \\
\text { s.t. } \quad x & \geq 2 \\
x & \leq 5 \\
-x+y & \leq 2 \\
x+y & \leq 10 \\
x-3 y & \leq-4
\end{aligned}
$$

\triangleright Non-linear model:

$$
\begin{aligned}
\max & \sqrt{(x-4)^{2}+(y-4)^{2}} \\
\text { s.t. } \quad x & \geq 2 \\
x & \leq 5 \\
-x+y & \leq 2 \\
x+y & \leq 10 \\
x-3 y & \leq-4
\end{aligned}
$$

\triangleright Non-linear model:

$$
\begin{aligned}
\max & \sqrt{(x-4)^{2}+(y-4)^{2}} \\
\text { s.t. } \quad x & \geq 2 \\
x & \leq 5 \\
-x+y & \leq 2 \\
x+y & \leq 10 \\
x-3 y & \leq-4
\end{aligned}
$$

A feasible solution is called locally optimal if there is no nearby feasible solution with a better objective function value
\triangleright Non-linear model:

$$
\begin{aligned}
\max & \sqrt{(x-4)^{2}+(y-4)^{2}} \\
\text { s.t. } \quad x & \geq 2 \\
x & \leq 5 \\
-x+y & \leq 2 \\
x+y & \leq 10 \\
x-3 y & \leq-4
\end{aligned}
$$

A feasible solution is called locally optimal if there is no nearby feasible solution with a better objective function value
\triangleright Non-linear model:

$$
\begin{aligned}
\max & \sqrt{(x-4)^{2}+(y-4)^{2}} \\
\text { s.t. } \quad x & \geq 2 \\
x & \leq 5 \\
-x+y & \leq 2 \\
x+y & \leq 10 \\
x-3 y & \leq-4
\end{aligned}
$$

A feasible solution is called locally optimal if there is no nearby feasible solution with a better objective function value
\qquad
\triangleright Non-linear model:

$$
\begin{aligned}
\max & \sqrt{(x-4)^{2}+(y-4)^{2}} \\
\text { s.t. } \quad x & \geq 2 \\
x & \leq 5 \\
-x+y & \leq 2 \\
x+y & \leq 10 \\
x-3 y & \leq-4
\end{aligned}
$$

A feasible solution is called locally optimal if there is no nearby feasible solution with a better objective function value

A feasible solution is called globally optimal if there is no feasible solution at all with a better objective function value
$\triangleright \quad$ In general:

- Every global optimum is also a local optimum
\qquad
\qquad
\triangleright In general:
- Every global optimum is also a local optimum
- Not every local optimum is a global optimum!

GPE \qquad
\qquad
\triangleright In general:

- Every global optimum is also a local optimum
- Not every local optimum is a global optimum!
- Finding a local optimum is not enough for solving the problem!
$\triangleright \quad$ In general:
- Every global optimum is also a local optimum
- Not every local optimum is a global optimum!
- Finding a local optimum is not enough for solving the problem!
\triangleright In linear programming models:
(GPE) \qquad
\qquad
$\triangleright \quad$ In general:
- Every global optimum is also a local optimum
- Not every local optimum is a global optimum!
- Finding a local optimum is not enough for solving the problem!
\triangleright In linear programming models:
- Every local optimum is automatically global!

E \qquad
\qquad
$\triangleright \quad$ In general:

- Every global optimum is also a local optimum
- Not every local optimum is a global optimum!
- Finding a local optimum is not enough for solving the problem!
\triangleright In linear programming models:
- Every local optimum is automatically global!
- The simplex algorithm finds a local optimum
$\left(\frac{17}{(G P E)}\right)$ \qquad
\qquad
$\triangleright \quad$ In general:
- Every global optimum is also a local optimum
- Not every local optimum is a global optimum!
- Finding a local optimum is not enough for solving the problem!
\triangleright In linear programming models:
- Every local optimum is automatically global!
- The simplex algorithm finds a local optimum
\Rightarrow Linear problems can always be solved by the simplex algorithm
\qquad
\qquad
- In general:
- Every global optimum is also a local optimum
- Not every local optimum is a global optimum!
\Rightarrow Finding a local optimum is not enough for solving the problem!
\triangleright In linear programming models:
- Every local optimum is automatically global!
- The simplex algorithm finds a local optimum
\Rightarrow Linear problems can always be solved by the simplex algorithm
\triangleright Possible strategy for solving a non-linear optimization problem:
\qquad
- In general:
- Every global optimum is also a local optimum
- Not every local optimum is a global optimum!
\Rightarrow Finding a local optimum is not enough for solving the problem!
\triangleright In linear programming models:
- Every local optimum is automatically global!
- The simplex algorithm finds a local optimum
\Rightarrow Linear problems can always be solved by the simplex algorithm
\triangleright Possible strategy for solving a non-linear optimization problem:
- Search for a local optimum...
\qquad
- In general:
- Every global optimum is also a local optimum
- Not every local optimum is a global optimum!
\Rightarrow Finding a local optimum is not enough for solving the problem!
\triangleright In linear programming models:
- Every local optimum is automatically global!
- The simplex algorithm finds a local optimum
\Rightarrow Linear problems can always be solved by the simplex algorithm
\triangleright Possible strategy for solving a non-linear optimization problem:
- Search for a local optimum...
- ...and hope that it's global!
\qquad
- In general:
- Every global optimum is also a local optimum
- Not every local optimum is a global optimum!
\Rightarrow Finding a local optimum is not enough for solving the problem!
\triangleright In linear programming models:
- Every local optimum is automatically global!
- The simplex algorithm finds a local optimum
\Rightarrow Linear problems can always be solved by the simplex algorithm
\triangleright Possible strategy for solving a non-linear optimization problem:
- Search for a local optimum...
- ...and hope that it's global! (Usually it's not...)
\qquad
$\triangleright \quad$ Non-linear optimization is like mountain-climbing in the fog

