
� �

Mathematical Tools

for Engineering and Management

Lecture 13

25 Jan 2012

······················



� Overview �

� Models, Data and Algorithms

� Linear Optimization

� Mathematical Background: Polyhedra, Simplex-Algorithm

� Sensitivity Analysis; (Mixed) Integer Programming

� MIP Modelling

� MIP Modelling: More Examples; Branch & Bound

� Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms

� TSP-Heuristics

� Network Flows

� Shortest Path Problem

� Complexity Theory

� Nonlinear Optimization

� Scheduling

� Lot Sizing & Intro to Multiobjective Optimization (Feb 01)

� Summary (Feb 08)

� Oral exam (Feb 15)

······················



� Example: printing machine �

Printing machine

······················



� Example: printing machine �

Printing machine Jobs

······················



� Example: printing machine �

Printing machine Jobs

Job 1: Book

200 pages, 500 copies

3h printing time

Job 2: Book

60 pages, 2500 copies

4h printing time

Job 3: Thesis

170 pages, 10 copies

1h printing time

······················



� Example: printing machine �

Printing machine Jobs

Job 1: Book

200 pages, 500 copies

3h printing time

Job 2: Book

60 pages, 2500 copies

4h printing time

Job 3: Thesis

170 pages, 10 copies

1h printing time

� Determine an optimal order for the jobs to be processed...

······················



� Example: printing machine �

Printing machine Jobs

Job 1: Book

200 pages, 500 copies

3h printing time

Job 2: Book

60 pages, 2500 copies

4h printing time

Job 3: Thesis

170 pages, 10 copies

1h printing time

� Determine an optimal order for the jobs to be processed...

➡ ...if jobs have to be finished at a given time

······················



� Example: printing machine �

Printing machine Jobs

Job 1: Book

200 pages, 500 copies

3h printing time

Job 2: Book

60 pages, 2500 copies

4h printing time

Job 3: Thesis

170 pages, 10 copies

1h printing time

� Determine an optimal order for the jobs to be processed...

➡ ...if jobs have to be finished at a given time

➡ ...if some jobs are more important than others

······················



� Example: printing machine �

Printing machine Jobs

Job 1: Book

200 pages, 500 copies

3h printing time

Job 2: Book

60 pages, 2500 copies

4h printing time

Job 3: Thesis

170 pages, 10 copies

1h printing time

� Determine an optimal order for the jobs to be processed...

➡ ...if jobs have to be finished at a given time

➡ ...if some jobs are more important than others

➡ ...if there is more than one machine (identical or different machines)

······················



� Example: computation jobs on supercomputer �

� Supercomputing at ZIB

······················



� Example: computation jobs on supercomputer �

� Supercomputing at ZIB

� ∼1500 compute nodes with ∼13000 cores

······················



� Example: computation jobs on supercomputer �

� Supercomputing at ZIB

� ∼1500 compute nodes with ∼13000 cores

� Schedule computation jobs...

...consisting of thousands of parallel processes

...according to their release times

······················



� General principle �

� Jobs:

······················



� General principle �

� Jobs:

� Schedule (Gantt chart):

······················



� General principle �

� Jobs:

� Schedule (Gantt chart):

Machine

time

······················



� General principle �

� Jobs:

� Schedule (Gantt chart):

Machine

time

➡ optimal with respect to an objective to specify!

······················



� Notation �

� Jobs usually have: a processing time pj

······················



� Notation �

� Jobs usually have: a processing time pj

job j

pj

······················



� Notation �

� Jobs usually have: a processing time pj

job j

pj

� A schedule has to provide: a start time sj

······················



� Notation �

� Jobs usually have: a processing time pj

job j

pj

� A schedule has to provide: a start time sj

time0

job j

pj

sj

······················



� Notation �

� Jobs usually have: a processing time pj

job j

pj

� A schedule has to provide: a start time sj

time0

job j

pj

sj

, such that different jobs do not overlap

······················



� Notation �

� Jobs usually have: a processing time pj

job j

pj

� A schedule has to provide: a start time sj

time0

job j

pj

sj

, such that different jobs do not overlap

time0

job j job k

pj pk

sj sk

······················



� Notation �

� Jobs usually have: a processing time pj

job j

pj

� A schedule has to provide: a start time sj

time0

job j

pj

sj

, such that different jobs do not overlap

time0

job j job k

pj pk

sj sk

Input ➡

Output ➡

······················



� Notation �

� Jobs usually have: a processing time pj

job j

pj

� A schedule has to provide: a start time sj

time0

job j

pj

sj

, such that different jobs do not overlap

time0

job j job k

pj pk

sj sk

Input ➡

Output ➡

➡ Combinatorial optimization problem

······················



� Notation �

� Jobs usually have: a processing time pj

job j

pj

� A schedule has to provide: a start time sj

time0

job j

pj

sj

, such that different jobs do not overlap

time0

job j job k

pj pk

sj sk

Input ➡

Output ➡

➡ Combinatorial optimization problem ➡ IP formulations for most scheduling problems

······················



� Notation �

� Jobs usually have: a processing time pj

job j

pj

� A schedule has to provide: a start time sj

time0

job j

pj

sj

, such that different jobs do not overlap

time0

job j job k

pj pk

sj sk

Input ➡

Output ➡

➡ Combinatorial optimization problem ➡ IP formulations for most scheduling problems

➡ Completion time Cj := sj + pj

······················



� Notation �

� Jobs usually have: a processing time pj

job j

pj

� A schedule has to provide: a start time sj

time0

job j

pj

sj

, such that different jobs do not overlap

time0

job j job k

pj pk

sj sk

Input ➡

Output ➡

➡ Combinatorial optimization problem ➡ IP formulations for most scheduling problems

