Mathematical Tools
for Engineering and Management

Lecture 13

25 Jan 2012

P PEILLT
SRR

< Overview >

Models, Data and Algorithms

Linear Optimization

Mathematical Background: Polyhedra, Simplex-Algorithm
Sensitivity Analysis; (Mixed) Integer Programming

MIP Modelling

MIP Modelling: More Examples; Branch & Bound

Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms
TSP-Heuristics

Network Flows

Shortest Path Problem

Complexity Theory

Nonlinear Optimization

Scheduling

Lot Sizing & Intro to Multiobjective Optimization (Feb 01)
Summary (Feb 08)

Oral exam (Feb 15)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

ZZ[][33

< Example: printing machine >

Printing machine

1B

< Example: printing machine >

Printing machine Jobs

1B

< Example: printing machine >

Printing machine Jobs

Job 1: Book
200 pages, 500 copies
3h printing time

Job 2: Book
60 pages, 2500 copies
4h printing time

Job 3: Thesis
170 pages, 10 copies
1h printing time

1B

< Example: printing machine >

Printing machine Jobs

Job 1: Book
200 pages, 500 copies
3h printing time

Job 2: Book
60 pages, 2500 copies
4h printing time

Job 3: Thesis
170 pages, 10 copies
1h printing time

> Determine an optimal order for the jobs to be processed...

1B

< Example: printing machine >

Printing machine Jobs

Job 1: Book
200 pages, 500 copies
3h printing time

Job 2: Book
60 pages, 2500 copies
4h printing time

Job 3: Thesis
170 pages, 10 copies
1h printing time

> Determine an optimal order for the jobs to be processed...

[...if jobs have to be finished at a given time

1B

< Example: printing machine >

Printing machine Jobs

Job 1: Book
200 pages, 500 copies
3h printing time

Job 2: Book
60 pages, 2500 copies
4h printing time

Job 3: Thesis
170 pages, 10 copies
1h printing time

> Determine an optimal order for the jobs to be processed...

[...if jobs have to be finished at a given time

[...if some jobs are more important than others

ZZ[][33

< Example: printing machine >

Printing machine Jobs

Job 1: Book
200 pages, 500 copies
3h printing time

Job 2: Book
60 pages, 2500 copies
4h printing time

Job 3: Thesis
170 pages, 10 copies
1h printing time

> Determine an optimal order for the jobs to be processed...

[...if jobs have to be finished at a given time
[...if some jobs are more important than others

[1 ...if there is more than one machine (identical or different machines)

ZZ[][33

< Example: computation jobs on supercomputer >

> Supercomputing at ZIB

=
F Il

Norddeutscher Verbund fiir Hoch- und Hochstleistungsrechnen

B

< Example: computation jobs on supercomputer >

> Supercomputing at ZIB

=
F Ii

Norddeutscher Verbund fiir Hoch- und Héchstleistungsrechnen

> ~1500 compute nodes with ~13000 cores

1B

< Example: computation jobs on supercomputer >

> Supercomputing at ZIB

=
P]

Norddeutscher Verbund fiir Hoch- und Héchstieistungsrechnen

> ~1500 compute nodes with ~13000 cores

> Schedule computation jobs...

...consisting of thousands of parallel processes

...according to their release times

& =
z E
= ¥
4, £
% &
Sductian Lo

1B

< General principle >

> Jobs:

1B

< General principle >

> Jobs:

> Schedule (Gantt chart):

1B

< General principle >

> Jobs:

> Schedule (Gantt chart):

WV

time

& 2
2
2 3
a0, &,

% o
S Tuetian %

1B

< General principle >

> Jobs:

> Schedule (Gantt chart): [] optimal with respect to an objective to specify!

Bl e /B
A GPE Jj
$-fuurlol 5

WV

time

1B

4 Notation >

> Jobs usually have: a processing time p;

ZZ[][33

4 Notation >

> Jobs usually have: a processing time p;

ZZ[][33

4 Notation >

> Jobs usually have: a processing time p;

> A schedule has to provide: a start time s;

ZZ[][33

4 Notation >

> Jobs usually have: a processing time p;

> A schedule has to provide: a start time s;

] pj |
(3 T ti,me

ZZ[][33

4 Notation >

> Jobs usually have: a processing time p;

> A schedule has to provide: a start time s;, such that different jobs do not overlap

] pj |
(3 T ti,me

ZZ[][33

4 Notation >

> Jobs usually have: a processing time p;

> A schedule has to provide: a start time s;, such that different jobs do not overlap

Pj Pk

ZZ[][33

4 Notation >

> Jobs usually have: a processing time p;

> A schedule has to provide: a start time s;, such that different jobs do not overlap

Input O Dy Pk

Output [J S Sk

ZZ[][33

4 Notation >

> Jobs usually have: a processing time p;
> A schedule has to provide: a start time s;, such that different jobs do not overlap

[1 Combinatorial optimization problem

Input O Dy Pk

Output [J S Sk

ZZ[][33

4 Notation >

> Jobs usually have: a processing time p;
> A schedule has to provide: a start time s;, such that different jobs do not overlap

[0 Combinatorial optimization problem [IP formulations for most scheduling problems

Input O Dy Pk
0 T T time

Output [J S Sk

ZZ[][33

4 Notation >

> Jobs usually have: a processing time p;
> A schedule has to provide: a start time s;, such that different jobs do not overlap
[0 Combinatorial optimization problem [IP formulations for most scheduling problems

[| Completion time C; := s; + p;