\triangleright Non-linear optimization is like mountain-climbing in the fog

\triangleright How do you know that you're on the highest mountain if you can't see the other peaks?
\triangleright Basic principle of interior point methods for finding a local maximum:
\triangleright Basic principle of interior point methods for finding a local maximum:
- Find a point somewhere in the feasible region

GPE \qquad
\qquad
\triangleright Basic principle of interior point methods for finding a local maximum:

- Find a point somewhere in the feasible region
- Follow steps in direction of increasing objective until a local maximum is reached

GPE \qquad
\qquad
\triangleright Basic principle of interior point methods for finding a local maximum:

- Find a point somewhere in the feasible region
- Follow steps in direction of increasing objective until a local maximum is reached
\triangleright Problem: only finds a local maximum!
\qquad
\qquad
\triangleright Basic principle of interior point methods for finding a local maximum:
- Find a point somewhere in the feasible region
- Follow steps in direction of increasing objective until a local maximum is reached
\triangleright Problem: only finds a local maximum!
\Rightarrow Heuristic strategies to overcome this:
- Allow for steps in direction of decreasing objective from time to time
\qquad
\qquad
\triangleright Basic principle of interior point methods for finding a local maximum:
- Find a point somewhere in the feasible region
- Follow steps in direction of increasing objective until a local maximum is reached
\triangleright Problem: only finds a local maximum!
\Rightarrow Heuristic strategies to overcome this:
- Allow for steps in direction of decreasing objective from time to time
- Restart from a different starting point
\qquad
\qquad
\triangleright Basic principle of interior point methods for finding a local maximum:
- Find a point somewhere in the feasible region
- Follow steps in direction of increasing objective until a local maximum is reached
\triangleright Problem: only finds a local maximum!
\Rightarrow Heuristic strategies to overcome this:
- Allow for steps in direction of decreasing objective from time to time
- Restart from a different starting point
\triangleright Examples:
- Simulated annealing, Tabu search, Genetic algorithms, Ant colony simulation
\qquad
\qquad
\triangleright Basic principle of interior point methods for finding a local maximum:
- Find a point somewhere in the feasible region
- Follow steps in direction of increasing objective until a local maximum is reached
\triangleright Problem: only finds a local maximum!
\Rightarrow Heuristic strategies to overcome this:
- Allow for steps in direction of decreasing objective from time to time
- Restart from a different starting point
\triangleright Examples:
- Simulated annealing, Tabu search, Genetic algorithms, Ant colony simulation
\triangleright Big disadvantage: no optimality information (as gaps in branch \& bound)!
\Rightarrow You have to rely on luck to get an optimal solution...

\triangleright Feasible region: $R=\left\{\left(x_{\mathrm{b}}, x_{\mathrm{c}}\right) \mid 4 x_{\mathrm{b}}+4 x_{\mathrm{c}} \leq 45\right.$

$$
\begin{aligned}
& 5 x_{\mathrm{b}}+3 x_{\mathrm{c}} \leq 50 \\
& 4 x_{\mathrm{b}}+7 x_{\mathrm{c}} \leq 70 \\
& \left.x_{\mathrm{b}}, x_{\mathrm{c}} \geq 0\right\}
\end{aligned}
$$

\triangleright Feasible region: $R=\left\{\left(x_{\mathrm{b}}, x_{\mathrm{c}}\right) \mid 4 x_{\mathrm{b}}+4 x_{\mathrm{c}} \leq 45\right.$

$$
\begin{aligned}
& 5 x_{\mathrm{b}}+3 x_{\mathrm{c}} \leq 50 \\
& 4 x_{\mathrm{b}}+7 x_{\mathrm{c}} \leq 70 \\
& \left.x_{\mathrm{b}}, x_{\mathrm{c}} \geq 0\right\}
\end{aligned}
$$

\Rightarrow is convex

\triangleright Feasible region: $R=\left\{\left(x_{\mathrm{b}}, x_{\mathrm{c}}\right) \mid 4 x_{\mathrm{b}}+4 x_{\mathrm{c}} \leq 45\right.$

$$
\begin{aligned}
& 5 x_{\mathrm{b}}+3 x_{\mathrm{c}} \leq 50 \\
& 4 x_{\mathrm{b}}+7 x_{\mathrm{c}} \leq 70 \\
& \left.x_{\mathrm{b}}, x_{\mathrm{c}} \geq 0\right\}
\end{aligned}
$$

\Rightarrow is convex
i.e. every straight line between two points in R also lies completely in R

\qquad
\triangleright Feasible region: $R=\left\{\left(x_{\mathrm{b}}, x_{\mathrm{c}}\right) \mid 4 x_{\mathrm{b}}+4 x_{\mathrm{c}} \leq 45\right.$

$$
\begin{aligned}
& 5 x_{\mathrm{b}}+3 x_{\mathrm{c}} \leq 50 \\
& 4 x_{\mathrm{b}}+7 x_{\mathrm{c}} \leq 70 \\
& \left.x_{\mathrm{b}}, x_{\mathrm{c}} \geq 0\right\}
\end{aligned}
$$

\Rightarrow is convex
i.e. every straight line between two points in R also lies completely in R

