Lecture 14

Lot Sizing & Multicriteria Optimization

01 Feb 2012

Lot-Sizing Problems

Overview

IDEA manufactures and sells furniture

Selling numbers per week

KJELT

- Production of couches is performed in batches
- Inventory to meet demand
- How large should be the batch size; When should be produced?

IDEA Furniture

Matching of Batch Size and Inventory such that cost are minimized

- Demand fluctuates per time unit
- Backorders are sometimes allowed
- Production involves a fixed setup cost (order cost)
- Lead time for delivery is instantaneous

Basic EOQ Model

- Demand is known with certainty and fixed at D per time unit
- Shortages are not permitted
- Lead time for delivery is instantaneous
- Cost per order: K
- Unit holding cost per time unit: h
 - Physical storage cost
 - Cost of Capital invested in inventory

Objective: Minimize average costs per time unit over an infinite time horizon

Economic Order Quantity (EOQ)

EOQ Model

EOQ Model + Production Cost

Demand is not stationary but fluctuates over time: What to do?

Wagner-Within Model

- Shortages are not permitted
- Starting inventory is zero
- Linear Holding cost h
- Fixed order cost K

Economic Lot Sizing (ELS)

 D_t Demand in period t y_t Production in period t x_t Inventory at the end of period t $\delta(y)$ 1 if y>0, 0 if y=0

$$x_t = \sum_{j=1}^t \left(y_j - D_j \right)$$

$$\min \sum_{t=1}^{T} K_t \delta(y_t) + h_t x_t$$

s.t.
$$x_t = \sum_{j=1}^{t} (y_j - D_j) \quad \forall t = 1, \dots, T$$

$$x_t \ge 0, x_0 = 0$$

Observation: $y_t x_{t-1} = 0$ in optimal solution

Wagner-Within Model

Optimal Solution Properties

- Node for every point in time 1,...,T+1
- Arc (i,j) for all i < j</p>
- Length of arc (i,j) equals cost of ordering in period i to satisfy demand through period j-1:

$$c_{ij} = K + \sum_{t=i}^{j-2} h_t \left(\sum_{u=t+1}^{j-1} D_u \right)$$
Inventory

Total Inventory Cost

Shortest Path Network (I)

- For every node *i* select at most one outgoing arc (*i*,*j*): decide that order at time *i* must satisfy demand until period *j*-1 ("no parallel stocks")
- For every node *j* with 1<*j*<*T*+1: (incoming arc selected ⇔ stock empty at end of period *j*-1) ⇒(order at begin of period j ⇔ select outgoing arc)
- For node 1 select one outgoing arc ⇔ satisfy first demand
- For node *T*+1 select one incoming arc ⇔ satisfy last demand

Mathematical Tools for Engineering and Management

Maximum Inventory Volume

 All arcs for which (Production – Demand of period i) is too large have to be removed from network

Maximum Batch Size

- Rule y_t x_{t-1} = 0 does not hold anymore
- New Rule: $y_t (B_t y_t) x_{t-1} = 0$
- NP-hard problem

Fixed Batch Size

- Produce either 0 or B in each time period (all-or-nothing strategy)
- Known as Discrete Lot Sizing (DLS)

Backordering

Generalized efficient algorithm

Constant Demand is very easy

- Variable Demand can be solved by shortest path computation
- Production limitations makes problem NP-hard