Input O Dy Pk
0 T T time

Output [J S Sk

ZZ[][33

4 Notation >

> Jobs usually have: a processing time p;
> A schedule has to provide: a start time s;, such that different jobs do not overlap
[0 Combinatorial optimization problem [IP formulations for most scheduling problems

[| Completion time C; := s; + p;

Input O Dy Pk

Output [Sj oF Sk Ch

ZZ[][33

4 Notation >

> Jobs usually have: a processing time p;
> A schedule has to provide: a start time s;, such that different jobs do not overlap
[0 Combinatorial optimization problem [IP formulations for most scheduling problems

[| Completion time C; := s; + p;

1 n
[1 Average completion time for n jobs: — Z C
n =

Input O Dy Pk

job k

ZZ[][33

< Minimize sum of completion times >

n
> For fixed number n of jobs: minimize sum of completion times ZCj
j=1

ZZ[][33

< Minimize sum of completion times >

n
> For fixed number n of jobs: minimize sum of completion times ZCj
j=1
> Example schedule:

1B

< Minimize sum of completion times >

n
> For fixed number n of jobs: minimize sum of completion times ZCj
j=1
> Example schedule:

4

i T T 1 i T i T T T
0 16 26 32 54 66 80 95 115 129

1B

< Minimize sum of completion times >

n

> For fixed number n of jobs: minimize sum of completion times ZC’j

j=1
> Example schedule:
T T T 1 T T T T T T ’
0 16 26 32 54 66 80 95 115 129
n
0) Cj = 16426+ 32+ 54+ 66 +80 + 95+ 115+ 129 = 613
j=1

1B

< Minimize sum of completion times >

n
> For fixed number n of jobs: minimize sum of completion times ZCj
j=1
> Example schedule:

) S R -

4

1 1 K T 3 - - -
0 16 26 32 i 66 80 05 115 129
n

- ZCJ — 16426432+ 44 + 66 + 80 + 95+ 115+ 129 = [603
j=1

1B

< Minimize sum of completion times >

n
> For fixed number n of jobs: minimize sum of completion times ZCj
j=1
> Example schedule:

) S R -

4

1 1 K T 3 - - -
0 16 26 32 i 66 80 05 115 129
n

- ZCJ — 16426432+ 44 + 66 + 80 + 95+ 115+ 129 = [603
j=1

[1 ldea: Schedule jobs in order of non-decreasing processing time!

1B

< Minimize sum of completion times >

n
> For fixed number n of jobs: minimize sum of completion times ZCj
j=1
> Example schedule:

1 1 K T 3 - - -
0 16 26 32 i 66 80 05 115 129
n

- ZCJ — 16426432+ 44 + 66 + 80 + 95+ 115+ 129 = [603
j=1

[1 ldea: Schedule jobs in order of non-decreasing processing time!

J

s z
T 7 T T T T T T T T ’
0O © 16 28 42 56 71 87 107 129
n
[C; = 6+16+28+42+ 56+ 71+ 87+ 107 + 129 = 542

D

1B

< Minimize sum of completion times >

n
> For fixed number n of jobs: minimize sum of completion times ZCj
j=1
> Example schedule:

4

1 R T 1 1 T 1
0 16 26 32 i 66 80 95 115 129

[1 ldea: Schedule jobs in order of non-decreasing processing time! [provably optimal!

J

s z
T 7 T T T T T T T T ’
0O © 16 28 42 56 71 87 107 129
n
[C; = 6+16+28+42+ 56+ 71+ 87+ 107 + 129 = 542

D

1B

< Minimize makespan >

> Latest completion time [I minimize makespan max C;
1=1,....n

ZZ[][33

< Minimize makespan >

> Latest completion time [minimize makespan max C;
71=1,...,n

> Example schedule:

1B

< Minimize makespan >

> Latest completion time [I minimize makespan max C;
1=1,....n

> Example schedule:

T T 7 T T T T T T
115 129

W

o =
—_
(@)
N
(@)
(&)
N
1
D
(@)
(@)
00)
o
O
1

1B

< Minimize makespan >

> Latest completion time [I minimize makespan max C;
1=1,....n

> Example schedule:

T T 7 T T T T T T
115 129

W

o =
—_
(@)
N
(@)
(&)
N
1
D
(@)
(@)
00)
o
O
1

[1 makespan: 129

1B

< Minimize makespan >

> Latest completion time [I minimize makespan max C;
1=1,....n

> Example schedule:

e S R -

T T 7 T T T T T T
115 129

W

o =
—_
(@)
N
(@)
(&)
N
(@)
(@)
00)
o
O
1

[1 makespan: 129

1B

< Minimize makespan >

> Latest completion time [I minimize makespan max C;
1=1,....n

> Example schedule:

e S R -

T T 7 T T T T T T
115 129

W

o =
—_
(@)
N
(@)
(&)
N
(@)
(@)
00)
o
O
1

[1 makespan: 129

(7 Any schedule (without idle times) gives the same makespan!

g
3
o (SN
:
A g £
a0, &,
e o
S Z[l

< Minimize makespan >

> Latest completion time [I minimize makespan max C;
1=1,....n

> Example schedule:

e S R -

T T 7 T T T T T T
115 129

W

o =
—_
(@)
N
(@)
(&)
N
(@)
(@)
00)
o
O
1

[1 makespan: 129

(7 Any schedule (without idle times) gives the same makespan!

Obvious, since the makespan

max C; Z Dj

]_

%
© | | = S
z E
A g e H
a0, &,
% o
e Z[l

< Minimize makespan >

> Latest completion time [I minimize makespan max C;
1=1,....n

> Example schedule:

e S R -

T T 7 T T T T T T
115 129

W

o =
—_
(@)
N
(@)
(&)
N
(@)
(@)
00)
o
O
1

[1 makespan: 129

(7 Any schedule (without idle times) gives the same makespan!