➡ Completion time Cj := sj + pj

time0

job j job k

pj pk

sj Cj
sk Ck

Input ➡

Output ➡

······················



� Notation �

� Jobs usually have: a processing time pj

job j

pj

� A schedule has to provide: a start time sj

time0

job j

pj

sj

, such that different jobs do not overlap

time0

job j job k

pj pk

sj sk

Input ➡

Output ➡

➡ Combinatorial optimization problem ➡ IP formulations for most scheduling problems

➡ Completion time Cj := sj + pj

time0

job j job k

pj pk

sj Cj
sk Ck

Input ➡

Output ➡

➡ Average completion time for n jobs:
1

n

n∑

j=1

Cj

······················



� Minimize sum of completion times �

� For fixed number n of jobs: minimize sum of completion times
n∑

j=1

Cj

······················



� Minimize sum of completion times �

� For fixed number n of jobs: minimize sum of completion times
n∑

j=1

Cj

� Example schedule:

Machine
16 10 6 22 12 14 15 20 14

······················



� Minimize sum of completion times �

� For fixed number n of jobs: minimize sum of completion times
n∑

j=1

Cj

� Example schedule:

Machine
16 10 6 22 12 14 15 20 14

0 16 26 32 54 66 80 95 115 129

······················



� Minimize sum of completion times �

� For fixed number n of jobs: minimize sum of completion times
n∑

j=1

Cj

� Example schedule:

Machine
16 10 6 22 12 14 15 20 14

0 16 26 32 54 66 80 95 115 129

➡

n∑

j=1

Cj = 16 + 26 + 32 + 54 + 66 + 80 + 95 + 115 + 129 = 613

······················



� Minimize sum of completion times �

� For fixed number n of jobs: minimize sum of completion times
n∑

j=1

Cj

� Example schedule:

Machine
16 10 6 22 12 14 15 20 14

0 16 26 32 54 66 80 95 115 129

➡

n∑

j=1

Cj = 16 + 26 + 32 + 54 + 66 + 80 + 95 + 115 + 129 = 613

Machine
16 10 6 12 22 14 15 20 14

0 16 26 32 44 66 80 95 115 129

➡

n∑

j=1

Cj = 16 + 26 + 32 + 44 + 66 + 80 + 95 + 115 + 129 = 603

······················



� Minimize sum of completion times �

� For fixed number n of jobs: minimize sum of completion times
n∑

j=1

Cj

� Example schedule:

Machine
16 10 6 22 12 14 15 20 14

0 16 26 32 54 66 80 95 115 129

➡

n∑

j=1

Cj = 16 + 26 + 32 + 54 + 66 + 80 + 95 + 115 + 129 = 613

Machine
16 10 6 12 22 14 15 20 14

0 16 26 32 44 66 80 95 115 129

➡

n∑

j=1

Cj = 16 + 26 + 32 + 44 + 66 + 80 + 95 + 115 + 129 = 603

➡ Idea: Schedule jobs in order of non-decreasing processing time!

······················



� Minimize sum of completion times �

� For fixed number n of jobs: minimize sum of completion times
n∑

j=1

Cj

� Example schedule:

Machine
16 10 6 22 12 14 15 20 14

0 16 26 32 54 66 80 95 115 129

➡

n∑

j=1

Cj = 16 + 26 + 32 + 54 + 66 + 80 + 95 + 115 + 129 = 613

Machine
16 10 6 12 22 14 15 20 14

0 16 26 32 44 66 80 95 115 129

➡

n∑

j=1

Cj = 16 + 26 + 32 + 44 + 66 + 80 + 95 + 115 + 129 = 603

➡ Idea: Schedule jobs in order of non-decreasing processing time!

Machine
6 10 12 14 14 15 16 20 22

0 6 16 28 42 56 71 87 107 129

➡

n∑

j=1

Cj = 6 + 16 + 28 + 42 + 56 + 71 + 87 + 107 + 129 = 542

······················



� Minimize sum of completion times �

� For fixed number n of jobs: minimize sum of completion times
n∑

j=1

Cj

� Example schedule:

Machine
16 10 6 22 12 14 15 20 14

0 16 26 32 54 66 80 95 115 129

➡

n∑

j=1

Cj = 16 + 26 + 32 + 54 + 66 + 80 + 95 + 115 + 129 = 613

Machine
16 10 6 12 22 14 15 20 14

0 16 26 32 44 66 80 95 115 129

➡

n∑

j=1

Cj = 16 + 26 + 32 + 44 + 66 + 80 + 95 + 115 + 129 = 603

➡ Idea: Schedule jobs in order of non-decreasing processing time!

Machine
6 10 12 14 14 15 16 20 22

0 6 16 28 42 56 71 87 107 129

➡

n∑

j=1

Cj = 6 + 16 + 28 + 42 + 56 + 71 + 87 + 107 + 129 = 542

➡ provably optimal!