Demand is stochastic

Summary

Multi-criteria Optimization

Multi-criteria Linear Problem

Multi-criteria Integer

Problem

Overview

	Zug	RB 27945 ൽ	RE 33105 ال	<i>ا</i> 2 2571 اا	RB 27949 ൽ	IR 2285 ଜ୍ୟ	85 33107 5	EC 175 ◆ ¶	RB 27953 சூ
	von		Rostock	Hamburg			Rostock	Aarhus	
Berlin-Spandau Berlin Zoologischer Garten Berlin Friedrichstr Berlin Alexanderplatz Berlin Ostbahnhof			11 15 11 26 11 33 11 36 11 41	8 11 21 11 35 11 49		13 02	13 15 13 26 13 33 13 36 13 41	13 23 13 35 13 49	
Berlin-Karlshorst Berlin-Schönefeld Flughafen ↔ 204 Blankenfelde (Teltow-Fläming) 205			11 48 12 00 12 08	12 06		13 31	13 48 14 00 14 08	14 06	
Dahlewitz Rangsdorf Dabendorf			12 10 12 20 12 25				14 10 14 20 14 25		
Zossen Wünsdorf-Waldstadt Neuhof (b Zossen) Baruth (Mark)			12 28 12 34 12 38 12 45				14 28 14 34 14 38 14 45		
Klasdorf Golßen (Niederlausitz) Drahnsdorf			12 49 12 53 12 58				14 49 14 53 14 58		
Luckau-Uckro 205 Walddrehna Doberlug-Kirchhain 205.215.520 Doberlug-Kirchhain	70		13 04 13 12 <u>13 23</u> 13 24			14 19 14 23	15 04 15 12 15 23 15 24		

Railway Timetable Optimization

Mathematical Tools for Engineering and Management

Berlin Underground Network

Mathematical Tools for Engineering and Management

Timetables have influence on costs

Minimize number of trains

 subject to restricted passenger waiting time

Minimize passenger waiting time

 subject to limited number of trains

 Minimize weighted sum of passenger waiting time and number of trains

Alternative Optimization problems

Modeling & Solution Cycle

Mathematical Tools for Engineering and Management

Mathematical Tools for Engineering and Management

Properties of some timetables

Multi-criteria Optimization

Multi-criteria Linear Problem

Multi-criteria Integer

Problem

Overview

Graphical Representation

$$\max \sum_{j=1}^{n} c_j^1 x_j, \sum_{j=1}^{n} c_j^2 x_j, \dots, \sum_{j=1}^{n} c_j^q x_j$$
 Multiple Objective functions

s.t.
$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \quad i = 1, \dots, m$$
$$l_j \le x_j \le u_j \quad j = 1, \dots, n$$

General Form of Multi-objective Linear Programs

A feasible solution **x** is referred to as an **efficient (nondominated) solution** if there is no feasible solution **y** such that

$$\sum_{j=1}^{n} c_{j}^{p} y_{j} \ge \sum_{j=1}^{n} c_{j}^{p} x_{j} \quad p = 1, \dots, q$$

$$\sum_{j=1}^{n} c_j^r y_j > \sum_{j=1}^{n} c_j^r x_j \text{ for some } r, 1 \le r \le q$$

No objective can be improved without reduction of one of the other objectives

Efficient (Non-dominated) Solutions

Non-dominated Solutions

Combine all objectives into one objective by taking a linear combination

$$\max \sum_{p=1}^{q} \lambda^{p} \left[\sum_{j=1}^{n} c_{j}^{p} x_{j} \right]$$

$$\lambda^{1}, \dots, \lambda^{q} > 0$$
Single objective linear program
$$\max \sum_{j=1}^{n} \overline{c}_{j} x_{j} \quad \text{with} \quad \overline{c}_{j} = \sum_{p=1}^{q} \lambda^{p} c_{j}^{p}$$

x is efficient if and only if there exists λ_p such that x is optimal for single obj. LP

Linear Combinations of Objectives

Constraint Methods

Maximize Revenue subject to Minimum Production value

Maximum Production subject to Minimum Revenue Value

Trade-Off between objective and lower bounds

Goal Programming

Summary

Multi-criteria Optimization

Multi-criteria Linear Problem

Multi-criteria Integer

Problem

Overview

Method 1: Linear Combination of Objectives

Method 2: Single Objective with Constraints for other objectives

Method 3: Goal Programming

Methods for Multi-criteria Integer Programming

Linear Programming

x is efficient if and only if there exists λ_p such that x is optimal for single obj. LP

Integer Programming

There exist efficient solutions that are not optimal for any linear combination

- Supported efficient (SE) solutions: efficient solutions that are optimal for a linear combination of objectives
- Non-supported efficient (NE) solutions: efficient solutions that are not optimal for any linear combination of objectives

Linear Combination of Objectives

Non-supported Efficient Solutions

Constrained Shortest Path Problem

NP-hard in general; polynomial for #hops

Constraint Methods: Shortest Path

Existence of non-supporting efficient solutions

Extra Constraint(s) make(s) easy combinatorial problems often NP-hard

Many more techniques, in particular heuristics

Summary