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< Overview >

Models, Data and Algorithms

Linear Optimization

Mathematical Background: Polyhedra, Simplex-Algorithm
Sensitivity Analysis; (Mixed) Integer Programming

MIP Modelling

MIP Modelling: More Examples; Branch & Bound
Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms
TSP-Heuristics

Network Flows

Shortest Path Problem

Complexity Theory

Nonlinear Optimization

Scheduling (Jan 25)

Lot Sizing (Feb 01)

Summary (Feb 08)

Oral exam (Feb 15)
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< Nonlinear optimization >

Real World

Interpretation




< Production Planning revisited >

> Production Planning in Automobile Industry

Product Beetle Cabrio ] _
Plant capacity and available raw materials:
Revenue $10000 $20000
_ e Manufacturing capacity: 50h
Manufacturing 5h 3h
A | ity: 70h
Assembly ah “h e Assembly capacity: 70

Raw material 400kg  400kg e Raw material: 4500kg
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< Production Planning revisited >

> Production Planning in Automobile Industry

Product Beetle Cabrio _ _
Plant capacity and available raw materials:
Revenue $10000  $240P0
Manufacturi ity: 50h
Manufacturing 5h 3h ¢ Miantiacturing capactty
A | ity: 70h
Assembly ah 2h e Assembly capacity: 70

Raw material 400kg  400kg e Raw material: 4500kg

> More realistic: Price of Cabrio depending on the demand
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< Some assumptions >

> Relation between price p of cabrio and demand z: p= K - 2"/*
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< Some assumptions >

> Relation between price p of cabrio and demand z: p = K - A

[0 Price elasticity E < 0 (assume E' is constant within the price and demand range

considered)

[1 K: the price where demand reduces to 1 unit
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< Some assumptions >

> Relation between price p of cabrio and demand z: p = K - A

[0 Price elasticity E < 0 (assume E' is constant within the price and demand range
considered)

[1 K: the price where demand reduces to 1 unit

> Assume we produce exactly the demanded number of cabrios
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[0 Price elasticity E < 0 (assume E' is constant within the price and demand range
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[1 K: the price where demand reduces to 1 unit

> Assume we produce exactly the demanded number of cabrios

[] demand x = x.

> Fixed production cost k of one cabrio (assume independent of produced number)

ZZ[][33



< Some assumptions >

> Relation between price p of cabrio and demand z: p = K - A

[0 Price elasticity E < 0 (assume E' is constant within the price and demand range
considered)

[1 K: the price where demand reduces to 1 unit

> Assume we produce exactly the demanded number of cabrios

[] demand x = x.

> Fixed production cost k of one cabrio (assume independent of produced number)

[1 Contribution of cabrios to the revenue:

(p—Fk) zc = (K-azi/E—k)-a:C — Ka:iJrl/E—ka:C
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< Some assumptions >

> Relation between price p of cabrio and demand z: p = K - A

[0 Price elasticity E < 0 (assume E' is constant within the price and demand range
considered)

[1 K: the price where demand reduces to 1 unit

> Assume we produce exactly the demanded number of cabrios

[] demand x = x.

> Fixed production cost k of one cabrio (assume independent of produced number)

[] Contribution of cabrios to the revenue:
(p—Fk) zc = (K-azi/E—k) C T = Ka:iJrl/E—ka:C

> Specific values assumed for cabrios: k := 20000, K := 150000, and E := —2
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< Some assumptions >

> Relation between price p of cabrio and demand z: p = K - A

[0 Price elasticity E < 0 (assume E' is constant within the price and demand range
considered)

[1 K: the price where demand reduces to 1 unit

> Assume we produce exactly the demanded number of cabrios

[] demand x = x.