Obvious, since the makespan

max C; Z Dj

]_

depends only on the input (processing times), not on the schedule itself

ZZ[][33

< Jobs with release dates >

> Jobs can have: a release date r;

ZZ[][33

< Jobs with release dates >

> Jobs can have: a release date r;

Tj : .
;

ZZ[][33

< Jobs with release dates >

> Jobs can have: a release date r;

Tj : .
;

[1 Start time of job j cannot be before its release date

ZZ[][33

< Jobs with release dates >

> Jobs can have: a release date r;

Tj : .
;

[1 Start time of job j cannot be before its release date

0 T T time

ZZ[][33

< Jobs with release dates >

> Jobs can have: a release date r;

Tj : .
;

[1 Start time of job j cannot be before its release date

0 T T time

ZZ[][33

< Jobs with release dates >

> Jobs can have: a release date r;

Tj : .
;

[1 Start time of job j cannot be before its release date

0 T [T time

ZZ[][33

< Jobs with release dates >

> Jobs can have: a release date r;

Tj : .
;

[1 Start time of job j cannot be before its release date

[Constraint: s; > r;

0 T [T time

ZZ[][33

< Minimize makespan with release dates >

> Input now: jobs with release dates

1

s |

job 3 =]

job 4 i -
job 5 []

job 6 i -
7

job 7 -
job 8 :| rg = 0

WV

1B

< Minimize makespan with release dates >

> Input now: jobs with release dates

1

s |

job 3 =]

job 4 i -
job 5 []

job 6 i -
7

job 7 -
job 8 :| rg = 0

WV

> Minimize makespan

1B

< Minimize makespan with release dates >

> Input now: jobs with release dates

1

o1 |-
T3
E—
T4
—
job 5 1

job 6 i -
r7

job 7 -
job 8 :| rg = 0

WV

> Minimize makespan

[J Optimal algorithm: schedule jobs in the order of non-decreasing release dates

ZZ[][33

< Minimize makespan with release dates >

> Input now: jobs with release dates

1

o1 |-
T3
E—
T4
—
job 5 1

job 6 i -
r7

job 7 -
job 8 :| rg = 0

WV

> Minimize makespan

[J Optimal algorithm: schedule jobs in the order of non-decreasing release dates

Y I .] T

WV

o -
=
ol

T3 max C)

& =
:
= ¥
£ &
o &
Sduntian g

1B

N More variants >

> Jobs can...

e ..have weights (priorities)

ZZ[][33

N More variants >

> Jobs can...
e ..have weights (priorities)

[minimize weighted sum of completion times : same as in the unweighted case

ZZ[][33

N More variants >

> Jobs can...
e ..have weights (priorities)

[minimize weighted sum of completion times : same as in the unweighted case

e ..have due dates (preferred latest completion time)

ZZ[][33

N More variants >

> Jobs can...
e ..have weights (priorities)

[minimize weighted sum of completion times : same as in the unweighted case

e ..have due dates (preferred latest completion time)

[J minimize maximum lateness : schedule jobs in order of non-decreasing due dates

ZZ[][33

N More variants >

> Jobs can...
e ..have weights (priorities)
[minimize weighted sum of completion times : same as in the unweighted case
e ..have due dates (preferred latest completion time)

[J minimize maximum lateness : schedule jobs in order of non-decreasing due dates

e ...have both due dates and release dates

ZZ[][33

N More variants >

> Jobs can...
e ..have weights (priorities)

[minimize weighted sum of completion times : same as in the unweighted case

e ..have due dates (preferred latest completion time)

[J minimize maximum lateness : schedule jobs in order of non-decreasing due dates

e ...have both due dates and release dates

[more complicated (NP-hard)

ZZ[][33

More variants

Jobs can...

...have 'weights (priorities)

[minimize weighted sum of completion times : same as in the unweighted case

...have ' due dates (preferred latest completion time)

[J minimize maximum lateness : schedule jobs in order of non-decreasing due dates

...have both due dates and release dates
[more complicated (NP-hard)

...be allowed to be interrupted (possibly at additional cost/time)

ZZ[][33

More variants

Jobs can...

...have 'weights (priorities)

[minimize weighted sum of completion times : same as in the unweighted case

...have ' due dates (preferred latest completion time)

[J minimize maximum lateness : schedule jobs in order of non-decreasing due dates

...have both due dates and release dates
[more complicated (NP-hard)
...be allowed to be interrupted (possibly at additional cost/time)

(1 easier if no cost/time involved, harder otherwise

ZZ[][33

N More variants >

> Jobs can...
e ..have weights (priorities)

[minimize weighted sum of completion times : same as in the unweighted case

e ..have due dates (preferred latest completion time)

[J minimize maximum lateness : schedule jobs in order of non-decreasing due dates

e ...have both due dates and release dates
[more complicated (NP-hard)

e ..be allowed to be interrupted (possibly at additional cost/time)
(1 easier if no cost/time involved, harder otherwise

® ..consume resources

ZZ[][33

More variants

Jobs can...