······················



� Minimize makespan �

� Latest completion time ➡ minimize makespan max
j=1,...,n

Cj

······················



� Minimize makespan �

� Latest completion time ➡ minimize makespan max
j=1,...,n

Cj

� Example schedule:

Machine
16 10 6 22 12 14 15 20 14

······················



� Minimize makespan �

� Latest completion time ➡ minimize makespan max
j=1,...,n

Cj

� Example schedule:

Machine
16 10 6 22 12 14 15 20 14

0 16 26 32 54 66 80 95 115 129

······················



� Minimize makespan �

� Latest completion time ➡ minimize makespan max
j=1,...,n

Cj

� Example schedule:

Machine
16 10 6 22 12 14 15 20 14

0 16 26 32 54 66 80 95 115 129

➡ makespan: 129

······················



� Minimize makespan �

� Latest completion time ➡ minimize makespan max
j=1,...,n

Cj

� Example schedule:

Machine
16 10 6 22 12 14 15 20 14

0 16 26 32 54 66 80 95 115 129

➡ makespan: 129

Machine
16 10 6 12 22 14 15 20 14

0 16 26 32 44 66 80 95 115 129

➡ makespan: 129

······················



� Minimize makespan �

� Latest completion time ➡ minimize makespan max
j=1,...,n

Cj

� Example schedule:

Machine
16 10 6 22 12 14 15 20 14

0 16 26 32 54 66 80 95 115 129

➡ makespan: 129

Machine
16 10 6 12 22 14 15 20 14

0 16 26 32 44 66 80 95 115 129

➡ makespan: 129

➡ Any schedule (without idle times) gives the same makespan!

······················



� Minimize makespan �

� Latest completion time ➡ minimize makespan max
j=1,...,n

Cj

� Example schedule:

Machine
16 10 6 22 12 14 15 20 14

0 16 26 32 54 66 80 95 115 129

➡ makespan: 129

Machine
16 10 6 12 22 14 15 20 14

0 16 26 32 44 66 80 95 115 129

➡ makespan: 129

➡ Any schedule (without idle times) gives the same makespan!

Obvious, since the makespan

max
j=1,...,n

Cj =

n∑

j=1

pj

······················



� Minimize makespan �

� Latest completion time ➡ minimize makespan max
j=1,...,n

Cj

� Example schedule:

Machine
16 10 6 22 12 14 15 20 14

0 16 26 32 54 66 80 95 115 129

➡ makespan: 129

Machine
16 10 6 12 22 14 15 20 14

0 16 26 32 44 66 80 95 115 129

➡ makespan: 129

➡ Any schedule (without idle times) gives the same makespan!

Obvious, since the makespan

max
j=1,...,n

Cj =

n∑

j=1

pj

depends only on the input (processing times), not on the schedule itself

······················



� Jobs with release dates �

� Jobs can have: a release date rj

······················



� Jobs with release dates �

� Jobs can have: a release date rj

0

rj
job j

······················



� Jobs with release dates �

� Jobs can have: a release date rj

0

rj
job j

➡ Start time of job j cannot be before its release date

······················



� Jobs with release dates �

� Jobs can have: a release date rj

0

rj
job j

➡ Start time of job j cannot be before its release date

time0

job j

sj rj

······················



� Jobs with release dates �

� Jobs can have: a release date rj

0

rj
job j

➡ Start time of job j cannot be before its release date

time0

job j

sj rj✘

✘ ✘ ✘

······················



� Jobs with release dates �

� Jobs can have: a release date rj

0

rj
job j

➡ Start time of job j cannot be before its release date

time0

job j

sj rj✘

✘ ✘ ✘

job j

sj ✔

······················



� Jobs with release dates �

� Jobs can have: a release date rj

0

rj
job j

➡ Start time of job j cannot be before its release date

time0

job j

sj rj✘

✘ ✘ ✘

job j

sj ✔

➡ Constraint: sj ≥ rj

······················



� Minimize makespan with release dates �

� Input now: jobs with release dates

job 1
r1

job 2 r2 = 0

job 3
r3

job 4
r4

job 5
r5

job 6
r6

job 7
r7

job 8 r8 = 0

······················



� Minimize makespan with release dates �

� Input now: jobs with release dates

job 1
r1

job 2 r2 = 0

job 3
r3

job 4
r4

job 5
r5

job 6
r6

job 7
r7

job 8 r8 = 0

� Minimize makespan

······················



� Minimize makespan with release dates �

� Input now: jobs with release dates

job 1
r1

job 2 r2 = 0

job 3
r3

job 4
r4

job 5
r5

job 6
r6

job 7
r7

job 8 r8 = 0

� Minimize makespan

➡ Optimal algorithm: schedule jobs in the order of non-decreasing release dates

······················



� Minimize makespan with release dates �

� Input now: jobs with release dates

job 1
r1

job 2 r2 = 0

job 3
r3

job 4
r4

job 5
r5

job 6
r6

job 7
r7

job 8 r8 = 0

� Minimize makespan

➡ Optimal algorithm: schedule jobs in the order of non-decreasing release dates

Machine

0 r5 r3 maxCj

······················



� More variants �

� Jobs can...

• ...have weights (priorities)

······················



� More variants �

� Jobs can...

• ...have weights (priorities)

➡ minimize weighted sum of completion times : same as in the unweighted case

······················



� More variants �

� Jobs can...

• ...have weights (priorities)

➡ minimize weighted sum of completion times : same as in the unweighted case

• ...have due dates (preferred latest completion time)

······················



� More variants �

� Jobs can...

• ...have weights (priorities)

➡ minimize weighted sum of completion times : same as in the unweighted case

• ...have due dates (preferred latest completion time)

➡ minimize maximum lateness : schedule jobs in order of non-decreasing due dates

······················



� More variants �

� Jobs can...

• ...have weights (priorities)

➡ minimize weighted sum of completion times : same as in the unweighted case

• ...have due dates (preferred latest completion time)

➡ minimize maximum lateness : schedule jobs in order of non-decreasing due dates

• ...have both due dates and release dates

······················



� More variants �

� Jobs can...

• ...have weights (priorities)

➡ minimize weighted sum of completion times : same as in the unweighted case

• ...have due dates (preferred latest completion time)

➡ minimize maximum lateness : schedule jobs in order of non-decreasing due dates

• ...have both due dates and release dates

➡ more complicated (NP-hard)

······················



� More variants �

� Jobs can...

