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 Lot-Sizing Problems
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IDEA manufactures and sells furniture
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Selling numbers per week

 Production of couches is 
performed in batches

 Inventory to meet 
demand

How large should be the batch size; 
When should be produced?
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Matching of Batch Size and Inventory such that cost are minimized

 Demand fluctuates per time unit
 Backorders are sometimes allowed
 Production involves a fixed setup cost (order cost)
 Lead time for delivery is instantaneous



Mathematical Tools for Engineering and Management

TU Berlin
Rüdiger StephanEconomic Order Quantity (EOQ)

Basic EOQ Model

 Demand is known with certainty and fixed at D per time unit
 Shortages are not permitted
 Lead time for delivery is instantaneous
 Cost per order: K
 Unit holding cost per time unit: h

 Physical storage cost
 Cost of Capital invested in inventory

Order whenever inventory hits zero

Order size: Q
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Cycle time T

T = Q / D     or     Q = T · D

Holding cost per cycle = ½hTQ

Objective: Minimize average 
costs per time unit over an 
infinite time horizon
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Total cost per cycle = K + ½hTQ

Average cost per time unit C(Q) = (K + ½hTQ) / T = KD / Q + ½hQ

Holding cost per cycle = ½hTQ

T = Q / D    or    Q = T · D

Find Q that minimizes average cost per time unit !

dC
dQ

=0⇔
−KD

Q2 +
h
2
=0

Q=√ 2KD
h

C (Q )=√2KDh

Cost per order = K
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Total cost per cycle = K + pQ + ½hTQ

Average cost per time unit      C(Q) = (K + pQ + ½hTQ) / T
= KD / Q + pD + ½hQ

p Unit production cost
T = Q / D    or    Q = T · D

Find Q that minimizes average cost per time unit !

dC
dQ

=0⇔
−KD

Q2 +
h
2
=0

Q=√ 2KD
h

C (Q )=√2KDh+pD

Holding cost per cycle = ½hTQ

Cost per order of size Q  = K + pQ
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Demand is not stationary but fluctuates 
over time: What to do?

Finite time horizon models
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Wagner-Within Model

 Shortages are not permitted
 Starting inventory is zero
 Linear Holding cost h
 Fixed order cost K
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D t Demand in period t

yt Production in period t

x t Inventory at the end of period t

δ( y ) 1 if y>0, 0 if y=0

xt=∑
j=1

t

( y j−D j )

min ∑
t=1

T

K t δ ( yt )+ht xt

s . t . xt=∑
j=1

t

( y j−D j ) ∀t=1, . . . ,T

xt≥0,x0=0

Observation: ytxt-1 = 0 in optimal solution
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Observation: ytxt-1 = 0 in optimal solution

yt > 0 if xt-1 = 0, e.g., inventory zero

yt ∈ {0, Dt, Dt + Dt+1, Dt + Dt+1 + Dt+2, ...}

Optimal Solution can be found by 
shortest path computation
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1 2 3 4 5 T+1

 Node for every point in time 1,…,T+1
 Arc (i,j) for all i < j
 Length of arc (i,j) equals cost of ordering in period i to satisfy demand 

through period j-1:

cij=K+∑
t=i

j−2

ht( ∑
u=t+1

j−1

Du)⏟
Inventory⏟

Total Inventory Cost
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1 2 3 4 5 T+1

 For every node i select at most one outgoing arc (i,j):
decide that order at time i must satisfy demand until period j-1
(“no parallel stocks”)

 For every node j with 1<j<T+1:
(incoming arc selected ⇔ stock empty at end of period j-1)
⇒ (order at begin of period j ⇔ select outgoing arc)

 For node 1 select one outgoing arc ⇔ satisfy first demand
 For node T+1 select one incoming arc ⇔ satisfy last demand
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1
2

3
4

5

period 1 2 3 4

Dt 7 4 5 6

Kt 3 3 4 5

ht 0.5 0.4 0.3 0.4

Arc c(i,j) y(I)

(1,2) 3 7

(1,3) 5 11

(1,4) 9.5 16

(1,5) 16.7 22

(2,3) 3 4

(2,4) 5 9

(2,5) 9.2 15

(3,4) 4 5

(3,5) 5.8 11

(4,5) 5 6

Shortest Path = (1,3,5); Cost = 5 + 5.8 = 10.8
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Maximum Batch Size

 Rule yt xt-1 = 0 does not hold anymore
 New Rule: yt (Bt – yt) xt-1 = 0
 NP-hard problem