...have 'weights (priorities)

[minimize weighted sum of completion times : same as in the unweighted case

...have ' due dates (preferred latest completion time)

[J minimize maximum lateness : schedule jobs in order of non-decreasing due dates

...have both due dates and release dates

[more complicated (NP-hard)

...be allowed to be interrupted (possibly at additional cost/time)
(1 easier if no cost/time involved, harder otherwise

...CONSUMe resources

[1 Resource-constrained scheduling

ZZ[][33

< Summary single-machine scheduling >

> Single Machine Scheduling: only one machine available

ZZ[][33

< Summary single-machine scheduling >

> Single Machine Scheduling: only one machine available

[Minimal latest completion time is constant

ZZ[][33

< Summary single-machine scheduling >

> Single Machine Scheduling: only one machine available
[Minimal latest completion time is constant

[0 With no release dates, greedy strategy gives an optimal solution

ZZ[][33

< Summary single-machine scheduling >

> Single Machine Scheduling: only one machine available
[Minimal latest completion time is constant
[0 With no release dates, greedy strategy gives an optimal solution

[0 With release dates, greedy strategy only works for makespan minimization

ZZ[][33

< Summary single-machine scheduling >

> Single Machine Scheduling: only one machine available
[Minimal latest completion time is constant
[0 With no release dates, greedy strategy gives an optimal solution

[0 With release dates, greedy strategy only works for makespan minimization

> Summary if no interruptions and resources are involved:

Objective
>.C; max C} lateness
no release dates | non-decreasing trivial non-decreasing
process times due dates
with release dates | \/P-hard non-decreasing NP-hard
release dates

ZZ[][33

< Jobs with precedence constraints >

> Example:

job j |

1 2 BB 7TEBEE WM 1« @@ 58 M
process timepj‘ 5 6 9 12 7 12 10 6 10 9 I 38 I 5

SBIEAL)
BRI

< Jobs with precedence constraints >

> Example:

job j |

1 2 BB 7TEBEE WM 1« @@ 58 M
process timepj‘ 5 6 9 12 7 12 10 6 10 9 I 38 I 5

[1 Order by non-decreasing process times:

1B

< Jobs with precedence constraints >

> Example:

job j |

1 2 BB 7TEBEE WM 1« @@ 58 M
process timepj‘ 5 6 9 12 7 12 10 6 10 9 I 38 I 5

[1 Order by non-decreasing process times:

W12 3 6

o —

max C';

1B

< Jobs with precedence constraints >

> Example: with precedence constraints [1 | Project scheduling

job j 1 2 HAE BT EE N u @@ B H
8 7

process timep; | 5 6 9 12 7 12 10 6 10 9 7

preceded by - 1 1 2 3 3 4 56 56 7 8,9 10,11 11 12,13

le 3 6

WV

o —

max C)

1B

< Jobs with precedence constraints >

> Example: with precedence constraints [1 | Project scheduling

job j 1 2 HAE BT EE N u @@ B H
8 7

process timep; | 5 6 9 12 7 12 10 6 10 9 7

preceded by - 1 1 2 3 3 4 56 56 7 8,9 10,11 11 12,13

e (T I [:
HEN

/]\
0 max C

WV

1B

< Jobs with precedence constraints >

> Example: with precedence constraints [1 | Project scheduling

job j 1 2 HAE BT EE N u @@ B H
8 7

process timep; | 5 6 9 12 7 12 10 6 10 9 7

preceded by - 1 1 2 3 3 4 56 56 7 8,9 10,11 11 12,13

e (T I [:
HEN

/]\
0 max C

WV

[1 Schedule is infeasible!

R
3
.\ g
a0, &,
g [

< Jobs with precedence constraints >
> Example: with precedence constraints [1 | Project scheduling
job j 1 2 HA B 7B N8 @ o

process time p;

5 6 9 12 7 12 10 6 10 9 7

preceded by

— 1 1 2 3 3 4 56 5,6 I 38,9

¥

max C)

[1 Schedule is infeasible!

> Feasible schedule:

e S

o —

s 2
Z E
2)
) o,
% &
Sductian Lo

1B

< Jobs with precedence constraints >
> Example: with precedence constraints [1 | Project scheduling
job j 1 2 HEAE B A7 EBE SN 1@ BB B K
process timep; | 5 6 9 12 7 12 10 6 10 9 7 8 7 5
preceded by - 1 1 2 3 3 4 56 56 7 8,9 10,11 11 12,13
 wachine [ﬁ 2 [E 3 6
HR .
T 1+
0 max C)
[J Schedule is infeasible!
> Feasible schedule:
W 1] 2 3 6 8 14
T 1 ?
0 max C)

s 2
g E
2)
) o,
% &
Sductian Lo

1B

< Jobs with precedence constraints >
> Example: with precedence constraints [1 | Project scheduling
job j 1 2 HEAE B A7 EBE SN 1@ BB B K
process timep; | 5 6 9 12 7 12 10 6 10 9 7 8 7 5
preceded by - 1 1 2 3 3 4 56 56 7 8,9 10,11 11 12,13
 wachine [ﬁ 2 [E 3 6
HR .
T 1+
0 max C)
[J Schedule is infeasible!
> Feasible schedule:
W 1] 2 3 6 8 14
T 1 ?
0 max C)

s 2
g E
2)
) o,
% &
Sductian Lo

1B

< Jobs with precedence constraints >
> Example: with precedence constraints [1 | Project scheduling
job j 1 2 HEAE B A7 EBE SN 1@ BB B K
process timep; | 5 6 9 12 7 12 10 6 10 9 7 8 7 5
preceded by - 1 1 2 3 3 4 56 56 7 8,9 10,11 11 12,13
 wachine [ﬁ 2 [E 3 6
HR .
T 1+
0 max C)
[J Schedule is infeasible!
> Feasible schedule:
~ N\
W 1] 2 3 6 8 14
T 1 ?
0 max C)