> Fixed production cost k of one cabrio (assume independent of produced number)

[] Contribution of cabrios to the revenue:
(p—Fk) zc = (K-azi/E—k) C T = Ka:iJrl/E—ka:C

> Specific values assumed for cabrios: k := 20000, K := 150000, and E := —2

[0 Objective (total revenue): 10000z}, + 150000,/zc — 20000z
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Nonlinear optimization model

> Model (non-linear program):

maximize 10z, + 150 /2. — 202,

subject to dry + 4z < 45 (total raw material)
Sxp +3z. < 50 (time in manufacturing)
dry + Txe < 70 (time in assembly)
Th,Te > O (non-negativity)

ZZ[][33



< Nonlinear optimization model >

> Model (non-linear program):

Objective maximize 10xp + 150/ — 20z,

subject to dry + 4z < 45 (total raw material)
Sxrp + 3. < 50 (time in manufacturing)
dry + Txe < 70 (time in assembly)
Th,Tc > 0 (non-negativity)
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Nonlinear optimization model

> Model (non-linear program):

Objective maximize 10xp + 150/ — 20z,

subject to dry + 4z < 45 (total raw material)
Sxrp + 3. < 50 (time in manufacturing)
dry + Txe < 70 (time in assembly)
Th,Tc > 0 (non-negativity)

> Optimal solution: (zp,z.) = (5,6.25)
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< Nonlinear optimization model >

> Model (non-linear program):

Objective maximize 10xp + 150/ — 20z,

subject to dry + 4z < 45 (total raw material)
Sxrp + 3. < 50 (time in manufacturing)
dry + Txe < 70 (time in assembly)
Th,Tc > 0 (non-negativity)

> Optimal solution: (zp,z.) = (5,6.25)

[] Price for one cabrio at this demand: 60000

[] Profit for one cabrio: 40000
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< Geometric interpretation >

$C AN

¥
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< Linear and non-linear expressions >

>  Linear optimization

[1 Linear objective and linear constraints
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< Linear and non-linear expressions >

>  Linear optimization

[1 Linear objective and linear constraints

[0 Sum of linear terms: ... +a; - x;+ ...
y N

parameter variable

> Non-linear optimization

[1 Non-linear objective and/or non-linear constraints
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Linear and non-linear expressions

>

Linear optimization

[1 Linear objective and linear constraints
[0 Sum of linear terms: ... +a; - x;+ ...

y N

parameter variable

Non-linear optimization

[1 Non-linear objective and/or non-linear constraints

[1 Examples:
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Linear and non-linear expressions

>

Linear optimization

[1 Linear objective and linear constraints
[0 Sum of linear terms: ... +a; - x;+ ...

Va N

parameter variable

Non-linear optimization

[1 Non-linear objective and/or non-linear constraints

[1 Examples:

e Products of variables: z; - x;
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Linear and non-linear expressions

>

Linear optimization

[1 Linear objective and linear constraints

[0 Sum of linear terms: ... +a; - x;+ ...
y N

parameter variable

Non-linear optimization

[1 Non-linear objective and/or non-linear constraints

[1 Examples:

e Products of variables: z; - x;

2

e Squares of variables:
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< Linear and non-linear expressions >

>  Linear optimization

[1 Linear objective and linear constraints

[0 Sum of linear terms: ...+ a;-x; + ...
y N

parameter variable

> Non-linear optimization

[1 Non-linear objective and/or non-linear constraints

[1 Examples:

e Products of variables: z; - x;

5 quadratic expressions

e Squares of variables:
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< Linear and non-linear expressions >

>  Linear optimization

[1 Linear objective and linear constraints

[0 Sum of linear terms: ...+ a;-x; + ...
y N

parameter variable

> Non-linear optimization

[1 Non-linear objective and/or non-linear constraints

[1 Examples:

e Products of variables: z; - x;

5 quadratic expressions

e Squares of variables:

e Higher-order terms of variables: z; - z; - zy, a:? - T
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< Linear and non-linear expressions >

>  Linear optimization

[1 Linear objective and linear constraints

[0 Sum of linear terms: ...+ a;-x; + ...
y N

parameter variable

> Non-linear optimization

[1 Non-linear objective and/or non-linear constraints

[1 Examples:

e Products of variables: z; - x;

5 quadratic expressions

e Squares of variables:

e Higher-order terms of variables: z; - z; - zy, a:? - T

e Absolute values or maxima/minima: |z;|, maxx;
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Linear and non-linear expressions

>

Linear optimization

[1 Linear objective and linear constraints

[0 Sum of linear terms: ...+ a;-x; + ...
y N

parameter variable

Non-linear optimization

[1 Non-linear objective and/or non-linear constraints

[1 Examples:

e Products of variables: z; - x;