• ...have weights (priorities)

➡ minimize weighted sum of completion times : same as in the unweighted case

• ...have due dates (preferred latest completion time)

➡ minimize maximum lateness : schedule jobs in order of non-decreasing due dates

• ...have both due dates and release dates

➡ more complicated (NP-hard)

• ...be allowed to be interrupted (possibly at additional cost/time)

······················



� More variants �

� Jobs can...

• ...have weights (priorities)

➡ minimize weighted sum of completion times : same as in the unweighted case

• ...have due dates (preferred latest completion time)

➡ minimize maximum lateness : schedule jobs in order of non-decreasing due dates

• ...have both due dates and release dates

➡ more complicated (NP-hard)

• ...be allowed to be interrupted (possibly at additional cost/time)

➡ easier if no cost/time involved, harder otherwise

······················



� More variants �

� Jobs can...

• ...have weights (priorities)

➡ minimize weighted sum of completion times : same as in the unweighted case

• ...have due dates (preferred latest completion time)

➡ minimize maximum lateness : schedule jobs in order of non-decreasing due dates

• ...have both due dates and release dates

➡ more complicated (NP-hard)

• ...be allowed to be interrupted (possibly at additional cost/time)

➡ easier if no cost/time involved, harder otherwise

• ...consume resources

······················



� More variants �

� Jobs can...

• ...have weights (priorities)

➡ minimize weighted sum of completion times : same as in the unweighted case

• ...have due dates (preferred latest completion time)

➡ minimize maximum lateness : schedule jobs in order of non-decreasing due dates

• ...have both due dates and release dates

➡ more complicated (NP-hard)

• ...be allowed to be interrupted (possibly at additional cost/time)

➡ easier if no cost/time involved, harder otherwise

• ...consume resources

➡ Resource-constrained scheduling

······················



� Summary single-machine scheduling �

� Single Machine Scheduling: only one machine available

······················



� Summary single-machine scheduling �

� Single Machine Scheduling: only one machine available

➡ Minimal latest completion time is constant

······················



� Summary single-machine scheduling �

� Single Machine Scheduling: only one machine available

➡ Minimal latest completion time is constant

➡ With no release dates, greedy strategy gives an optimal solution

······················



� Summary single-machine scheduling �

� Single Machine Scheduling: only one machine available

➡ Minimal latest completion time is constant

➡ With no release dates, greedy strategy gives an optimal solution

➡ With release dates, greedy strategy only works for makespan minimization

······················



� Summary single-machine scheduling �

� Single Machine Scheduling: only one machine available

➡ Minimal latest completion time is constant

➡ With no release dates, greedy strategy gives an optimal solution

➡ With release dates, greedy strategy only works for makespan minimization

� Summary if no interruptions and resources are involved:

Objective
∑

Cj maxCj lateness

no release dates non-decreasing

process times

trivial non-decreasing

due dates

with release dates NP-hard non-decreasing

release dates

NP-hard

······················



� Jobs with precedence constraints �

� Example:

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

······················



� Jobs with precedence constraints �

� Example:

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

➡ Order by non-decreasing process times:

······················



� Jobs with precedence constraints �

� Example:

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

➡ Order by non-decreasing process times:

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

······················



� Jobs with precedence constraints �

� Example:

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

➡ Order by non-decreasing process times:

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

with precedence constraints ➡ Project scheduling

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

preceded by – 1 1 2 3 3 4 5,6 5,6 7 8,9 10,11 11 12,13

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

······················



� Jobs with precedence constraints �

� Example:

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

➡ Order by non-decreasing process times:

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

with precedence constraints ➡ Project scheduling

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

preceded by – 1 1 2 3 3 4 5,6 5,6 7 8,9 10,11 11 12,13

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

✘ ✘ ✘

······················



� Jobs with precedence constraints �

� Example:

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

➡ Order by non-decreasing process times:

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

with precedence constraints ➡ Project scheduling

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

preceded by – 1 1 2 3 3 4 5,6 5,6 7 8,9 10,11 11 12,13

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

✘ ✘ ✘

➡ Schedule is infeasible!

······················



� Jobs with precedence constraints �

� Example:

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

➡ Order by non-decreasing process times:

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

with precedence constraints ➡ Project scheduling

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

preceded by – 1 1 2 3 3 4 5,6 5,6 7 8,9 10,11 11 12,13

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

✘ ✘ ✘

➡ Schedule is infeasible!

� Feasible schedule:

Machine

0 maxCj

1 2 4 7 10 3 5 6 8 9 11 12 13 14

······················



� Jobs with precedence constraints �

� Example:

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

➡ Order by non-decreasing process times:

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

with precedence constraints ➡ Project scheduling

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

preceded by – 1 1 2 3 3 4 5,6 5,6 7 8,9 10,11 11 12,13

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

✘ ✘ ✘

➡ Schedule is infeasible!

� Feasible schedule:

Machine

0 maxCj

1 2 4 7 10 3 5 6 8 9 11 12 13 14

······················



� Jobs with precedence constraints �

� Example:

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

➡ Order by non-decreasing process times:

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

with precedence constraints ➡ Project scheduling

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

preceded by – 1 1 2 3 3 4 5,6 5,6 7 8,9 10,11 11 12,13

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

✘ ✘ ✘

➡ Schedule is infeasible!