s 2
g E
2)
) o,
% &
Sductian Lo

1B

< Jobs with precedence constraints >
> Example: with precedence constraints [1 | Project scheduling
job j 1 2 HEAE B A7 EBE SN 1@ BB B K
process timep; | 5 6 9 12 7 12 10 6 10 9 7 8 7 5
preceded by - 1 1 2 3 3 4 56 56 7 8,9 10,11 11 12,13
 wachine [ﬁ 2 [E 3 6
HR .
T 1+
0 max C)
[J Schedule is infeasible!
> Feasible schedule:
~ N\
W 1] 2 3 6 8 14
T 1 ?
0 max C)

s 2
g E
2)
) o,
% &
Sductian Lo

1B

< Jobs with precedence constraints >

> Example: with precedence constraints [1 | Project scheduling

job j 1 2 HAE BT EE N u @@ B H
8 7

process timep; | 5 6 9 12 7 12 10 6 10 9 7

preceded by - 1 1 2 3 3 4 56 56 7 8,9 10,11 11 12,13

e (T I [:
HEN

WV

T T
0 max C)
[1 Schedule is infeasible!
> Feasible schedule:
o~ T N N
W 1|2 3 I 14

o —
:
"
&

s =
g
2)
£ &
o &
Sductian Lo

1B

< Jobs with precedence constraints >

> Example: with precedence constraints [1 | Project scheduling

job j 1 2 HAE BT EE N u @@ B H
8 7

process timep; | 5 6 9 12 7 12 10 6 10 9 7

preceded by - 1 1 2 3 3 4 56 56 7 8,9 10,11 11 12,13

e (T I [:
HEN

WV

T T
0 max C)
[1 Schedule is infeasible!
> Feasible schedule:
o~ T N N
W 1|2 3 I 14

o —
:
"
&

s =
g
2)
£ &
o &
Sductian Lo

1B

< Jobs with precedence constraints >

> Example: with precedence constraints [1 | Project scheduling

job j 1 2 HAE BT EE N u @@ B H
8 7

process timep; | 5 6 9 12 7 12 10 6 10 9 7

preceded by - 1 1 2 3 3 4 56 56 7 8,9 10,11 11 12,13

e (T I [:
HEN

/]\
0 max C)

WV

[1 Schedule is infeasible!

> Feasible schedule:

—~ N N ‘

le 3 6 8 14

max C)

WV

o —

s 2
3
2)
a0, &,
% &
Sductian Lo

1B

< Jobs with precedence constraints >

> Example: with precedence constraints [1 | Project scheduling

job j 1 2 HAE BT EE N u @@ B H
8 7

process timep; | 5 6 9 12 7 12 10 6 10 9 7

preceded by - 1 1 2 3 3 4 56 56 7 8,9 10,11 11 12,13

e (T I [:
HEN

/]\
0 max C)

WV

[1 Schedule is infeasible!

> Feasible schedule:

—~ N N “

le 3 6 8 14

max C)

WV

o —

s 2
3
2)
a0, &,
% &
Sductian Lo

1B

< Jobs with precedence constraints >

> Example: with precedence constraints [1 | Project scheduling

job j 1 2 HAE BT EE N u @@ B H
8 7

process timep; | 5 6 9 12 7 12 10 6 10 9 7

preceded by - 1 1 2 3 3 4 56 56 7 8,9 10,11 11 12,13

e (T I [:
HEN

/]\
0 max C)

WV

[1 Schedule is infeasible!

> Feasible schedule:

WV

o —

max C)

1B

< Jobs with precedence constraints >

> Example: with precedence constraints [1 | Project scheduling

job j 1 2 HAE BT EE N u @@ B H
8 7

process timep; | 5 6 9 12 7 12 10 6 10 9 7

preceded by - 1 1 2 3 3 4 56 56 7 8,9 10,11 11 12,13

e (T I [:
HEN

/]\
0 max C)

WV

[1 Schedule is infeasible!

> Feasible schedule:

WV

o —

max C)

1B

< Jobs with precedence constraints >

> Example: with precedence constraints [1 | Project scheduling

job j 1 2 HAE BT EE N u @@ B H
8 7

process timep; | 5 6 9 12 7 12 10 6 10 9 7

preceded by - 1 1 2 3 3 4 56 56 7 8,9 10,11 11 12,13

e (T I [:
HEN

/]\
0 max C)

WV

[1 Schedule is infeasible!

> Feasible schedule:

WV

o —

max C)

1B

< Jobs with precedence constraints >

> Example: with precedence constraints [1 | Project scheduling

job j 1 2 HAE BT EE N u @@ B H
8 7

process timep; | 5 6 9 12 7 12 10 6 10 9 7

preceded by - 1 1 2 3 3 4 56 56 7 8,9 10,11 11 12,13

e (T I [:
HEN

/]\
0 max C)

WV

[1 Schedule is infeasible!

> Feasible schedule:

WV

o —

max C)

1B

< Jobs with precedence constraints >

> Example: with precedence constraints [1 | Project scheduling

job j 1 2 HAE BT EE N u @@ B H
8 7

process timep; | 5 6 9 12 7 12 10 6 10 9 7

preceded by - 1 1 2 3 3 4 56 56 7 8,9 10,11 11 12,13

e (T I [:
HEN

/]\
0 max C)

WV

[1 Schedule is infeasible!