2

e Squares of variables:

e Higher-order terms of variables: z; -z, - ), z2-

J

e Absolute values or maxima/minima: |z;

e Terms including elementary functions: sinz;, 2%%7,

quadratic expressions

,  maxux;

3

. log(z; + x3*)
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< Non-linear objective >
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< Non-linear objective >

$C AN

11 - A

10™
[1 Possible that optimal solutions

cannot be found in vertices!
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< Non-linear objective: economies of scale >

>  Economy of scale
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< Non-linear objective: economies of scale >

>  Economy of scale

[1 Production cost per item decrease

with number x; of produced items

total cost

production
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[1 Production cost per item decrease

with number x; of produced items

total cost

[0 Contribution to objective (examples):

e E VT production
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< Non-linear objective: economies of scale >

>  Economy of scale

[1 Production cost per item decrease

with number x; of produced items

total cost

[0 Contribution to objective (examples):

e E VT production
c..+logx; + ...

>  Diseconomy of scale
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Non-linear objective: economies of scale

>  Economy of scale

[1 Production cost per item decrease -
with number x; of produced items _8
()
4
[0 Contribution to objective (examples): 2
R V2! 7 e I )
! production
c..+logx; + ...
>  Diseconomy of scale
[1 Production cost per item increase N
(%2}
with number x; of produced items S
s
S
production
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Non-linear objective: economies of scale

>  Economy of scale

[1 Production cost per item decrease -
with number x; of produced items _8
()
4
[0 Contribution to objective (examples): 2
R V2! 7 e I )
! production
..+ logx; + ...
>  Diseconomy of scale
[1 Production cost per item increase N
(%2}
with number x; of produced items S
"
[1 Contribution to objective (examples): g
Y N
production
.t xilogx; + ...
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< Non-linear constraints >
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< Non-linear constraints >
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Non-linear constraints

$C AN

11 A

10™
[1 Possible that different optimal

solutions lie in completely different

parts of the feasible region!
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< Example: facility location >

> Given: locations at specified coordinates in the plane

>  Task: Find an optimal location for a central unit connecting every given location!
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< Example: facility location >

> Given: locations at specified coordinates in the plane

>  Task: Find an optimal location for a central unit connecting every given location!

o
N
& °
& &
O P ¢
& $ &S
& 8
Y & X
.
A (82 9
B (310) 7
C (815 2
D (1413) 5
*
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< Example: facility location >

> Given: locations at specified coordinates in the plane

>  Task: Find an optimal location for a central unit connecting every given location!

o
N
& °
&y &
O P ¢
& $ &S
& 8
Y & X
.
A (82 9
B (310) 7
C (815 2
D (1413) 5
*
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< Example: facility location >

> Given: locations at specified coordinates in the plane

>  Task: Find an optimal location for a central unit connecting every given location!

o
N
& °
& &
O P ¢
& $ &S
& 8
Y & X
.
A (82 9
B (310) 7
C (815 2
D (1413) 5
*

Variables: x,y [ coordinates of central unit

Objective: minimize sum of connection costs to all given locations
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< Facility location — model >

Variables: x,y [ coordinates of central unit
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< Facility location — model >

Variables: x,y [ coordinates of central unit

O Distance to A: +/(x — 8)2 + (y — 2)2
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< Facility location — model >

Variables: x,y [ coordinates of central unit

O Distance to A: +/(x — 8)2 + (y — 2)2

[ Cost for all connections to A: 9+ +/(x — 8)2 + (y — 2)2
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< Facility location — model

Variables: x,y [ coordinates of central unit

O Distance to A: +/(x — 8)2 + (y — 2)2

[ Cost for all connections to A: 9+ +/(x — 8)2 + (y — 2)2

[1 Analogous for B, C, and D
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< Facility location — model >

Variables: x,y [ coordinates of central unit

O Distance to A: +/(x — 8)2 + (y — 2)2

[ Cost for all connections to A: 9+ +/(x — 8)2 + (y — 2)2

[1 Analogous for B, C, and D

[ Objective: min 9+/(z —8)2+4 (y —2)2 + 7+/(z — 3)2 + (y — 10)?
+ 2/ (x—8)2+ (y — 15)2 + 5/(x — 14)2 + (y — 13)2

&
Q
& >
& &
O .
& $ S
(& O
\ & );8 .
A (82 9
B (310) 7
C (815) 2
D (1413) 5 ¢
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< Facility location — solution >

Variables: x,y [ coordinates of central unit

Objective: min 9/ (z —8)2+ (y — 2)2 + 7+/(z — 3)2 + (y — 10)2
+ 2/ (z—8)2+ (y—15)2 + 5+/(z — 14)2 + (y — 13)?
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< Facility location — solution >

Variables: x,y [ coordinates of central unit

Objective: min 9/ (z —8)2+ (y — 2)2 + 7+/(z — 3)2 + (y — 10)2

No explicit constraints!