� Feasible schedule:

Machine

0 maxCj

1 2 4 7 10 3 5 6 8 9 11 12 13 14

······················



� Jobs with precedence constraints �

� Example:

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

➡ Order by non-decreasing process times:

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

with precedence constraints ➡ Project scheduling

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

preceded by – 1 1 2 3 3 4 5,6 5,6 7 8,9 10,11 11 12,13

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

✘ ✘ ✘

➡ Schedule is infeasible!

� Feasible schedule:

Machine

0 maxCj

1 2 4 7 10 3 5 6 8 9 11 12 13 14

······················



� Jobs with precedence constraints �

� Example:

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

➡ Order by non-decreasing process times:

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

with precedence constraints ➡ Project scheduling

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

preceded by – 1 1 2 3 3 4 5,6 5,6 7 8,9 10,11 11 12,13

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

✘ ✘ ✘

➡ Schedule is infeasible!

� Feasible schedule:

Machine

0 maxCj

1 2 4 7 10 3 5 6 8 9 11 12 13 14

······················



� Jobs with precedence constraints �

� Example:

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

➡ Order by non-decreasing process times:

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

with precedence constraints ➡ Project scheduling

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

preceded by – 1 1 2 3 3 4 5,6 5,6 7 8,9 10,11 11 12,13

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

✘ ✘ ✘

➡ Schedule is infeasible!

� Feasible schedule:

Machine

0 maxCj

1 2 4 7 10 3 5 6 8 9 11 12 13 14

······················



� Jobs with precedence constraints �

� Example:

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

➡ Order by non-decreasing process times:

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

with precedence constraints ➡ Project scheduling

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

preceded by – 1 1 2 3 3 4 5,6 5,6 7 8,9 10,11 11 12,13

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

✘ ✘ ✘

➡ Schedule is infeasible!

� Feasible schedule:

Machine

0 maxCj

1 2 4 7 10 3 5 6 8 9 11 12 13 14

······················



� Jobs with precedence constraints �

� Example:

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

➡ Order by non-decreasing process times:

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

with precedence constraints ➡ Project scheduling

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

preceded by – 1 1 2 3 3 4 5,6 5,6 7 8,9 10,11 11 12,13

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

✘ ✘ ✘

➡ Schedule is infeasible!

� Feasible schedule:

Machine

0 maxCj

1 2 4 7 10 3 5 6 8 9 11 12 13 14

······················



� Jobs with precedence constraints �

� Example:

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

➡ Order by non-decreasing process times:

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

with precedence constraints ➡ Project scheduling

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

preceded by – 1 1 2 3 3 4 5,6 5,6 7 8,9 10,11 11 12,13

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

✘ ✘ ✘

➡ Schedule is infeasible!

� Feasible schedule:

Machine

0 maxCj

1 2 4 7 10 3 5 6 8 9 11 12 13 14

······················



� Jobs with precedence constraints �

� Example:

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

➡ Order by non-decreasing process times:

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

with precedence constraints ➡ Project scheduling

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

preceded by – 1 1 2 3 3 4 5,6 5,6 7 8,9 10,11 11 12,13

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

✘ ✘ ✘

➡ Schedule is infeasible!

� Feasible schedule:

Machine

0 maxCj

1 2 4 7 10 3 5 6 8 9 11 12 13 14

······················



� Jobs with precedence constraints �

� Example:

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

➡ Order by non-decreasing process times:

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

with precedence constraints ➡ Project scheduling

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

preceded by – 1 1 2 3 3 4 5,6 5,6 7 8,9 10,11 11 12,13

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

✘ ✘ ✘

➡ Schedule is infeasible!

� Feasible schedule:

Machine

0 maxCj

1 2 4 7 10 3 5 6 8 9 11 12 13 14

······················



� Jobs with precedence constraints �

� Example:

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

➡ Order by non-decreasing process times:

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

with precedence constraints ➡ Project scheduling

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

preceded by – 1 1 2 3 3 4 5,6 5,6 7 8,9 10,11 11 12,13

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

✘ ✘ ✘

➡ Schedule is infeasible!

� Feasible schedule:

Machine

0 maxCj

1 2 4 7 10 3 5 6 8 9 11 12 13 14

······················



� Jobs with precedence constraints �

� Example:

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

➡ Order by non-decreasing process times:

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

with precedence constraints ➡ Project scheduling

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

preceded by – 1 1 2 3 3 4 5,6 5,6 7 8,9 10,11 11 12,13

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

✘ ✘ ✘

➡ Schedule is infeasible!

� Feasible schedule:

Machine

0 maxCj

1 2 4 7 10 3 5 6 8 9 11 12 13 14

······················



� Jobs with precedence constraints �

� Example:

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

➡ Order by non-decreasing process times:

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

with precedence constraints ➡ Project scheduling

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

preceded by – 1 1 2 3 3 4 5,6 5,6 7 8,9 10,11 11 12,13

Machine

0 maxCj

1 14 2 8 5 11 13 12 3 10 7 9 4 6

✘ ✘ ✘

➡ Schedule is infeasible!