> Feasible schedule:

1B

< Precedence graph >

job j 1 2 HAE BT EE N u @@ B H
8 7

process timep; | 5 6 9 12 7 12 10 6 10 9 7

preceded by - 1 1 2 3 3 4 56 56 7 8,9 10,11 11 12,13

ZZ[][33

< Precedence graph >

job j 1 2 HAE BT EE N u @@ B H
8 7

process timep; | 5 6 9 12 7 12 10 6 10 9 7

preceded by - 1 1 2 3 3 4 56 56 7 8,9 10,11 11 12,13

Xk S o
SSERRRRRR

< Precedence graph >

job j 1 2 HAE BT EE N u @@ B H
8 7

process timep; | 5 6 9 12 7 12 10 6 10 9 7

preceded by - 1 1 2 3 3 4 56 56 7 8,9 10,11 11 12,13

Xk S o
SSERRRRRR

< Precedence graph >

job j 1 2 HAE BT EE N u @@ B H
8 7

process timep; | 5 6 9 12 7 12 10 6 10 9 7

preceded by - 1 1 2 3 3 4 56 56 7 8,9 10,11 11 12,13

SBIEAL)
SSRRFHRIRY

< Greedy strategy for single-machine project scheduling >

> Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

1B

< Greedy strategy for single-machine project scheduling >

> Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

WV

\ e

1B

< Greedy strategy for single-machine project scheduling >

> Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

WV

1B

< Greedy strategy for single-machine project scheduling >

> Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

WV

1B

< Greedy strategy for single-machine project scheduling >

> Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

¥

1B

< Greedy strategy for single-machine project scheduling >

> Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

¥

1B

< Greedy strategy for single-machine project scheduling >

> Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

1B

< Greedy strategy for single-machine project scheduling >

> Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

1B

< Greedy strategy for single-machine project scheduling >

> Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

1B

< Greedy strategy for single-machine project scheduling >

> Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

WV

1B

< Greedy strategy for single-machine project scheduling >

> Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

WV

1B

< Greedy strategy for single-machine project scheduling >

> Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

WV

1B

< Greedy strategy for single-machine project scheduling >

> Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

le 3 6 8

WV

1B

< Greedy strategy for single-machine project scheduling >

> Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

le 3 6 8

¥

1B

< Greedy strategy for single-machine project scheduling >

> Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

W12 3 6 8 14

¥

1B

< Greedy strategy for single-machine project scheduling >

> Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

[1 Polynomial runtime

W12 3 6 8 14

)
¥@ﬂ

WV

1B

< Greedy strategy for single-machine project scheduling >

> Greedy strategy: schedule an arbitrary job next with already fulfilled precedences

[1 Polynomial runtime [Efficient algorithm!

W12 3 6 8 14

)
¥@ﬂ

WV

1B

< Project scheduling with unlimited number of machines >

> Suppose there are arbitrarily many machines available

ZZ[][33

< Project scheduling with unlimited number of machines >

> Suppose there are arbitrarily many machines available

(1 All jobs with fulfilled precedences can be carried out

immediately and parallely

ZZ[][33

< Project scheduling with unlimited number of machines >

> Suppose there are arbitrarily many machines available

(1 All jobs with fulfilled precedences can be carried out

immediately and parallely

> Example: Project scheduling on construction site

B

< Project scheduling with unlimited number of machines >

> Suppose there are arbitrarily many machines available

(1 All jobs with fulfilled precedences can be carried out

immediately and parallely

> Example: Project scheduling on construction site

[1 Different tasks done by different contractors:
Concrete builder, stonemasonry, house painter,

glazier, ...

[l can provide as many workers as necessary to
carry out each task

B

< Critical Path Method >

0@
N @

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs

O—@—0,
X yd N e—@-

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs

O—@—0,
\. yd N e—@-

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs

@ > 12 10

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs

@ﬁ‘ﬁ‘
51

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs

@—0—»0
51
e S
—_— 5
—O
21 32
9 6 38
\ @@ - / <\
10 6
a 26 >< 36 —
T @ ©
10

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs

[1 Makespan is the maximal earliest possible completion time computed

@—‘—0

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs
[1 Makespan is the maximal earliest possible completion time computed

> Backward procedure: compute latest possible completion times for all jobs

@—‘—0

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs
[1 Makespan is the maximal earliest possible completion time computed

> Backward procedure: compute latest possible completion times for all jobs

@—‘—0

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs
[1 Makespan is the maximal earliest possible completion time computed

> Backward procedure: compute latest possible completion times for all jobs

@—‘—0

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs
[1 Makespan is the maximal earliest possible completion time computed

> Backward procedure: compute latest possible completion times for all jobs

@—‘—0

0—0
\
21
9 6 38
\ 14 7 ‘—’0\7) 43 0
— 106

a 26 >< 36 7
X@—"/ 51 @
10

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs
[1 Makespan is the maximal earliest possible completion time computed

> Backward procedure: compute latest possible completion times for all jobs

@—‘—0

—'
\
21 32
9 6
00 - o
10 6
9\26 >< 36
12 e_)‘ 7 43 51 @
10

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs
[1 Makespan is the maximal earliest possible completion time computed

> Backward procedure: compute latest possible completion times for all jobs

@—‘—0
é'\g
21 32

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs
[1 Makespan is the maximal earliest possible completion time computed

> Backward procedure: compute latest possible completion times for all jobs

@—‘—0
é'\g
21 32

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs
[1 Makespan is the maximal earliest possible completion time computed

> Backward procedure: compute latest possible completion times for all jobs

@—‘—0

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs
[1 Makespan is the maximal earliest possible completion time computed

> Backward procedure: compute latest possible completion times for all jobs

@—‘—0

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs
[1 Makespan is the maximal earliest possible completion time computed

> Backward procedure: compute latest possible completion times for all jobs

@—‘—0

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs
[1 Makespan is the maximal earliest possible completion time computed