\qquad
\triangleright Feasible region: $R=\left\{\left(x_{\mathrm{b}}, x_{\mathrm{c}}\right) \mid 4 x_{\mathrm{b}}+4 x_{\mathrm{c}} \leq 45\right.$

$$
\begin{aligned}
& 5 x_{\mathrm{b}}+3 x_{\mathrm{c}} \leq 50 \\
& 4 x_{\mathrm{b}}+7 x_{\mathrm{c}} \leq 70 \\
& \left.x_{\mathrm{b}}, x_{\mathrm{c}} \geq 0\right\}
\end{aligned}
$$

\Rightarrow is convex
i.e. every straight line between two points in R also lies completely in R

\qquad
\triangleright Feasible region: $R=\left\{\left(x_{\mathrm{b}}, x_{\mathrm{c}}\right) \mid 4 x_{\mathrm{b}}+4 x_{\mathrm{c}} \leq 45\right.$

$$
\begin{aligned}
& 5 x_{\mathrm{b}}+3 x_{\mathrm{c}} \leq 50 \\
& 4 x_{\mathrm{b}}+7 x_{\mathrm{c}} \leq 70 \\
& \left.x_{\mathrm{b}}, x_{\mathrm{c}} \geq 0\right\}
\end{aligned}
$$

\Rightarrow is convex
i.e. every straight line between two points in R also lies completely in R

$$
\lambda p+(1-\lambda) q \in R \quad \text { for all } p, q \in R \text { and } 0 \leq \lambda \leq 1
$$

\qquad
\triangleright Feasible region: $R=\left\{\left(x_{\mathrm{b}}, x_{\mathrm{c}}\right) \mid 4 x_{\mathrm{b}}+4 x_{\mathrm{c}} \leq 45\right.$

$$
\begin{aligned}
& 5 x_{\mathrm{b}}+3 x_{\mathrm{c}} \leq 50 \\
& 4 x_{\mathrm{b}}+7 x_{\mathrm{c}} \leq 70 \\
& \left.x_{\mathrm{b}}, x_{\mathrm{c}} \geq 0\right\}
\end{aligned}
$$

\Rightarrow is convex
i.e. every straight line between two points in R also lies completely in R

$$
\lambda p+(1-\lambda) q \in R \quad \text { for all } p, q \in R \text { and } 0 \leq \lambda \leq 1
$$

\qquad
\triangleright Feasible region: $R=\left\{\left(x_{\mathrm{b}}, x_{\mathrm{c}}\right) \mid 4 x_{\mathrm{b}}+4 x_{\mathrm{c}} \leq 45\right.$

$$
\begin{aligned}
& 5 x_{\mathrm{b}}+3 x_{\mathrm{c}} \leq 50 \\
& 4 x_{\mathrm{b}}+7 x_{\mathrm{c}} \leq 70 \\
& \left.x_{\mathrm{b}}, x_{\mathrm{c}} \geq 0\right\}
\end{aligned}
$$

\Rightarrow is convex
i.e. every straight line between two points in R also lies completely in R

$$
\lambda p+(1-\lambda) q \in R \quad \text { for all } p, q \in R \text { and } 0 \leq \lambda \leq 1
$$

\qquad
\triangleright Feasible region: $R=\left\{\left(x_{\mathrm{b}}, x_{\mathrm{c}}\right) \mid 4 x_{\mathrm{b}}+4 x_{\mathrm{c}} \leq 45\right.$

$$
\begin{aligned}
& 5 x_{\mathrm{b}}+3 x_{\mathrm{c}} \leq 50 \\
& 4 x_{\mathrm{b}}+7 x_{\mathrm{c}} \leq 70 \\
& \left.x_{\mathrm{b}}, x_{\mathrm{c}} \geq 0\right\}
\end{aligned}
$$

\Rightarrow is convex
i.e. every straight line between two points in R also lies completely in R

$$
\lambda p+(1-\lambda) q \in R \quad \text { for all } p, q \in R \text { and } 0 \leq \lambda \leq 1
$$

not convex!
\qquad
\triangleright Objective function: $f\left(x_{\mathrm{b}}, x_{\mathrm{c}}\right)=x_{\mathrm{b}}+15 \sqrt{x_{\mathrm{c}}}-2 x_{\mathrm{c}}$

TVID
\triangleright Objective function: $f\left(x_{\mathrm{b}}, x_{\mathrm{c}}\right)=x_{\mathrm{b}}+15 \sqrt{x_{\mathrm{c}}}-2 x_{\mathrm{c}}$

TVID
\triangleright Objective function: $f\left(x_{\mathrm{b}}, x_{\mathrm{c}}\right)=x_{\mathrm{b}}+15 \sqrt{x_{\mathrm{c}}}-2 x_{\mathrm{c}}$

7 1 [D
\triangleright Objective function: $f\left(x_{\mathrm{b}}, x_{\mathrm{c}}\right)=x_{\mathrm{b}}+15 \sqrt{x_{\mathrm{c}}}-2 x_{\mathrm{c}}$

$\triangleright \quad f$ is concave
i.e. every straight line between two points on the surface lies beneath the surface
\triangleright Objective function: $f\left(x_{\mathrm{b}}, x_{\mathrm{c}}\right)=x_{\mathrm{b}}+15 \sqrt{x_{\mathrm{c}}}-2 x_{\mathrm{c}}$

$\triangleright \quad f$ is concave
i.e. every straight line between two points on the surface lies beneath the surface

```
A function f:R->\mathbb{R}\mathrm{ is called concave if}
f(\lambdap+(1-\lambda)q)\geq\lambdaf(p)+(1-\lambda)f(q) for all }p,q\inR\mathrm{ and 0}\leq\lambda\leq1
```

- An optimization problem is called concave if
\qquad
\qquad
\triangleright An optimization problem is called concave if
- the objective function is a concave function

GPE \qquad
\qquad
\triangleright An optimization problem is called concave if

- the objective function is a concave function
- the optimization sense is to maximize

E \qquad
\qquad
\triangleright An optimization problem is called concave if

- the objective function is a concave function
- the optimization sense is to maximize
- the feasible region is a convex set

E \qquad
\triangleright An optimization problem is called concave if

- the objective function is a concave function
- the optimization sense is to maximize
- the feasible region is a convex set, i.e.