� Feasible schedule:

Machine

0 maxCj

1 2 4 7 10 3 5 6 8 9 11 12 13 14

······················



� Precedence graph �

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

preceded by – 1 1 2 3 3 4 5,6 5,6 7 8,9 10,11 11 12,13

······················



� Precedence graph �

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

preceded by – 1 1 2 3 3 4 5,6 5,6 7 8,9 10,11 11 12,13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

······················



� Precedence graph �

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

preceded by – 1 1 2 3 3 4 5,6 5,6 7 8,9 10,11 11 12,13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

······················



� Precedence graph �

job j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

process time pj 5 6 9 12 7 12 10 6 10 9 7 8 7 5

preceded by – 1 1 2 3 3 4 5,6 5,6 7 8,9 10,11 11 12,13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

······················



� Greedy strategy for single-machine project scheduling �

� Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

······················



� Greedy strategy for single-machine project scheduling �

� Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

Machine 1

✔

······················



� Greedy strategy for single-machine project scheduling �

� Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

Machine 1

✔

2

✔

······················



� Greedy strategy for single-machine project scheduling �

� Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

Machine 1

✔

2

✔

4

✔

······················



� Greedy strategy for single-machine project scheduling �

� Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

Machine 1

✔

2

✔

4

✔

7

✔

······················



� Greedy strategy for single-machine project scheduling �

� Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

Machine 1

✔

2

✔

4

✔

7

✔

10

✔

······················



� Greedy strategy for single-machine project scheduling �

� Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

Machine 1

✔

2

✔

4

✔

7

✔

10

✔

3

✔

······················



� Greedy strategy for single-machine project scheduling �

� Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

Machine 1

✔

2

✔

4

✔

7

✔

10

✔

3

✔

5

✔

······················



� Greedy strategy for single-machine project scheduling �

� Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

Machine 1

✔

2

✔

4

✔

7

✔

10

✔

3

✔

5

✔

6

✔

······················



� Greedy strategy for single-machine project scheduling �

� Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

Machine 1

✔

2

✔

4

✔

7

✔

10

✔

3

✔

5

✔

6

✔

8

✔

······················



� Greedy strategy for single-machine project scheduling �

� Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

Machine 1

✔

2

✔

4

✔

7

✔

10

✔

3

✔

5

✔

6

✔

8

✔

9

✔

······················



� Greedy strategy for single-machine project scheduling �

� Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

Machine 1

✔

2

✔

4

✔

7

✔

10

✔

3

✔

5

✔

6

✔

8

✔

9

✔

11

✔

······················



� Greedy strategy for single-machine project scheduling �

� Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

Machine 1

✔

2

✔

4

✔

7

✔

10

✔

3

✔

5

✔

6

✔

8

✔

9

✔

11

✔

12

✔

······················



� Greedy strategy for single-machine project scheduling �

� Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

Machine 1

✔

2

✔

4

✔

7

✔

10

✔

3

✔

5

✔

6

✔

8

✔

9

✔

11

✔

12

✔

13

✔

······················



� Greedy strategy for single-machine project scheduling �

� Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

Machine 1

✔

2

✔

4

✔

7

✔

10

✔

3

✔

5

✔

6

✔

8

✔

9

✔

11

✔

12

✔

13

✔

14

✔

······················



� Greedy strategy for single-machine project scheduling �

� Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

Machine 1

✔

2

✔

4

✔

7

✔

10

✔

3

✔

5

✔

6

✔

8

✔

9

✔

11

✔

12

✔

13

✔

14

✔

➡ Polynomial runtime

······················



� Greedy strategy for single-machine project scheduling �

� Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

Machine 1

✔

2

✔

4

✔

7

✔

10

✔

3

✔

5

✔

6

✔

8

✔

9

✔

11

✔

12

✔

13

✔

14

✔

➡ Polynomial runtime ➡ Efficient algorithm!

······················



� Project scheduling with unlimited number of machines �

� Suppose there are arbitrarily many machines available

······················



� Project scheduling with unlimited number of machines �

� Suppose there are arbitrarily many machines available

➡ All jobs with fulfilled precedences can be carried out

immediately and parallely

······················



� Project scheduling with unlimited number of machines �

� Suppose there are arbitrarily many machines available

➡ All jobs with fulfilled precedences can be carried out

immediately and parallely

� Example: Project scheduling on construction site

······················



� Project scheduling with unlimited number of machines �

� Suppose there are arbitrarily many machines available

➡ All jobs with fulfilled precedences can be carried out

immediately and parallely

� Example: Project scheduling on construction site

➡ Different tasks done by different contractors:

Concrete builder, stonemasonry, house painter,

glazier, ...

