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< Overview >

Models, Data and Algorithms

Linear Optimization

Mathematical Background: Polyhedra, Simplex-Algorithm
Sensitivity Analysis; (Mixed) Integer Programming

MIP Modelling

MIP Modelling: More Examples; Branch & Bound

Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms
TSP-Heuristics

Network Flows

Shortest Path Problem

Complexity Theory

Nonlinear Optimization

Scheduling

Lot Sizing & Intro to Multiobjective Optimization (Feb 01)
Summary (Feb 08)

Oral exam (Feb 15)
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< Example: printing machine >

Printing machine Jobs

Job 1: Book
200 pages, 500 copies
3h printing time

Job 2: Book
60 pages, 2500 copies
4h printing time

Job 3: Thesis
170 pages, 10 copies
1h printing time

> Determine an optimal order for the jobs to be processed...

[ ...if jobs have to be finished at a given time
[ ...if some jobs are more important than others

[1 ...if there is more than one machine (identical or different machines)
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< Example: computation jobs on supercomputer >

> Supercomputing at ZIB

=
P ]

Norddeutscher Verbund fiir Hoch- und Héchstieistungsrechnen

> ~1500 compute nodes with ~13000 cores

> Schedule computation jobs...

...consisting of thousands of parallel processes

...according to their release times
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< General principle >

> Jobs:

> Schedule (Gantt chart): [] optimal with respect to an objective to specify!
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4 Notation >

> Jobs usually have: a processing time p;
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4 Notation >

> Jobs usually have: a processing time p;
> A schedule has to provide: a start time s;, such that different jobs do not overlap
[0 Combinatorial optimization problem [ IP formulations for most scheduling problems

[ | Completion time C; := s; + p;

1 n
[1 Average completion time for n jobs: — Z C
n =

Input O Dy Pk

job k
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< Minimize sum of completion times >

n
> For fixed number n of jobs: minimize sum of completion times ZCj
j=1
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n

> For fixed number n of jobs: minimize sum of completion times ZC’j
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> Example schedule:
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n
> For fixed number n of jobs: minimize sum of completion times ZCj
j=1
> Example schedule:

1 1 K T 3 - - -
0 16 26 32 i 66 80 05 115 129
n

- ZCJ — 16426432+ 44 + 66 + 80 + 95+ 115+ 129 = [603
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< Minimize sum of completion times >

n
> For fixed number n of jobs: minimize sum of completion times ZCj
j=1
> Example schedule:

4

1 R T 1 1 T 1
0 16 26 32 i 66 80 95 115 129

[1 ldea: Schedule jobs in order of non-decreasing processing time! [ provably optimal!

J

s z
T 7 T T T T T T T T ’
0O © 16 28 42 56 71 87 107 129
n
[ C; = 6+16+28+42+ 56+ 71+ 87+ 107 + 129 = 542
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< Minimize makespan >
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> Example schedule:
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< Minimize makespan >

> Latest completion time [I minimize makespan max C;
1=1,....n

> Example schedule:

e S R -

T T 7 T T T T T T
115 129

W

o =
—_
(@)
N
(@)
(&)
N
(@)
(@)
00)
o
O
1

[1 makespan: 129

(7 Any schedule (without idle times) gives the same makespan!

Obvious, since the makespan

max C; Z Dj

]_

depends only on the input (processing times), not on the schedule itself
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< Jobs with release dates >

> Jobs can have: a  release date r;

Tj : .
;

[1 Start time of job j cannot be before its release date

[ Constraint: s; > r;

0 T [ T time
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< Minimize makespan with release dates >

> Input now: jobs with release dates
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> Input now: jobs with release dates
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More variants

Jobs can...

...have 'weights (priorities)

[ minimize weighted sum of completion times : same as in the unweighted case

...have ' due dates (preferred latest completion time)

[J minimize maximum lateness : schedule jobs in order of non-decreasing due dates

...have both due dates and release dates

[ more complicated (NP-hard)

...be allowed to be interrupted (possibly at additional cost/time)
(1 easier if no cost/time involved, harder otherwise

...CONSUMe resources

[1 Resource-constrained scheduling
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< Summary single-machine scheduling >

> Single Machine Scheduling: only one machine available
[ Minimal latest completion time is constant
[0 With no release dates, greedy strategy gives an optimal solution

[0 With release dates, greedy strategy only works for makespan minimization

> Summary if no interruptions and resources are involved:

Objective
>.C; max C} lateness
no release dates | non-decreasing trivial non-decreasing
process times due dates
with release dates | \/P-hard non-decreasing NP-hard
release dates
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< Jobs with precedence constraints >

> Example:
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> Example:
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> Example: with precedence constraints [1 | Project scheduling
job j 1 2 HA B 7B N8 @ o

process time p;

5 6 9 12 7 12 10 6 10 9 7

preceded by

— 1 1 2 3 3 4 56 5,6 I 38,9

¥

max C)
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> Feasible schedule:
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< Precedence graph >
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< Greedy strategy for single-machine project scheduling >

> Greedy strategy: schedule an arbitrary job next with already fulfilled precedences
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< Greedy strategy for single-machine project scheduling >

> Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

[1  Polynomial runtime [ Efficient algorithm!
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< Project scheduling with unlimited number of machines >

> Suppose there are arbitrarily many machines available
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< Project scheduling with unlimited number of machines >

> Suppose there are arbitrarily many machines available

(1 All jobs with fulfilled precedences can be carried out

immediately and parallely

> Example: Project scheduling on construction site

[1 Different tasks done by different contractors:
Concrete builder, stonemasonry, house painter,

glazier, ...