E \qquad
\triangleright An optimization problem is called concave if

- the objective function is a concave function
- the optimization sense is to maximize
- the feasible region is a convex set, i.e.
- the left-hand side of every $=$ constraint is a linear function
- the left-hand side of every \leq constraint is a convex function
- the left-hand side of every \geq constraint is a concave function
\triangleright An optimization problem is called concave if
- the objective function is a concave function
- the optimization sense is to maximize
- the feasible region is a convex set, i.e.
- the left-hand side of every $=$ constraint is a linear function
- the left-hand side of every \leq constraint is a convex function
- the left-hand side of every \geq constraint is a concave function

For concave optimization problems every local optimum is automatically a global optimum
\triangleright An optimization problem is called concave if

- the objective function is a concave function
- the optimization sense is to maximize
- the feasible region is a convex set, i.e.
- the left-hand side of every $=$ constraint is a linear function
- the left-hand side of every \leq constraint is a convex function
- the left-hand side of every \geq constraint is a concave function

For concave optimization problems every local optimum is automatically a global optimum

\triangleright Objective function: $f(x, y)=\sqrt{(x-4)^{2}+(y-4)^{2}}$

7 4 [速
\triangleright Objective function: $f(x, y)=\sqrt{(x-4)^{2}+(y-4)^{2}}$

7 711 B
\triangleright Objective function: $f(x, y)=\sqrt{(x-4)^{2}+(y-4)^{2}}$

$\triangleright \quad f$ is convex

TVID
\triangleright Objective function: $f(x, y)=\sqrt{(x-4)^{2}+(y-4)^{2}}$

$\triangleright \quad f$ is convex
i.e. every straight line between two points on the surface lies above the surface
\triangleright Objective function: $f(x, y)=\sqrt{(x-4)^{2}+(y-4)^{2}}$

$\triangleright \quad f$ is convex
i.e. every straight line between two points on the surface lies above the surface

```
A function f:R->\mathbb{R}\mathrm{ is called convex if}
f(\lambdap+(1-\lambda)q)\leq\lambdaf(p)+(1-\lambda)f(q) for all }p,q\inR\mathrm{ and 0}\leq\lambda\leq1
```

\triangleright An optimization problem is called convex if
$\left(\frac{\mathrm{FPE}}{(\mathrm{GPE}}\right)$ \qquad
\qquad
\triangleright An optimization problem is called convex if

- the objective function is a convex function

E \qquad
\qquad
\triangleright An optimization problem is called convex if

- the objective function is a convex function
- the optimization sense is to minimize

E \qquad
\qquad
\triangleright An optimization problem is called convex if

- the objective function is a convex function
- the optimization sense is to minimize
- the feasible region is a convex set, i.e.
- the left-hand side of every $=$ constraint is a linear function
- the left-hand side of every \leq constraint is a convex function
- the left-hand side of every \geq constraint is a concave function
\triangleright An optimization problem is called convex if
- the objective function is a convex function
- the optimization sense is to minimize
- the feasible region is a convex set, i.e.
- the left-hand side of every $=$ constraint is a linear function
- the left-hand side of every \leq constraint is a convex function
- the left-hand side of every \geq constraint is a concave function

For convex optimization problems
every local optimum is automatically
a global optimum
\triangleright An optimization problem is called convex if

- the objective function is a convex function
- the optimization sense is to minimize
- the feasible region is a convex set, i.e.
- the left-hand side of every $=$ constraint is a linear function
- the left-hand side of every \leq constraint is a convex function
- the left-hand side of every \geq constraint is a concave function

For convex optimization problems every local optimum is automatically a global optimum

$$
\begin{aligned}
\max & \sqrt{(x-4)^{2}+(y-4)^{2}} \\
\text { s.t. } \quad x & \geq 2 \\
x & \leq 5 \\
-x+y & \leq 2 \\
x+y & \leq 10 \\
x-3 y & \leq-4
\end{aligned}
$$

$$
\begin{aligned}
\max & \sqrt{(x-4)^{2}+(y-4)^{2}} \\
\text { s.t. } \quad x & \geq 2 \\
x & \leq 5 \\
-x+y & \leq 2 \\
x+y & \leq 10 \\
x-3 y & \leq-4
\end{aligned}
$$

- Convex feasible region

$$
\begin{aligned}
\max & \sqrt{(x-4)^{2}+(y-4)^{2}} \\
\text { s.t. } \quad x & \geq 2 \\
x & \leq 5 \\
-x+y & \leq 2 \\
x+y & \leq 10 \\
x-3 y & \leq-4
\end{aligned}
$$

\triangleright Convex feasible region

- Convex objective function
\qquad

$$
\begin{aligned}
\max & \sqrt{(x-4)^{2}+(y-4)^{2}} \\
\text { s.t. } \quad x & \geq 2 \\
x & \leq 5 \\
-x+y & \leq 2 \\
x+y & \leq 10 \\
x-3 y & \leq-4
\end{aligned}
$$