> Backward procedure: compute latest possible completion times for all jobs

@—'—‘
51

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs
[1 Makespan is the maximal earliest possible completion time computed

> Backward procedure: compute latest possible completion times for all jobs

@—'—‘
51

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs
[1 Makespan is the maximal earliest possible completion time computed

> Backward procedure: compute latest possible completion times for all jobs

@—'—‘
51

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs
[1 Makespan is the maximal earliest possible completion time computed

> Backward procedure: compute latest possible completion times for all jobs

@—'—‘
51

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs
[1 Makespan is the maximal earliest possible completion time computed

> Backward procedure: compute latest possible completion times for all jobs

@—'—‘
51

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs
[1 Makespan is the maximal earliest possible completion time computed
> Backward procedure: compute latest possible completion times for all jobs

[1 Jobs with earliest = latest possible completion time are the critical jobs

@—‘—0

51
I = W
\5)
21 32 43 51

5 9 6 8

\ 14/7,‘—>°\7) 43 50 /56 .
— >
7

43 51 @

1B

< Critical Path Method >

> Forward procedure: compute [carlicst possible completion times for all jobs
[1 Makespan is the maximal earliest possible completion time computed
> Backward procedure: compute latest possible completion times for all jobs

[1 Jobs with earliest = latest possible completion time are the critical jobs

@—‘—0

1B

Critical Path Method >

Forward procedure: compute [earlicst possible completion times for all jobs

[1 Makespan is the maximal earliest possible completion time computed :
polynomial!

Backward procedure: compute latest possible completion times for all jobs

[1 Jobs with earliest = latest possible completion time are the critical jobs

@—‘—0

1B

< Critical Path >

> A critical path is a chain of critical jobs, starting at time 0 and ending at the makespan

1B

< Critical Path >

> A critical path is a chain of critical jobs, starting at time 0 and ending at the makespan

1B

< Critical Path >

> A critical path is a chain of critical jobs, starting at time 0 and ending at the makespan

> Critical path is a longest path in the precedence graph from s to ¢

@—‘—0

—)
\
21 32
5 9 6
\ @0 .
/26 10 6 36
\26 36

10
26 36

& =
:
= ¥
£ &
o &
Sduntian g

1B

Critical Path >

> A critical path is a chain of critical jobs, starting at time 0 and ending at the makespan
> Critical path is a longest path in the precedence graph from s to ¢

[0 Can be computed by a shortest path algorithm!

(using negative arc lengths — allowed since there are no cycles in the precedence graph)

@—‘—0

—)
\
21 32
5 9 6
/26 10 6 36
\26 36
14 12

— 7 43 51 @
10

26 36

o[L
Z E
% = R
a0, &,
) B
uetian %

1B

Critical Path >

> A critical path is a chain of critical jobs, starting at time 0 and ending at the makespan

> Critical path is a longest path in the precedence graph from s to ¢

polynomial!
[0 Can be computed by a shortest path algorithm!

(using negative arc lengths — allowed since there are no cycles in the precedence graph)

@—‘—0

—)
\
21 32
5 9 6
/26 10 6 36
\26 36
14 12

— 7 43 51 @
10

26 36

o[L
Z E
% = R
a0, &,
) B
uetian %

1B

< Summary project scheduling >

> Project scheduling: minimize makespan with single machine

ZZ[][33

< Summary project scheduling >

> Project scheduling: minimize makespan with single machine

[1 Efficiently solvable (by greedy algorithm)

ZZ[][33

< Summary project scheduling >

> Project scheduling: minimize makespan with single machine

[1 Efficiently solvable (by greedy algorithm)

> Minimize sum of completion times

ZZ[][33

< Summary project scheduling >

> Project scheduling: minimize makespan with single machine

[1 Efficiently solvable (by greedy algorithm)

> Minimize sum of completion times is more difficult...

ZZ[][33

< Summary project scheduling >

> Project scheduling: minimize makespan with single machine

[1 Efficiently solvable (by greedy algorithm)
> Minimize sum of completion times is more difficult...

> More than one parallel machines

ZZ[][33

Summary project scheduling

Project scheduling: minimize makespan with single machine

[1 Efficiently solvable (by greedy algorithm)
Minimize sum of completion times is more difficult...

More than one parallel machines is also difficult...

ZZ[][33

Summary project scheduling

Project scheduling: minimize makespan with single machine

[1 Efficiently solvable (by greedy algorithm)
Minimize sum of completion times is more difficult...
More than one parallel machines is also difficult...

Except: unlimited number of machines

ZZ[][33

Summary project scheduling

Project scheduling: minimize makespan with single machine

[1 Efficiently solvable (by greedy algorithm)
Minimize sum of completion times is more difficult...
More than one parallel machines is also difficult...

Except: unlimited number of machines

[1 Critical Path Method

ZZ[][33

Summary project scheduling

Project scheduling: minimize makespan with single machine

[1 Efficiently solvable (by greedy algorithm)

Minimize sum of completion times is more difficult...

More than one parallel machines is also difficult...