+ 2/ (x—8)2+ (y — 15)2 + 5/(x — 14)2 + (y — 13)2
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< Facility location — solution >

Variables: x,y [ coordinates of central unit

Objective: min 9/ (z —8)2+ (y — 2)2 + 7+/(z — 3)2 + (y — 10)2

+ 2/ (x —8)2+ (y — 15)2 + 5/(v — 14)2 + (y — 13)2
No explicit constraints!

[l Optimal solution: (z,y) = (6.25,7.47)  (unique!)
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< Facility location — additional constraints >

Variables: x,y [ coordinates of central unit

Objective: min 9/ (z —8)2+ (y — 2)2 + 7+/(z — 3)2 + (y — 10)2

Constraints

+ 2/ (x—8)2+ (y — 15)2 + 5/(x — 14)2 + (y — 13)2
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< Facility location — additional constraints >

Variables: x,y [ coordinates of central unit

Objective: min 9/ (z —8)2+ (y — 2)2 + 7+/(z — 3)2 + (y — 10)2
+ 2/ (z—8)2+ (y—15)2 + 5+/(z — 14)2 + (y — 13)?

Constraints: x >4, y>5, y<11, z+4+y<I18

o
IS
e &
& &
& & & ’

3 $ &

(& O
® & X
A (82 9
B (310) 7
C (815) 2
D (14,13) 5 ¢

B



< Facility location — additional constraints >

Variables: x,y [ coordinates of central unit

Objective: min 9/ (z —8)2+ (y — 2)2 + 7+/(z — 3)2 + (y — 10)2
+ 2/ (z—8)2+ (y—15)2 + 5+/(z — 14)2 + (y — 13)?

Constraints: x >4, y>5, y<11, z+4+y<I18

[0 Optimal solution: (z,y) = (6.25,7.47) (same as before!)

B



< Non-linear optimization — observations >

> A non-linear optimization model...
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e ...might have no optimal solutions in vertices of the feasible region
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> A non-linear optimization model...

e ...might have no optimal solutions in vertices of the feasible region

e ...might have a feasible region without any vertices at all

e ...might have optimal solutions only in the interior of the feasible region

e ...might have different optimal solutions spread over the whole feasible region
e ...might have (even unique) optimal solutions without any constraints

e ...might be unbounded, even if the feasible region is bounded

> All of this cannot happen with linear optimization models
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< Non-linear optimization — observations >

> A non-linear optimization model...

e ...might have no optimal solutions in vertices of the feasible region

e ...might have a feasible region without any vertices at all

e ...might have optimal solutions only in the interior of the feasible region

e ...might have different optimal solutions spread over the whole feasible region
e ...might have (even unique) optimal solutions without any constraints

e ...might be unbounded, even if the feasible region is bounded

> All of this cannot happen with linear optimization models

[1  How to find an optimal solution...?
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< Why are linear models good and non-linear models evil? >

>  Linear models

1B



< Why are linear models good and non-linear models evil? >

>  Linear models

e Linear objective

[1 Level sets are straight lines
(in higher dimension: hyperplanes)

e Linear constraints

[1 Feasible region is a polygon
(in higher dimension: polyhedron)
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< Why are linear models good and non-linear models evil? >

> Linear models
e Linear objective

[1 Level sets are straight lines

(in higher dimension: hyperplanes)
e Linear constraints

[1 Feasible region is a polygon

(in higher dimension: polyhedron) [0 Optimal solutions can always be




< Why are linear models good and non-linear models evil? >

> Linear models
e Linear objective

[1 Level sets are straight lines

(in higher dimension: hyperplanes)
e Linear constraints

[1 Feasible region is a polygon
(in higher dimension: polyhedron)