\triangleright Convex feasible region

- Convex objective function
- Maximization problem
\triangleright Linear objective function: $\quad f(x, y)=2 x+3 y$

$\left(\frac{\mathrm{FPE}}{(\mathrm{GPE}}\right):$
$76 \sqrt{8}$
\triangleright Linear objective function: $\quad f(x, y)=2 x+3 y$

$\triangleright \quad f$ is both concave and convex
$\left(\frac{17}{(G P E)}\right)$
\triangleright Linear objective function: $\quad f(x, y)=2 x+3 y$

- $\quad f$ is both concave and convex
\Rightarrow optimization sense doesn't matter
\triangleright Linear objective function: $\quad f(x, y)=2 x+3 y$

$\triangleright \quad f$ is both concave and convex
\Rightarrow optimization sense doesn't matter
\triangleright Linear constraints \Rightarrow feasible region is always convex
\triangleright Linear objective function: $\quad f(x, y)=2 x+3 y$

- $\quad f$ is both concave and convex
\Rightarrow optimization sense doesn't matter
\triangleright Linear constraints \Rightarrow feasible region is always convex
- For linear programming local optima are always automatically global
\qquad
\triangleright Some special cases of non-linear models can be transformed directly into linear models

GPE \qquad
\qquad
\triangleright Some special cases of non-linear models can be transformed directly into linear models
\triangleright Linear constraints and objective function to minimize is piecewise linear and convex
\qquad
\qquad
\triangleright Some special cases of non-linear models can be transformed directly into linear models
\triangleright Linear constraints and objective function to minimize is piecewise linear and convex
\Rightarrow Non-linear: \quad minimize $\max _{k=1, \ldots, \ell} f_{k}\left(x_{1}, \ldots, x_{n}\right) \quad\left(f_{k}\right.$ are all linear $)$

$$
\text { subject to } \quad \sum_{i=1}^{n} a_{j i} x_{i} \leq b_{j} \quad \forall j
$$

\qquad
\qquad
\triangleright Some special cases of non-linear models can be transformed directly into linear models
\triangleright Linear constraints and objective function to minimize is piecewise linear and convex
= Non-linear: minimize $\max _{k=1, \ldots, \ell} f_{k}\left(x_{1}, \ldots, x_{n}\right) \quad\left(f_{k}\right.$ are all linear $)$

$$
\text { subject to } \quad \sum_{i=1}^{n} a_{j i} x_{i} \leq b_{j} \quad \forall j
$$

\Rightarrow Rewrite as: minimize z

$$
\begin{array}{ll}
\text { subject to } & f_{k}\left(x_{1}, \ldots, x_{n}\right) \leq z \quad(1 \leq k \leq \ell) \\
& \sum_{i=1}^{n} a_{j i} x_{i} \leq b_{j} \quad \forall j
\end{array}
$$

\triangleright Some special cases of non-linear models can be transformed directly into linear models
\triangleright Linear constraints and objective function to minimize is piecewise linear and convex
= Non-linear: minimize $\max _{k=1, \ldots, \ell} f_{k}\left(x_{1}, \ldots, x_{n}\right) \quad\left(f_{k}\right.$ are all linear $)$

$$
\text { subject to } \quad \sum_{i=1}^{n} a_{j i} x_{i} \leq b_{j} \quad \forall j
$$

- Rewrite as: minimize z

$$
\begin{array}{ll}
\text { subject to } & f_{k}\left(x_{1}, \ldots, x_{n}\right)-z \leq 0 \quad(1 \leq k \leq \ell) \\
& \sum_{i=1}^{n} a_{j i} x_{i} \leq b_{j} \quad \forall j
\end{array}
$$

\triangleright Some special cases of non-linear models can be transformed directly into linear models
\triangleright Linear constraints and objective function to minimize is piecewise linear and convex
\Rightarrow Non-linear: \quad minimize $\max _{k=1, \ldots, \ell} f_{k}\left(x_{1}, \ldots, x_{n}\right) \quad\left(f_{k}\right.$ are all linear $)$

$$
\text { subject to } \quad \sum_{i=1}^{n} a_{j i} x_{i} \leq b_{j} \quad \forall j
$$

\Rightarrow Rewrite as: minimize z

$$
\begin{array}{ll}
\text { subject to } & f_{k}\left(x_{1}, \ldots, x_{n}\right)-z \leq 0 \quad(1 \leq k \leq \ell) \\
& \sum_{i=1}^{n} a_{j i} x_{i} \leq b_{j} \quad \forall j
\end{array}
$$

\triangleright Linear constraints and objective function to minimize is convex of the form

$$
\sum_{i=1}^{n} c_{i}\left|x_{i}\right| \quad \text { with all } c_{i} \geq 0
$$

\qquad
\triangleright Some special cases of non-linear models can be transformed directly into linear models
\triangleright Linear constraints and objective function to minimize is piecewise linear and convex
\Rightarrow Non-linear: \quad minimize $\max _{k=1, \ldots, \ell} f_{k}\left(x_{1}, \ldots, x_{n}\right) \quad\left(f_{k}\right.$ are all linear $)$

$$
\text { subject to } \quad \sum_{i=1}^{n} a_{j i} x_{i} \leq b_{j} \quad \forall j
$$

\Rightarrow Rewrite as: minimize z

$$
\begin{array}{ll}
\text { subject to } & f_{k}\left(x_{1}, \ldots, x_{n}\right)-z \leq 0 \quad(1 \leq k \leq \ell) \\
& \sum_{i=1}^{n} a_{j i} x_{i} \leq b_{j} \quad \forall j
\end{array}
$$

\triangleright Linear constraints and objective function to minimize is convex of the form

$$
\sum_{i=1}^{n} c_{i}\left|x_{i}\right| \quad \text { with all } c_{i} \geq 0
$$

\Rightarrow Can be similarly rewritten into linear constraints
\triangleright Task: given a set of data points, find a line that "fits best" into the point set!
\qquad
\qquad
\triangleright Task: given a set of data points, find a line that "fits best" into the point set!