➡ can provide as many workers as necessary to

carry out each task

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

51

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

51

50

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

51

50

56

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

➡ Makespan is the maximal earliest possible completion time computed

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

➡ Makespan is the maximal earliest possible completion time computed

� Backward procedure: compute latest possible completion times for all jobs

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

➡ Makespan is the maximal earliest possible completion time computed

� Backward procedure: compute latest possible completion times for all jobs

56

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

➡ Makespan is the maximal earliest possible completion time computed

� Backward procedure: compute latest possible completion times for all jobs

56

51

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

➡ Makespan is the maximal earliest possible completion time computed

� Backward procedure: compute latest possible completion times for all jobs

56

51

51

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

➡ Makespan is the maximal earliest possible completion time computed

� Backward procedure: compute latest possible completion times for all jobs

56

51

51

43

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

➡ Makespan is the maximal earliest possible completion time computed

� Backward procedure: compute latest possible completion times for all jobs

56

51

51

43

36

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

➡ Makespan is the maximal earliest possible completion time computed

� Backward procedure: compute latest possible completion times for all jobs

56

51

51

43

36

36

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

➡ Makespan is the maximal earliest possible completion time computed

� Backward procedure: compute latest possible completion times for all jobs

56

51

51

43

36

36

26

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

➡ Makespan is the maximal earliest possible completion time computed

� Backward procedure: compute latest possible completion times for all jobs

56

51

51

43

36

36

26

26

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

➡ Makespan is the maximal earliest possible completion time computed

� Backward procedure: compute latest possible completion times for all jobs

56

51

51

43

36

36

26

26

14

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

➡ Makespan is the maximal earliest possible completion time computed

� Backward procedure: compute latest possible completion times for all jobs

56

51

51

43

36

36

26

26

14

43

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

➡ Makespan is the maximal earliest possible completion time computed

� Backward procedure: compute latest possible completion times for all jobs

56

51

51

43

36

36

26

26

14

43

34

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

➡ Makespan is the maximal earliest possible completion time computed

� Backward procedure: compute latest possible completion times for all jobs

56

51

51

43

36

36

26

26

14

43

3424

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

➡ Makespan is the maximal earliest possible completion time computed

� Backward procedure: compute latest possible completion times for all jobs

56

51

51

43

36

36

26

26

14

43

342412

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

➡ Makespan is the maximal earliest possible completion time computed

� Backward procedure: compute latest possible completion times for all jobs

56

51

51

43

36

36

26

26

14

43

342412

5

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

➡ Makespan is the maximal earliest possible completion time computed

� Backward procedure: compute latest possible completion times for all jobs

56

51

51

43

36

36

26

26

14

43

342412

5

➡ Jobs with earliest = latest possible completion time are the critical jobs

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

➡ Makespan is the maximal earliest possible completion time computed

� Backward procedure: compute latest possible completion times for all jobs

56

51

51

43

36

36

26

26

14

43

342412

5

➡ Jobs with earliest = latest possible completion time are the critical jobs

······················



� Critical Path Method �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

� Forward procedure: compute earliest possible completion times for all jobs

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

➡ Makespan is the maximal earliest possible completion time computed

� Backward procedure: compute latest possible completion times for all jobs

56

51

51

43

36

36

26

26

14

43

342412

5

➡ Jobs with earliest = latest possible completion time are the critical jobs

polynomial!

······················



� Critical Path �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

56

51

51

43

36

36

26

26

14

43

342412

5

� A critical path is a chain of critical jobs, starting at time 0 and ending at the makespan

······················



� Critical Path �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

56

51

51

43

36

36

26

26

14

43

342412

5

� A critical path is a chain of critical jobs, starting at time 0 and ending at the makespan

······················



� Critical Path �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

56

51

51

43

36

36

26

26

14

43

342412

5

� A critical path is a chain of critical jobs, starting at time 0 and ending at the makespan

� Critical path is a longest path in the precedence graph from s to t

······················



� Critical Path �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

56

51

51

43

36

36

26

26

14

43

342412

5

� A critical path is a chain of critical jobs, starting at time 0 and ending at the makespan

� Critical path is a longest path in the precedence graph from s to t

➡ Can be computed by a shortest path algorithm!

(using negative arc lengths – allowed since there are no cycles in the precedence graph)

······················



� Critical Path �

1

2

3

4

5

6

7

8

9

10

11

12

13

14

s

t

5 6

9

12

7

12

10

6

10 6

10

9

7

7

8

8

7

5

5 0

5

11 23 33

42

14

21

26

32

36

43

51

50

5656

56

51

51

43

36

36

26

26

14

43

342412

5

� A critical path is a chain of critical jobs, starting at time 0 and ending at the makespan

� Critical path is a longest path in the precedence graph from s to t

➡ Can be computed by a shortest path algorithm!

(using negative arc lengths – allowed since there are no cycles in the precedence graph)

polynomial!

······················



� Summary project scheduling �

� Project scheduling: minimize makespan with single machine

······················



� Summary project scheduling �

� Project scheduling: minimize makespan with single machine

➡ Efficiently solvable (by greedy algorithm)

······················



� Summary project scheduling �

� Project scheduling: minimize makespan with single machine

➡ Efficiently solvable (by greedy algorithm)

� Minimize sum of completion times

······················



� Summary project scheduling �

� Project scheduling: minimize makespan with single machine

➡ Efficiently solvable (by greedy algorithm)

� Minimize sum of completion times is more difficult...

······················



� Summary project scheduling �

� Project scheduling: minimize makespan with single machine

➡ Efficiently solvable (by greedy algorithm)

� Minimize sum of completion times is more difficult...

� More than one parallel machines

······················



� Summary project scheduling �

� Project scheduling: minimize makespan with single machine

➡ Efficiently solvable (by greedy algorithm)

� Minimize sum of completion times is more difficult...

� More than one parallel machines is also difficult...

······················



� Summary project scheduling �

� Project scheduling: minimize makespan with single machine

➡ Efficiently solvable (by greedy algorithm)

� Minimize sum of completion times is more difficult...

� More than one parallel machines is also difficult...

� Except: unlimited number of machines

······················



� Summary project scheduling �

� Project scheduling: minimize makespan with single machine

➡ Efficiently solvable (by greedy algorithm)

� Minimize sum of completion times is more difficult...

� More than one parallel machines is also difficult...

� Except: unlimited number of machines

➡ Critical Path Method

······················



� Summary project scheduling �

� Project scheduling: minimize makespan with single machine

➡ Efficiently solvable (by greedy algorithm)

� Minimize sum of completion times is more difficult...

� More than one parallel machines is also difficult...