> Non-linear models
e Non-linear objective

[1 Level sets can be complicated curves

e Non-linear constraints

[1 Feasible region can be complicated




< Why are linear models good and non-linear models evil? >

> Linear models
e Linear objective

[1 Level sets are straight lines

(in higher dimension: hyperplanes)
e Linear constraints

[1 Feasible region is a polygon
(in higher dimension: polyhedron)

> Non-linear models
e Non-linear objective

[1 Level sets can be complicated curves

e Non-linear constraints

[1 Feasible region can be complicated




< Local and global optima >

> Non-linear model:

max \/(z— 42 + (y — 4
2
5
2

10

1V

s.t. x

IA

X

VAN

IA

Tr+vy

A
A

r — 3y
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< Local and global optima >

> Non-linear model:
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< Local and global optima >

> Non-linear model:
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< Local and global optima >

> Non-linear model:

max \/(z —4)? + (y — 4)°
2
5

s.t. x

IN IV
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I
DO
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A
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< Local and global optima in linear and non-linear models >

> In general:

e FEvery global optimum is also a local optimum
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Local and global optima in linear and non-linear models

In general:
e FEvery global optimum is also a local optimum
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[1 Finding a local optimum is not enough for solving the problem!

In linear programming models:

e Every local optimum is automatically global!
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[1 Finding a local optimum is not enough for solving the problem!

In linear programming models:
e Every local optimum is automatically global!

e The simplex algorithm finds a local optimum
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In linear programming models:
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e The simplex algorithm finds a local optimum

[1 Linear problems can always be solved by the simplex algorithm
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In general:
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e Not every local optimum is a global optimum!

[1 Finding a local optimum is not enough for solving the problem!

In linear programming models:
e Every local optimum is automatically global!
e The simplex algorithm finds a local optimum

[1 Linear problems can always be solved by the simplex algorithm
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Local and global optima in linear and non-linear models

In general:
e FEvery global optimum is also a local optimum
e Not every local optimum is a global optimum!

[1 Finding a local optimum is not enough for solving the problem!

In linear programming models:
e Every local optimum is automatically global!
e The simplex algorithm finds a local optimum

[1 Linear problems can always be solved by the simplex algorithm

Possible strategy for solving a non-linear optimization problem:

e Search for a local optimum...
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Local and global optima in linear and non-linear models

In general:
e FEvery global optimum is also a local optimum
e Not every local optimum is a global optimum!

[1 Finding a local optimum is not enough for solving the problem!

In linear programming models:
e Every local optimum is automatically global!
e The simplex algorithm finds a local optimum

[1 Linear problems can always be solved by the simplex algorithm

Possible strategy for solving a non-linear optimization problem:
e Search for a local optimum...

e ...and hope that it's global!

ZZ[][33



Local and global optima in linear and non-linear models

In general:
e FEvery global optimum is also a local optimum
e Not every local optimum is a global optimum!

[1 Finding a local optimum is not enough for solving the problem!

In linear programming models:
e Every local optimum is automatically global!
e The simplex algorithm finds a local optimum

[1 Linear problems can always be solved by the simplex algorithm

Possible strategy for solving a non-linear optimization problem:
e Search for a local optimum...

e ..and hope that it's global! (Usually it's not...)
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< Interior point methods and attempts to get out of local maxima >

> Basic principle of interior point methods for finding a local maximum:
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Interior point methods and attempts to get out of local maxima

Basic principle of interior point methods for finding a local maximum:
e Find a point somewhere in the feasible region

e Follow steps in direction of increasing objective until a local maximum is reached

Problem: only finds a local maximum!

Heuristic strategies to overcome this:
e Allow for steps in direction of decreasing objective from time to time

e Restart from a different starting point

Examples:

e Simulated annealing, Tabu search, Genetic algorithms, Ant colony simulation
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Interior point methods and attempts to get out of local maxima

Basic principle of interior point methods for finding a local maximum:
e Find a point somewhere in the feasible region

e Follow steps in direction of increasing objective until a local maximum is reached

Problem: only finds a local maximum!

Heuristic strategies to overcome this:
e Allow for steps in direction of decreasing objective from time to time

e Restart from a different starting point

Examples:

e Simulated annealing, Tabu search, Genetic algorithms, Ant colony simulation

Big disadvantage: no optimality information (as gaps in branch & bound)!