\mathbf{x}	\mathbf{y}
3	2
5	0.5
8	5
9	7
13	7.5
16	10

\triangleright Task: given a set of data points, find a line that "fits best" into the point set!

\mathbf{x}	\mathbf{y}
3	2
5	0.5
8	5
9	7
13	7.5
16	10

\triangleright Task: given a set of data points, find a line that "fits best" into the point set!

\mathbf{x}	\mathbf{y}
3	2
5	0.5
8	5
9	7
13	7.5
16	10

\triangleright Task: given a set of data points, find a line that "fits best" into the point set!

\mathbf{x}	\mathbf{y}
3	2
5	0.5
8	5
9	7
13	7.5
16	10

\Rightarrow Minimize the largest occuring vertical distance between the wanted line and the data points!
\qquad
\triangleright Minimize the largest occuring vertical distance between the wanted line $y=a \cdot x+b$ and the given data points $\left(x_{i}, y_{i}\right)$
\qquad
\qquad
\triangleright Minimize the largest occuring vertical distance between the wanted line $y=a \cdot x+b$ and the given data points $\left(x_{i}, y_{i}\right)$

V Variables: $a, b \in \mathbb{R}$

E \qquad
\qquad
$7 \angle \sqrt{8}$
\triangleright Minimize the largest occuring vertical distance between the wanted line $y=a \cdot x+b$ and the given data points $\left(x_{i}, y_{i}\right)$

V Variables: $a, b \in \mathbb{R}$
\Rightarrow Vertical distance between line and the i-th data point: $\left|a x_{i}+b-y_{i}\right|$

E \qquad ..
\triangleright Minimize the largest occuring vertical distance between the wanted line $y=a \cdot x+b$ and the given data points $\left(x_{i}, y_{i}\right)$

Variables: $a, b \in \mathbb{R}$
\Rightarrow Vertical distance between line and the i-th data point: $\left|a x_{i}+b-y_{i}\right|$
\Rightarrow Objective: minimize $\max _{i=1, \ldots, n}\left|a x_{i}+b-y_{i}\right|$
(GPE) \qquad
\qquad
\triangleright Minimize the largest occuring vertical distance between the wanted line $y=a \cdot x+b$ and the given data points $\left(x_{i}, y_{i}\right)$

Variables: $a, b \in \mathbb{R}$
\Rightarrow Vertical distance between line and the i-th data point: $\left|a x_{i}+b-y_{i}\right|$
\Rightarrow Objective: minimize $\max _{i=1, \ldots, n}\left|a x_{i}+b-y_{i}\right|$
C no constraints
$\left(\frac{17}{(G P E)}\right)$ \qquad
\qquad
\triangleright Minimize the largest occuring vertical distance between the wanted line $y=a \cdot x+b$ and the given data points $\left(x_{i}, y_{i}\right)$

Variables: $a, b \in \mathbb{R}$
\Rightarrow Vertical distance between line and the i-th data point: $\left|a x_{i}+b-y_{i}\right|$
\Rightarrow Objective: minimize $\max _{i=1, \ldots, n}\left|a x_{i}+b-y_{i}\right|$ non-linear!
C no constraints
\triangleright Minimize the largest occuring vertical distance between the wanted line $y=a \cdot x+b$ and the given data points $\left(x_{i}, y_{i}\right)$

Variables: $a, b \in \mathbb{R}$
\Rightarrow Vertical distance between line and the i-th data point: $\left|a x_{i}+b-y_{i}\right|$
\Rightarrow Objective: minimize $\max _{i=1, \ldots, n}\left|a x_{i}+b-y_{i}\right|$ non-linear!
C no constraints
\triangleright Reformulate into a linear model
\triangleright Minimize the largest occuring vertical distance between the wanted line $y=a \cdot x+b$ and the given data points $\left(x_{i}, y_{i}\right)$

Variables: $a, b \in \mathbb{R}$
\Rightarrow Vertical distance between line and the i-th data point: $\left|a x_{i}+b-y_{i}\right|$
\Rightarrow Objective: minimize $\max _{i=1, \ldots, n}\left|a x_{i}+b-y_{i}\right|$ non-linear!
C no constraints
\triangleright Reformulate into a linear model, using additional variable $z \in \mathbb{R}$:
\qquad
\triangleright Minimize the largest occuring vertical distance between the wanted line $y=a \cdot x+b$ and the given data points $\left(x_{i}, y_{i}\right)$

Variables: $a, b \in \mathbb{R}$
\Rightarrow Vertical distance between line and the i-th data point: $\left|a x_{i}+b-y_{i}\right|$
\Rightarrow Objective: minimize $\max _{i=1, \ldots, n}\left|a x_{i}+b-y_{i}\right|$ non-linear!
C no constraints
\triangleright Reformulate into a linear model, using additional variable $z \in \mathbb{R}$:

$$
\begin{array}{rcr}
\text { minimize } & z & \\
\text { subject to } & a x_{i}+b-y_{i} \leq z & (1 \leq i \leq n) \\
-a x_{i}-b+y_{i} & \leq z & (1 \leq i \leq n) \\
& a, b, z & \in \mathbb{R}
\end{array}
$$