Maximum Inventory Volume

 All arcs for which (Production – Demand of period i) is too large have to be 
removed from network

Backordering

 Generalized efficient algorithm

Fixed Batch Size

 Produce either 0 or B in each time period (all-or-nothing strategy)
 Known as Discrete Lot Sizing (DLS)
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Multi-product Lot-Sizing

Constant Demand is very easy

Variable Demand can be solved by 
shortest path computation

Production limitations makes problem 
NP-hard

Demand is stochastic
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 Multi-criteria Optimization

 Multi-criteria Linear Problem

 Multi-criteria Integer 

Problem
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Timetables have
influence on costs
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Problem: timetable has influence on passenger waiting time AND costs 
 

Short passenger waiting times at 
transfers are a very natural goal

Removing timetables with long waiting 
times, we could miss some of small cost

passenger waiting times should be small

But small number of trains is sought, too

Multi-criteria Optimization!
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Alternative Optimization 
problems

Minimize number of 
trains 

 subject to restricted 
passenger waiting time

Minimize passenger 
waiting time

 subject to limited 
number of trains

Minimize weighted sum 
of passenger waiting 
time and number of 
trains
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Mathematical WorldReal World

Modeling & Solution Cycle

Challenge, Problem Mathematical Model

Solution AlgorithmsSolution

Representation

Implementation

Execution

Interpretation
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Further Objectives in
Timetable Optimization

Company’s Benefit

CostsPassengers’ Satisfaction

Short waiting times…

… at transfers

… at stops

… at start

…
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 Multi-criteria Optimization

 Multi-criteria Linear Problem

 Multi-criteria Integer 

Problem
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Multiple
Objective
functions

General Form of 
Multi-objective Linear Programs
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Efficient (Non-dominated) 
Solutions

A feasible solution x is referred to as an efficient (non-
dominated) solution if there is no feasible solution y such that

qr1 r, somefor  xcyc

and

q,,1pxcyc

n
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No objective can be improved without 
reduction of one of the other objectives
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Linear Combinations of 
Objectives

Combine all objectives into one objective by taking a linear combination

0,,

xcmax

q1

q
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j
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Single objective linear program

x is efficient if and only if there exists λp 
such that x is optimal for single obj. LP
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Idea: Maximize one objective subject to bounds on all other objectives
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r-th objective optimized

Lower bound for p-th objective
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Maximize Revenue subject to
Minimum Production value
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# of Cars ≥  10.5

Optimal solution is 
efficient (non-dominated)
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Maximum Production subject to 
Minimum Revenue Value
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Optimal solution is not necessarily 
efficient (non-dominated)
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Trade-Off between objective and 
lower bounds
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Solution depends on lower 
bound on # of cars

Trade-off between two/more objectives: 
decision support tool
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Optimum = 200

Optimum = 11.25

Solution with revenue 200 and 
11.25 cars would be ideal, but 
is infeasible!

Find solution close to “Goal” solution
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Efficient (non-dominated) solutions

Method 1: Linear Combination of Objectives

Method 2: Single Objective with Constraints 
for other objectives

Method 3: Goal Programming
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 Multi-criteria Optimization

 Multi-criteria Linear Problem

 Multi-criteria Integer 

Problem
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Methods for Multi-criteria 
Integer Programming

Method 1: Linear Combination of Objectives

Method 2: Single Objective with Constraints 
for other objectives

Method 3: Goal Programming
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Linear Combination of 
Objectives

x is efficient if and only if there exists λp 
such that x is optimal for single obj. LP

Linear Programming

Integer Programming

There exist efficient solutions that are not 
optimal for any linear combination

 Supported efficient (SE) solutions: efficient solutions 
that are optimal for a linear combination of objectives

 Non-supported efficient (NE) solutions: efficient 
solutions that are not optimal for any linear 
combination of objectives
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Non-supported Efficient 
Solutions
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dominated) Solutions
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efficient solutions
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Constraint Methods: 
Shortest Path
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Solution:

 Minimize Length of path from 1 to 6
 Minimize # of hops (= # of nodes on path)

 Min Length = 10
 Min Hops = 4

Constrained Shortest Path Problem

NP-hard in general; polynomial for #hops
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Existence of non-supporting efficient 
solutions

Extra Constraint(s) make(s) easy 
combinatorial problems often NP-hard

Many more techniques, in particular 
heuristics
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