[1 You have to rely on luck to get an optimal solution...
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< When are local optima automatically global? >
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< Convex regions >

> Feasible region: R = {(zp,xc) | 4xp + 42 < 45
Sxrp + 3xrc < 50
dxy + Txe <70
Tp, Tc > 0}
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< Convex regions >

> Feasible region: R = {(zp,xc) | 4xp + 42 < 45
Sxrp + 3xrc < 50
dxp + Txe < 70
Tp, Tc > 0}

[l is [ convex

I.e. every straight line between two points in R also lies completely in R

Ap+(1—XAN)geR forallpge Rand 0 < A< 1

not convex!
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< Concave functions

> Objective function:  f(xp,xc) = xp + 15/Tc — 22
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< Concave functions >

> Objective function:  f(xp,xc) = xp + 15/Tc — 22

> f is [concave
I.e. every straight
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< Concave functions >

> Objective function:  f(xp,xc) = xp + 15/Tc — 22

> f is concave
I.e. every straight
line between two
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< Concave optimization >
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> An optimization problem is called concave if
e the objective function is a | concave function
e the optimization sense is to maximize

e the feasible region is a convex set, i.e.

e the left-hand side of every = constraint is a linear function
e the left-hand side of every < constraint is a convex function

e the left-hand side of every > constraint is a concave function

For concave optimization problems
every local optimum is automatically

a global optimum
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< Concave optimization >

> An optimization problem is called | concave if

e the objective function is a | concave function
e the optimization sense is to  maximize

e the feasible region is a convex set, i.e.

e the left-hand side of every = constraint is a linear function
e the left-hand side of every < constraint is a convex function

e the left-hand side of every > constraint is a concave function

For concave optimization problems
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Convex functions

> Objective function:
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> An optimization problem is called convex if
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e the feasible region is a convex set, i.e.
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< Convex maximization doesn’t work >
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< Convex maximization doesn’t work >

> Convex feasible region [
> Convex objective function [

> Maximization problem ®
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< Linear optimization always works >

> Linear objective function: f(x,y) = 2x + 3y
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Linear optimization always works

> Linear objective function: f(x,y) = 2x + 3y

> Linear constraints [] feasible region is always convex

>

[]

f is both concave

and convex

optimization sense
doesn’'t matter

[0 For linear programming local optima are always automatically global




< Transforming special non-linear models into linear ones >

> Some special cases of non-linear models can be transformed directly into linear models
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> Some special cases of non-linear models can be transformed directly into linear models
> Linear constraints and objective function to minimize is piecewise linear and convex

[0 Non-linear: minimize max fr(x1, ... xp) (fr are all linear)

n
subject to Zaﬁazi < bj V7
1=1
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Transforming special non-linear models into linear ones

Some special cases of non-linear models can be transformed directly into linear models

Linear constraints and objective function to minimize is piecewise linear and convex

[1 Non-linear:

[1 Rewrite as:

minimize  max fr(z1,...,T,)
k=1,...0
n
subject to Zaﬁazi < bj V7

minimize 2z

subject to  fr(z1,...,xp) < 2
n
Zaﬁxz < b] Vj
1=1

(f are all linear)
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Transforming special non-linear models into linear ones

Some special cases of non-linear models can be transformed directly into linear models

Linear constraints and objective function to minimize is piecewise linear and convex

[0 Non-linear: minimize max fr(x1, ... xp) (fr are all linear)
=1,...,
n
subject to Zaﬁazi < bj ]
i=1
[1 Rewrite as: minimize z
subject to  fr(z1,....xn) —2 < 0 (1 <k <Y
n
Zaﬁxz < b] Vj
1=1
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Transforming special non-linear models into linear ones

> Some special cases of non-linear models can be transformed directly into linear models

> Linear constraints and objective function to minimize is piecewise linear and convex

[1 Non-linear: minimize max

omax fy(w1,...,2)  (fi are all linear)

n
subject to Zaﬁazi < bj V7

i=1
[] Rewrite as: minimize 2z
subject to  fr(z1,....xn) —2 < 0 (1 <k <Y

n
Z A 5;L5 S bj Vj
i=1
> Linear constraints and objective function to minimize is convex of the form

n
Zcz\xz\ with all ¢; > 0
i=1
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Transforming special non-linear models into linear ones