\qquad
\triangleright Minimize the largest occuring vertical distance between the wanted line $y=a \cdot x+b$ and the given data points $\left(x_{i}, y_{i}\right)$

Variables: $a, b \in \mathbb{R}$
\Rightarrow Vertical distance between line and the i-th data point: $\left|a x_{i}+b-y_{i}\right|$
\Rightarrow Objective: minimize $\max _{i=1, \ldots, n}\left|a x_{i}+b-y_{i}\right|$ non-linear!
C no constraints
\triangleright Reformulate into a linear model, using additional variable $z \in \mathbb{R}$:

$$
\begin{array}{ccc}
\text { minimize } & z \\
\text { subject to } & x_{i} \cdot a+b-z \leq y_{i} & (1 \leq i \leq n) \\
-x_{i} \cdot a-b-z \leq-y_{i} & (1 \leq i \leq n) \\
& a, b, z \in \mathbb{R} &
\end{array}
$$

\qquad
\triangleright Minimize the largest occuring vertical distance between the wanted line $y=a \cdot x+b$ and the given data points $\left(x_{i}, y_{i}\right)$

Variables: $a, b \in \mathbb{R}$
\Rightarrow Vertical distance between line and the i-th data point: $\left|a x_{i}+b-y_{i}\right|$
\Rightarrow Objective: minimize $\max _{i=1, \ldots, n}\left|a x_{i}+b-y_{i}\right|$

non-linear!

C no constraints
\triangleright Reformulate into a linear model, using additional variable $z \in \mathbb{R}$:

$$
\begin{array}{ccc}
\operatorname{minimize} & z \\
\text { subject to } & x_{i} \cdot a+b-z \leq y_{i} & (1 \leq i \leq n) \\
-x_{i} \cdot a-b-z \leq-y_{i} & (1 \leq i \leq n) \\
& a, b, z \in \mathbb{R} &
\end{array}
$$

\triangleright Variants: minimize sum of distances, square of distances, fit a higher-order curve
\qquad
\triangleright Approximate the function $y=x^{2}-13 x+45$ by piecewise linear functions

\qquad
\qquad
\triangleright Approximate the function $y=x^{2}-13 x+45$ by piecewise linear functions

\qquad
\qquad
\triangleright Approximate the function $y=x^{2}-13 x+45$ by piecewise linear functions

\triangleright Variables $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \geq 0$

0
\triangleright Approximate the function $y=x^{2}-13 x+45$ by piecewise linear functions

\qquad
$74]$
\triangleright Approximate the function $y=x^{2}-13 x+45$ by piecewise linear functions

\triangleright Variables $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \geq 0$

- Constraints:

$$
\begin{aligned}
& x=0 \cdot \lambda_{1}+4 \cdot \lambda_{2}+8 \cdot \lambda_{3}+12 \cdot \lambda_{4} \\
& y=45 \cdot \lambda_{1}+9 \cdot \lambda_{2}+5 \cdot \lambda_{3}+33 \cdot \lambda_{4}
\end{aligned}
$$

\triangleright Approximate the function $y=x^{2}-13 x+45$ by piecewise linear functions

\triangleright Variables $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \geq 0$

- Constraints:
$x=0 \cdot \lambda_{1}+4 \cdot \lambda_{2}+8 \cdot \lambda_{3}+12 \cdot \lambda_{4}$
$y=45 \cdot \lambda_{1}+9 \cdot \lambda_{2}+5 \cdot \lambda_{3}+33 \cdot \lambda_{4}$
$\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}=1$
x
\triangleright Approximate the function $y=x^{2}-13 x+45$ by piecewise linear functions

\triangleright Variables $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \geq 0$
- Constraints:
$x=0 \cdot \lambda_{1}+4 \cdot \lambda_{2}+8 \cdot \lambda_{3}+12 \cdot \lambda_{4}$
$y=45 \cdot \lambda_{1}+9 \cdot \lambda_{2}+5 \cdot \lambda_{3}+33 \cdot \lambda_{4}$
$\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}=1$
At most 2 consecutive λ_{i} non-zero
\qquad
\qquad
\triangleright Approximate the function $y=x^{2}-13 x+45$ by piecewise linear functions

\triangleright Variables $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \geq 0$
- Constraints:
$x=0 \cdot \lambda_{1}+4 \cdot \lambda_{2}+8 \cdot \lambda_{3}+12 \cdot \lambda_{4}$
$y=45 \cdot \lambda_{1}+9 \cdot \lambda_{2}+5 \cdot \lambda_{3}+33 \cdot \lambda_{4}$
$\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}=1$
At most 2 consecutive λ_{i} non-zero
\triangleright Last constraint can be expressed in integer variables
\qquad
\triangleright A (non-linear) function in more than one variable is called separable if it can be expressed as the sum of (possibly non-linear) functions in one variable each.
\triangleright A (non-linear) function in more than one variable is called separable if it can be expressed as the sum of (possibly non-linear) functions in one variable each.
\triangleright Examples:

$$
x_{1}^{2}+2 x_{2}+e^{x_{3}}
$$

\qquad
\triangleright A (non-linear) function in more than one variable is called separable if it can be expressed as the sum of (possibly non-linear) functions in one variable each.
\triangleright Examples:

$$
x_{1}^{2}+2 x_{2}+e^{x_{3}} \Rightarrow \text { separable }
$$

\qquad
\triangleright A (non-linear) function in more than one variable is called separable if it can be expressed as the sum of (possibly non-linear) functions in one variable each.
\triangleright Examples:

$$
\begin{aligned}
& x_{1}^{2}+2 x_{2}+e^{x_{3}} \Rightarrow \text { separable } \\
& x_{1} x_{2}+\frac{x_{2}}{1+x_{1}}+x_{3} \Rightarrow \text { not separable }
\end{aligned}
$$