� Except: unlimited number of machines

➡ Critical Path Method

� Summary:

Objective
∑

Cj maxCj

single machine NP-hard polynomial (greedy algorithm)

≥ 2 machines NP-hard NP-hard

unlimited machines ...? polynomial (critical path method)

······················



� Scheduling on 3 identical machines �

� Jobs can be carried out on one of 3 identical machines

Machine A

Machine B

Machine C

6

10

12

14

14

16

16

20

22

······················



� Scheduling on 3 identical machines �

� Jobs can be carried out on one of 3 identical machines

Machine A

Machine B

Machine C

6

10

12

14

14

16

16

20

22

� Minimize sum of completion times

······················



� Scheduling on 3 identical machines �

� Jobs can be carried out on one of 3 identical machines

Machine A

Machine B

Machine C

6

10

12

14

14

16

16

20

22

� Minimize sum of completion times

Machine A

Machine B

Machine C

6

10

12

14

14

16

16

20

22

······················



� Scheduling on 3 identical machines �

� Jobs can be carried out on one of 3 identical machines

Machine A

Machine B

Machine C

6

10

12

14

14

16

16

20

22

� Minimize sum of completion times

Machine A

Machine B

Machine C

6

10

12

14

14

16

16

20

22

n∑

j=1

Cj = 6 + 20 + 36

= 10 + 24 + 44

= 12 + 28 + 50

= 230

······················



� Scheduling on 3 identical machines �

� Jobs can be carried out on one of 3 identical machines

Machine A

Machine B

Machine C

6

10

12

14

14

16

16

20

22

� Minimize sum of completion times

Machine A

Machine B

Machine C

6

10

12

14

14

16

16

20

22

n∑

j=1

Cj = 6 + 20 + 36

= 10 + 24 + 44

= 12 + 28 + 50

= 230

➡ Optimal: schedule by non-decreasing processing times, on earliest available machine

······················



� Summary parallel machines �

� Minimize sum of completion times: polynomial (greedy algorithm)

······················



� Summary parallel machines �

� Minimize sum of completion times: polynomial (greedy algorithm)

� Minimize makespan: NP-hard

······················



� Summary parallel machines �

� Minimize sum of completion times: polynomial (greedy algorithm)

� Minimize makespan: NP-hard

� Variants: types of machines

• Identical machines

······················



� Summary parallel machines �

� Minimize sum of completion times: polynomial (greedy algorithm)

� Minimize makespan: NP-hard

� Variants: types of machines

• Identical machines

• Uniform machines: machines differ by a fixed speed factor

······················



� Summary parallel machines �

� Minimize sum of completion times: polynomial (greedy algorithm)

� Minimize makespan: NP-hard

� Variants: types of machines

• Identical machines

• Uniform machines: machines differ by a fixed speed factor

• Unrelated machines: processing times differ for every job on each machine

······················



� Summary parallel machines �

� Minimize sum of completion times: polynomial (greedy algorithm)

� Minimize makespan: NP-hard

� Variants: types of machines

• Identical machines

• Uniform machines: machines differ by a fixed speed factor

• Unrelated machines: processing times differ for every job on each machine

� All the other additional features: weights, release dates, precedence constraints, ...

······················



� Summary parallel machines �

� Minimize sum of completion times: polynomial (greedy algorithm)

� Minimize makespan: NP-hard

� Variants: types of machines

• Identical machines

• Uniform machines: machines differ by a fixed speed factor

• Unrelated machines: processing times differ for every job on each machine

� All the other additional features: weights, release dates, precedence constraints, ...

� Multi-operation models : job has to be processed sequentially on multiple machines

······················



� Summary parallel machines �

� Minimize sum of completion times: polynomial (greedy algorithm)

� Minimize makespan: NP-hard

� Variants: types of machines

• Identical machines

• Uniform machines: machines differ by a fixed speed factor

• Unrelated machines: processing times differ for every job on each machine

� All the other additional features: weights, release dates, precedence constraints, ...

� Multi-operation models : job has to be processed sequentially on multiple machines

• Open shop : order in which jobs pass through machines is unimportant

······················



� Summary parallel machines �

� Minimize sum of completion times: polynomial (greedy algorithm)

� Minimize makespan: NP-hard

� Variants: types of machines

• Identical machines

• Uniform machines: machines differ by a fixed speed factor

• Unrelated machines: processing times differ for every job on each machine

� All the other additional features: weights, release dates, precedence constraints, ...

� Multi-operation models : job has to be processed sequentially on multiple machines

• Open shop : order in which jobs pass through machines is unimportant

• Flow shop : each job has the same machine order (A, B, ...)

······················



� Summary parallel machines �

� Minimize sum of completion times: polynomial (greedy algorithm)

� Minimize makespan: NP-hard

� Variants: types of machines

• Identical machines

• Uniform machines: machines differ by a fixed speed factor

• Unrelated machines: processing times differ for every job on each machine

� All the other additional features: weights, release dates, precedence constraints, ...

� Multi-operation models : job has to be processed sequentially on multiple machines

• Open shop : order in which jobs pass through machines is unimportant

• Flow shop : each job has the same machine order (A, B, ...)

• Job shop : each job can have a different machine order

······················



� Summary parallel machines �

� Minimize sum of completion times: polynomial (greedy algorithm)

� Minimize makespan: NP-hard

� Variants: types of machines

• Identical machines

• Uniform machines: machines differ by a fixed speed factor

• Unrelated machines: processing times differ for every job on each machine

� All the other additional features: weights, release dates, precedence constraints, ...

� Multi-operation models : job has to be processed sequentially on multiple machines

• Open shop : order in which jobs pass through machines is unimportant

• Flow shop : each job has the same machine order (A, B, ...)

• Job shop : each job can have a different machine order

➡ Makespan minimization for job shop scheduling can also be solved using networks

······················



� Overview �

� Models, Data and Algorithms

� Linear Optimization

� Mathematical Background: Polyhedra, Simplex-Algorithm

� Sensitivity Analysis; (Mixed) Integer Programming

� MIP Modelling

� MIP Modelling: More Examples; Branch & Bound

� Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms

� TSP-Heuristics

� Network Flows

� Shortest Path Problem

� Complexity Theory

� Nonlinear Optimization

� Scheduling

� Lot Sizing & Intro to Multiobjective Optimization (Feb 01)

� Summary (Feb 08)

� Oral exam (Feb 15)

······················