> Some special cases of non-linear models can be transformed directly into linear models

> Linear constraints and objective function to minimize is piecewise linear and convex

[1 Non-linear: minimize max

omax fy(w1,...,2)  (fi are all linear)

n
subject to Zaﬁazi < bj V7

i=1
[] Rewrite as: minimize 2z
subject to  fr(z1,....xn) —2 < 0 (1 <k <Y

n
Zaﬁxi S bj Vj
i=1
> Linear constraints and objective function to minimize is convex of the form
n
Zcz\xz\ with all ¢; > 0
i=1

[1 Can be similarly rewritten into linear constraints
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< Example: data fitting >

> Task: given a set of data points, find a line that “fits best” into the point set!
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> Task: given a set of data points, find a line that “fits best” into the point set!
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Example: data fitting

> Task: given a set of data points, find a line that “fits best” into the point set!
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Example: data fitting

> Task: given a set of data points, find a line that “fits best” into the point set!

X y
3 2
5105
3 5
9 I
13175
16 | 10

yz\
11 -
10 1 °
9_
8_
[ )
7 °
6_
> Y=L~ 12
4_
3_
2 °
I :
()
1 2/3 4 5 6 7 8 9 10 11 12 13 14 15 16

X

ZZ[][33



< Example: data fitting >

> Task: given a set of data points, find a line that “fits best” into the point set!

X y yz\
11 |
5105 9 1
8| 5 ° .
7 .
) 7 6|
13| 7.5 5] °
4-
16 | 10
3.
2 °
I :
1 9 3 45 6 7 8 9 10 11 12 13 14 15 16 X

[1 Minimize the largest occuring vertical distance between the wanted line and the data

points!
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< A model for the data fitting problem >

> Minimize the largest occuring vertical distance between the wanted liney =a-x + b
and the given data points (x;, y;)
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> Minimize the largest occuring vertical distance between the wanted liney =a-x + b
and the given data points (x;, y;)

Variables: a,b € R
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< A model for the data fitting problem >

> Minimize the largest occuring vertical distance between the wanted liney =a-x + b
and the given data points (x;, y;)

Variables: a,b € R

[ Vertical distance between line and the i-th data point: |ax; + b — y;]
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< A model for the data fitting problem >

> Minimize the largest occuring vertical distance between the wanted liney =a-x + b
and the given data points (x;, y;)

Variables: a,b € R

[ Vertical distance between line and the i-th data point: |ax; + b — y;]

[0 Objective: minimize max lax; + b — i
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< A model for the data fitting problem >

> Minimize the largest occuring vertical distance between the wanted liney =a-x + b

and the given data points (x;, ;)

Variables: a,b € R

[ Vertical distance between line and the i-th data point: |ax; + b — y;]

[1 Objective: minimize max |ax; +b— y;

1=1,...,n
no constraints

> Reformulate into a linear model

non-linear!
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< A model for the data fitting problem >

> Minimize the largest occuring vertical distance between the wanted liney =a-x + b
and the given data points (x;, y;)

Variables: a,b € R

[ Vertical distance between line and the i-th data point: |ax; + b — y;]

[0 Objective: minimize max lax; + b — i
1=1,....n

non-linear!
no constraints

> Reformulate into a linear model, using additional variable z € R:

minimize z
subject to ax; +b—1vy; < z (1<i<n)
—axr;—b+y < z (1<i<n)
a,b,z € R
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< A model for the data fitting problem >

> Minimize the largest occuring vertical distance between the wanted liney =a-x + b

and the given data points (x;, ;)

Variables: a,b € R

[ Vertical distance between line and the i-th data point: |ax; + b — y;]

[1 Objective: minimize max |ax; +b— y;

1=1,...,n
no constraints

> Reformulate into a linear model, using additional variable z € R:

non-linear!

minimize z
subject to rxi-a+b—z2 <y (1<i<n)
—z;ca—b—2 < —y; (1 <i<n)
a,b,z € R
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A model for the data fitting problem

> Minimize the largest occuring vertical distance between the wanted liney =a-x + b

and the given data points (x;, ;)