\qquad
\qquad
\triangleright A (non-linear) function in more than one variable is called separable if it can be expressed as the sum of (possibly non-linear) functions in one variable each.
\triangleright Examples:

$$
\begin{aligned}
& x_{1}^{2}+2 x_{2}+e^{x_{3}} \Rightarrow \text { separable } \\
& x_{1} x_{2}+\frac{x_{2}}{1+x_{1}}+x_{3} \Rightarrow \text { not separable }
\end{aligned}
$$

\Rightarrow If a non-linear model contains only separable functions:
\qquad
\qquad
\triangleright A (non-linear) function in more than one variable is called separable if it can be expressed as the sum of (possibly non-linear) functions in one variable each.
\triangleright Examples:

$$
\begin{aligned}
& x_{1}^{2}+2 x_{2}+e^{x_{3}} \Rightarrow \text { separable } \\
& x_{1} x_{2}+\frac{x_{2}}{1+x_{1}}+x_{3} \Rightarrow \text { not separable }
\end{aligned}
$$

\Rightarrow If a non-linear model contains only separable functions:
Approximate every single-variable expression by piecewise linear functions
\qquad
\triangleright A (non-linear) function in more than one variable is called separable if it can be expressed as the sum of (possibly non-linear) functions in one variable each.
\triangleright Examples:

$$
\begin{aligned}
& x_{1}^{2}+2 x_{2}+e^{x_{3}} \Rightarrow \text { separable } \\
& x_{1} x_{2}+\frac{x_{2}}{1+x_{1}}+x_{3} \Rightarrow \text { not separable }
\end{aligned}
$$

\Rightarrow If a non-linear model contains only separable functions:
Approximate every single-variable expression by piecewise linear functions
\Rightarrow Replaced non-linear model with integer linear model
\qquad
\triangleright A (non-linear) function in more than one variable is called separable if it can be expressed as the sum of (possibly non-linear) functions in one variable each.
\triangleright Examples:

$$
\begin{aligned}
& x_{1}^{2}+2 x_{2}+e^{x_{3}} \Rightarrow \text { separable } \\
& x_{1} x_{2}+\frac{x_{2}}{1+x_{1}}+x_{3} \Rightarrow \text { not separable }
\end{aligned}
$$

\Rightarrow If a non-linear model contains only separable functions:
Approximate every single-variable expression by piecewise linear functions
\Rightarrow Replaced non-linear model with integer linear model

- Disadvantages:
- much larger number of variables
\qquad
\triangleright A (non-linear) function in more than one variable is called separable if it can be expressed as the sum of (possibly non-linear) functions in one variable each.
\triangleright Examples:
$x_{1}^{2}+2 x_{2}+e^{x_{3}} \Rightarrow$ separable
$x_{1} x_{2}+\frac{x_{2}}{1+x_{1}}+x_{3} \Rightarrow$ not separable
\Rightarrow If a non-linear model contains only separable functions:
Approximate every single-variable expression by piecewise linear functions
\Rightarrow Replaced non-linear model with integer linear model
- Disadvantages:
- much larger number of variables
- have to handle approximation errors
\qquad

The shadow price of a constraint is the rate of change in the objective function per unit increase of the constraint's right-hand side
\qquad
\qquad

The shadow price of a constraint is the rate of change in the objective function per unit increase of the constraint's right-hand side

\qquad

The shadow price of a constraint is the rate of change in the objective function per unit increase of the constraint's right-hand side
\triangleright Due to non-linearity:
\Rightarrow Shadow prices are valid only for infinitesimal changes of the right-hand side

\qquad

The shadow price of a constraint is the rate of change in the objective function per unit increase of the constraint's right-hand side
\triangleright Due to non-linearity:
\Rightarrow Shadow prices are valid only for infinitesimal changes of the right-hand side
\Rightarrow No range information available for shadow prices

The shadow price of a constraint is the rate of change in the objective function per unit increase of the constraint's right-hand side
\triangleright Due to non-linearity:
\Rightarrow Shadow prices are valid only for infinitesimal changes of the right-hand side
\Rightarrow No range information available for shadow prices
\triangleright Still true:

- Shadow prices of non-binding constraints are always 0

\qquad

The shadow price of a constraint is the rate of change in the objective function per unit increase of the constraint's right-hand side
\triangleright Due to non-linearity:
\Rightarrow Shadow prices are valid only for infinitesimal changes of the right-hand side
\Rightarrow No range information available for shadow prices
\triangleright Still true:

- Shadow prices of non-binding constraints are always 0

- Shadow prices of binding constraints may be 0 if the problem is degenerate
\triangleright Models, Data and Algorithms
\triangleright Linear Optimization
\triangleright Mathematical Background: Polyhedra, Simplex-Algorithm
\triangleright Sensitivity Analysis; (Mixed) Integer Programming
\triangleright MIP Modelling
\triangleright MIP Modelling: More Examples; Branch \& Bound
\triangleright Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms
\triangleright TSP-Heuristics
\triangleright Network Flows
\triangleright Shortest Path Problem
\triangleright Complexity Theory
\triangleright Nonlinear Optimization
$\triangleright \quad$ Scheduling (Jan 25)
\triangleright Lot Sizing (Feb 01)
\triangleright Summary (Feb 08)
\triangleright Oral exam (Feb 15)