[l can provide as many workers as necessary to
carry out each task
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< Critical Path Method >

> Forward procedure: compute [ carlicst possible completion times for all jobs
[1 Makespan is the maximal earliest possible completion time computed

> Backward procedure: compute latest possible completion times for all jobs
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< Critical Path Method >

> Forward procedure: compute [ carlicst possible completion times for all jobs
[1 Makespan is the maximal earliest possible completion time computed
> Backward procedure: compute latest possible completion times for all jobs

[1 Jobs with earliest = latest possible completion time are the critical jobs
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> Forward procedure: compute [ carlicst possible completion times for all jobs
[1 Makespan is the maximal earliest possible completion time computed
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Critical Path Method >

Forward procedure: compute [ earlicst possible completion times for all jobs

[1 Makespan is the maximal earliest possible completion time computed :
polynomial!

Backward procedure: compute latest possible completion times for all jobs

[1 Jobs with earliest = latest possible completion time are the critical jobs

@—‘—0

1B



< Critical Path >

> A critical path is a chain of critical jobs, starting at time 0 and ending at the makespan

1B



< Critical Path >

> A critical path is a chain of critical jobs, starting at time 0 and ending at the makespan

1B
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> A critical path is a chain of critical jobs, starting at time 0 and ending at the makespan

> Critical path is a longest path in the precedence graph from s to ¢
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Critical Path >

> A critical path is a chain of critical jobs, starting at time 0 and ending at the makespan
> Critical path is a longest path in the precedence graph from s to ¢

[0 Can be computed by a shortest path algorithm!

(using negative arc lengths — allowed since there are no cycles in the precedence graph)
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Critical Path >

> A critical path is a chain of critical jobs, starting at time 0 and ending at the makespan

> Critical path is a longest path in the precedence graph from s to ¢

polynomial!
[0 Can be computed by a shortest path algorithm!

(using negative arc lengths — allowed since there are no cycles in the precedence graph)
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Summary project scheduling

Project scheduling: minimize makespan with single machine

[1 Efficiently solvable (by greedy algorithm)

Minimize sum of completion times is more difficult...

More than one parallel machines is also difficult...

Except: unlimited number of machines

[1 Critical Path Method

Summary:
Objective
>.C; max C)
single machine NP-hard polynomial (greedy algorithm)
> 2 machines NP-hard NP-hard
unlimited machines polynomial (critical path method)
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< Scheduling on 3 identical machines >

> Jobs can be carried out on one of 3 identical machines
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> Jobs can be carried out on one of 3 identical machines
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> Minimize sum of completion times

o G v - S0 = 6420436
j=1
= 10+ 24+ 4
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< Scheduling on 3 identical machines

> Jobs can be carried out on one of 3 identical machines

v I

]

e

22

> Minimize sum of completion times

oy -

AN
4

6 + 20 + 36
10 +24 +44
12 4 28 4- 50
230

[1 Optimal: schedule by non-decreasing processing times, on earliest available machine
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< Summary parallel machines >

> Minimize sum of completion times: polynomial (greedy algorithm)
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< Summary parallel machines >

> Minimize sum of completion times: polynomial (greedy algorithm)
> Minimize makespan: N P-hard
> Variants: types of machines
e Identical machines
e Uniform machines: machines differ by a fixed speed factor
e Unrelated machines: processing times differ for every job on each machine
> All the other additional features: weights, release dates, precedence constraints, ...
>  Multi-operation models : job has to be processed sequentially on multiple machines
e Open shop : order in which jobs pass through machines is unimportant
e Flow shop : each job has the same machine order (A, B, ...)
e Job shop : each job can have a different machine order

[1 Makespan minimization for job shop scheduling can also be solved using networks

ZZ[][33



< Overview >

Models, Data and Algorithms

Linear Optimization

Mathematical Background: Polyhedra, Simplex-Algorithm
Sensitivity Analysis; (Mixed) Integer Programming

MIP Modelling

MIP Modelling: More Examples; Branch & Bound

Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms
TSP-Heuristics

Network Flows

Shortest Path Problem

Complexity Theory

Nonlinear Optimization

Scheduling

Lot Sizing & Intro to Multiobjective Optimization (Feb 01)
Summary (Feb 08)

Oral exam (Feb 15)
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