Except: unlimited number of machines

[1 Critical Path Method

Summary:
Objective
>.C; max C)
single machine NP-hard polynomial (greedy algorithm)
> 2 machines NP-hard NP-hard
unlimited machines polynomial (critical path method)

ZZ[][33

< Scheduling on 3 identical machines >

> Jobs can be carried out on one of 3 identical machines

v I
o]

[]
e

22

B

< Scheduling on 3 identical machines >

> Jobs can be carried out on one of 3 identical machines

v I
o]

[]
i

22

> Minimize sum of completion times

B

< Scheduling on 3 identical machines >

> Jobs can be carried out on one of 3 identical machines

v I
o]

[]
i

22

> Minimize sum of completion times

oy -

¥

B

< Scheduling on 3 identical machines >

> Jobs can be carried out on one of 3 identical machines

v I

N

[]
e

22

> Minimize sum of completion times

o G v - S0 = 6420436
j=1
= 10+ 24+ 4
= 12+ 28+ 50
= 2
= 230

¥

7>
‘}""-ﬂuﬂar "'ﬁ;’

B

< Scheduling on 3 identical machines

> Jobs can be carried out on one of 3 identical machines

v I

]

e

22

> Minimize sum of completion times

oy -

AN
4

6 + 20 + 36
10 +24 +44
12 4 28 4- 50
230

[1 Optimal: schedule by non-decreasing processing times, on earliest available machine

7>
‘}"’-ﬂuﬂu ""ﬁ;‘.

1B

< Summary parallel machines >

> Minimize sum of completion times: polynomial (greedy algorithm)

ZZ[][33

< Summary parallel machines >

> Minimize sum of completion times: polynomial (greedy algorithm)

> Minimize makespan: N P-hard

ZZ[][33

< Summary parallel machines >

> Minimize sum of completion times: polynomial (greedy algorithm)
> Minimize makespan: N P-hard
> Variants: types of machines

e l|dentical machines

ZZ[][33

< Summary parallel machines >

> Minimize sum of completion times: polynomial (greedy algorithm)
> Minimize makespan: N P-hard
> Variants: types of machines

e Identical machines

e Uniform machines: machines differ by a fixed speed factor

ZZ[][33

< Summary parallel machines >

> Minimize sum of completion times: polynomial (greedy algorithm)
> Minimize makespan: N P-hard
> Variants: types of machines

e Identical machines

e Uniform machines: machines differ by a fixed speed factor

e Unrelated machines: processing times differ for every job on each machine

ZZ[][33

< Summary parallel machines >

> Minimize sum of completion times: polynomial (greedy algorithm)
> Minimize makespan: N P-hard
> Variants: types of machines
e Identical machines
e Uniform machines: machines differ by a fixed speed factor
e Unrelated machines: processing times differ for every job on each machine

> All the other additional features: weights, release dates, precedence constraints, ...

ZZ[][33

Summary parallel machines

>

Minimize sum of completion times: polynomial (greedy algorithm)

Minimize makespan: NP-hard

Variants: types of machines

e Identical machines

e Uniform machines: machines differ by a fixed speed factor

e Unrelated machines: processing times differ for every job on each machine

All the other additional features: weights, release dates, precedence constraints, ...

Multi-operation models : job has to be processed sequentially on multiple machines

ZZ[][33

Summary parallel machines

>

Minimize sum of completion times: polynomial (greedy algorithm)

Minimize makespan: NP-hard

Variants: types of machines

e Identical machines

e Uniform machines: machines differ by a fixed speed factor

e Unrelated machines: processing times differ for every job on each machine

All the other additional features: weights, release dates, precedence constraints, ...
Multi-operation models : job has to be processed sequentially on multiple machines

e Open shop : order in which jobs pass through machines is unimportant

ZZ[][33

Summary parallel machines

>

Minimize sum of completion times: polynomial (greedy algorithm)

Minimize makespan: NP-hard

Variants: types of machines

e Identical machines

e Uniform machines: machines differ by a fixed speed factor

e Unrelated machines: processing times differ for every job on each machine

All the other additional features: weights, release dates, precedence constraints, ...
Multi-operation models : job has to be processed sequentially on multiple machines
e Open shop : order in which jobs pass through machines is unimportant

e Flow shop : each job has the same machine order (A, B, ...)

ZZ[][33

Summary parallel machines

Minimize sum of completion times: polynomial (greedy algorithm)

Minimize makespan: NP-hard

Variants: types of machines

e Identical machines

e Uniform machines: machines differ by a fixed speed factor

e Unrelated machines: processing times differ for every job on each machine

All the other additional features: weights, release dates, precedence constraints, ...
Multi-operation models : job has to be processed sequentially on multiple machines
e Open shop : order in which jobs pass through machines is unimportant

e Flow shop : each job has the same machine order (A, B, ...)

e Job shop : each job can have a different machine order

ZZ[][33

< Summary parallel machines >

> Minimize sum of completion times: polynomial (greedy algorithm)
> Minimize makespan: N P-hard
> Variants: types of machines
e Identical machines
e Uniform machines: machines differ by a fixed speed factor
e Unrelated machines: processing times differ for every job on each machine
> All the other additional features: weights, release dates, precedence constraints, ...
> Multi-operation models : job has to be processed sequentially on multiple machines
e Open shop : order in which jobs pass through machines is unimportant
e Flow shop : each job has the same machine order (A, B, ...)
e Job shop : each job can have a different machine order

[1 Makespan minimization for job shop scheduling can also be solved using networks

ZZ[][33

< Overview >

Models, Data and Algorithms

Linear Optimization

Mathematical Background: Polyhedra, Simplex-Algorithm
Sensitivity Analysis; (Mixed) Integer Programming

MIP Modelling

MIP Modelling: More Examples; Branch & Bound

Cutting Planes; Combinatorial Optimization: Examples, Graphs, Algorithms
TSP-Heuristics

Network Flows

Shortest Path Problem

Complexity Theory

Nonlinear Optimization

Scheduling

Lot Sizing & Intro to Multiobjective Optimization (Feb 01)
Summary (Feb 08)

Oral exam (Feb 15)

Vel
7T\

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

ZZ[][33