Variables: a,b € R

[ Vertical distance between line and the i-th data point: |ax; + b — y;]

[1 Objective: minimize max |ax; +b— y;

1=1,...,n
no constraints

> Reformulate into a linear model, using additional variable z € R:

non-linear!

minimize z
subject to rxi-a+b—z2 <y (1<i<n)
—z;ca—b—2 < —y; (1 <i<n)
a,b,z € R

> Variants: minimize sum of distances, square of distances, fit a higher-order curve
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< Approximation of non-linear functions >

> Approximate the function y = 2? — 132 + 45 by piecewise linear functions
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< Approximation of non-linear functions >

> Approximate the function y = 2? — 132 + 45 by piecewise linear functions

> Variables i, A2, A3,A4 >0

> Constraints:
T=0-AM+4-X+8-A3+12-\4
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< Approximation of non-linear functions >

> Approximate the function y = 2? — 132 + 45 by piecewise linear functions

> Variables i, A2, A3,A4 >0

> Constraints:
r=0-A+4-X+8-A3+12- )\
y=45-AM+9-A+5-A3+33- )\
A+ A+A3+A =1

At most 2 consecutive \; non-zero
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< Approximation of non-linear functions >

> Approximate the function y = 2? — 132 + 45 by piecewise linear functions

> Variables i, A2, A3,A4 >0

> Constraints:
r=0-A+4-X+8-A3+12- )4
y=45-AM+9-A+5-A3+33- )\
A+ A+A3+A =1

At most 2 consecutive \; non-zero
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< Separation of variables >

> A (non-linear) function in more than one variable is called separable if it can be

expressed as the sum of (possibly non-linear) functions in one variable each.
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< Separation of variables >

> A (non-linear) function in more than one variable is called separable if it can be

expressed as the sum of (possibly non-linear) functions in one variable each.

> Examples:

T2 + 279 + €%3
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< Separation of variables >

> A (non-linear) function in more than one variable is called separable if it can be

expressed as the sum of (possibly non-linear) functions in one variable each.
> Examples:

x? + 219 + €% [0 separable

x
r129 + 2 + x3 [ not separable
142
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[0 If a non-linear model contains only separable functions:

ZZ[][33



< Separation of variables >

> A (non-linear) function in more than one variable is called separable if it can be

expressed as the sum of (possibly non-linear) functions in one variable each.
> Examples:

x? + 219 + €% [0 separable

x
r129 + 2 + x3 [ not separable
142

[0 If a non-linear model contains only separable functions:

Approximate every single-variable expression by piecewise linear functions
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< Separation of variables >

> A (non-linear) function in more than one variable is called separable if it can be

expressed as the sum of (possibly non-linear) functions in one variable each.
> Examples:

x? + 219 + €% [0 separable

x
r129 + 2 + x3 [ not separable
142

[0 If a non-linear model contains only separable functions:

Approximate every single-variable expression by piecewise linear functions

[1 Replaced non-linear model with integer linear model
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< Separation of variables >
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expressed as the sum of (possibly non-linear) functions in one variable each.
> Examples:

x? + 219 + €% [0 separable

x
r129 + 2 + x3 [ not separable
142

[0 If a non-linear model contains only separable functions:
Approximate every single-variable expression by piecewise linear functions
[1 Replaced non-linear model with integer linear model

> Disadvantages:
e much larger number of variables

e have to handle approximation errors
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< Sensitivity analysis for non-linear models >

> Due to non-linearity:

[1 Shadow prices are valid only for

infinitesimal changes of the right-hand side

[1 No range information available for shadow

prices
> Still true:

e Shadow prices of non-binding constraints

are always 0

¥

e Shadow prices of binding constraints may

be 0 if the problem is degenerate




< Overview >

Models, Data and Algorithms

Linear Optimization

Mathematical Background: Polyhedra, Simplex-Algorithm
Sensitivity Analysis; (Mixed) Integer Programming

MIP Modelling

MIP Modelling: More Examples; Branch & Bound
Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms
TSP-Heuristics

Network Flows

Shortest Path Problem

Complexity Theory

Nonlinear Optimization

Scheduling (Jan 25)

Lot Sizing (Feb 01)

Summary (Feb 08)

Oral exam (Feb 15)
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