Lecture 14

Lot Sizing \& Multicriteria Optimization

01 Feb 2012

- Lot-Sizing Problems

IDEA manufactures and sells furniture

Selling numbers per week

KJELT

- Production of couches is performed in batches
- Inventory to meet demand

How large should be the batch size; When should be produced?

```
Matching of Batch Size and Inventory such that cost are minimized
```

- Demand fluctuates per time unit
- Backorders are sometimes allowed
- Production involves a fixed setup cost (order cost)
- Lead time for delivery is instantaneous

Basic EOQ Model

- Demand is known with certainty and fixed at D per time unit
- Shortages are not permitted
- Lead time for delivery is instantaneous
- Cost per order: K
- Unit holding cost per time unit: h
- Physical storage cost

Objective: Minimize average costs per time unit over an infinite time horizon

- Cost of Capital invested in inventory

Order whenever inventory hits zero Order size: Q

Holding cost per cycle $=1 / 2 h T Q$

Mathematical Tools for Engineering and Management

Holding cost per cycle $=1 / 2 h T Q$

$$
T=Q / D \quad \text { or } \quad Q=T \cdot D
$$

Cost per order $=\mathrm{K}$

Total cost per cycle $=K+1 / 2 h T Q$

Average cost per time unit $C(Q)=(K+1 / 2 h T Q) / T=K D / Q+1 / 2 h Q$

Find Q that minimizes average cost per time unit !

$$
\begin{aligned}
& \frac{d C}{d Q}=0 \Leftrightarrow \frac{-K D}{Q^{2}}+\frac{h}{2}=0 \\
& Q=\sqrt{\frac{2 K D}{h}}
\end{aligned}
$$

$$
C(Q)=\sqrt{2 K D h}
$$

EOQ Model

Mathematical Tools for Engineering and Management

Holding cost per cycle $=1 / 2 h T Q$

Cost per order of size $Q=K+p Q$

```
p Unit production cost
T=Q / D or Q = T | D
```

Total cost per cycle $=K+p Q+1 / 2 h T Q$

Average cost per time unit

$$
\begin{aligned}
C(Q) & =(K+p Q+1 / 2 h T Q) / T \\
& =K D / Q+p D+1 / 2 h Q
\end{aligned}
$$

Find Q that minimizes average cost per time unit !

$$
\begin{aligned}
& \frac{d C}{d Q}=0 \Leftrightarrow \frac{-K D}{Q^{2}}+\frac{h}{2}=0 \\
& Q=\sqrt{\frac{2 K D}{h}}
\end{aligned}
$$

$$
C(Q)=\sqrt{2 K D h}+p D
$$

Demand is not stationary but fluctuates over time: What to do?

Finite time horizon models

> Wagner-Within Model

- Shortages are not permitted
- Starting inventory is zero
- Linear Holding cost h
- Fixed order cost K
$D_{t} \quad$ Demand in period t
$y_{t} \quad$ Production in period t
$x_{t} \quad$ Inventory at the end of period t
$\delta(y) \quad 1$ if $\mathrm{y}>0,0$ if $\mathrm{y}=0$

$$
x_{t}=\sum_{j=1}^{t}\left(y_{j}-D_{j}\right)
$$

$$
\begin{array}{ll}
\min & \sum_{t=1}^{T} K_{t} \delta\left(y_{t}\right)+h_{t} x_{t} \\
\text { s.t. } & x_{t}=\sum_{j=1}^{t}\left(y_{j}-D_{j}\right) \quad \forall t=1, \ldots, T \\
& x_{t} \geq 0, x_{0}=0
\end{array}
$$

Observation: $y_{t} x_{t-1}=0$ in optimal solution

Observation: $y_{t} x_{t-1}=0$ in optimal solution

$y_{t}>0$ if $x_{t-1}=0$, e.g., inventory zero
$y_{t} \in\left\{0, D_{t}, D_{t}+D_{t+1}, D_{t}+D_{t+1}+D_{t+2}, \ldots\right\}$

Optimal Solution can be found by shortest path computation

Mathematical Tools for Engineering and Management

- Node for every point in time 1,...,T+1
- Arc (i,j) for all i < j
- Length of arc (i,j) equals cost of ordering in period i to satisfy demand through period $\mathrm{j}-1$:

$$
c_{i j}=K+\underbrace{\sum_{t=i}^{j-2} h_{t} \underbrace{\sum_{u=t+1}^{j-1} D_{u}}_{\text {Inventory }}}_{\text {Total Inventory Cost }}
$$

- For every node i select at most one outgoing arc (i,j): decide that order at time i must satisfy demand until period $j-1$ ("no parallel stocks")
- For every node j with $1<j<T+1$:
(incoming arc selected \Leftrightarrow stock empty at end of period j-1)
\Rightarrow (order at begin of period $\mathrm{j} \Leftrightarrow$ select outgoing arc)
- For node 1 select one outgoing arc \Leftrightarrow satisfy first demand
- For node $T+1$ select one incoming arc \Leftrightarrow satisfy last demand

Mathematical Tools for Engineering and Management

Maximum Inventory Volume

- All arcs for which (Production - Demand of period i) is too large have to be removed from network

Maximum Batch Size

- Rule $y_{t} x_{t-1}=0$ does not hold anymore
- New Rule: $y_{t}\left(B_{t}-y_{t}\right) x_{t-1}=0$
- NP-hard problem

Fixed Batch Size

- Produce either 0 or B in each time period (all-or-nothing strategy)
- Known as Discrete Lot Sizing (DLS)

Backordering

- Generalized efficient algorithm

Generalizations

Constant Demand is very easy

Variable Demand can be solved by shortest path computation

Production limitations makes problem NP-hard

Demand is stochastic

Multi-product Lot-Sizing

- Multi-criteria Optimization

- Multi-criteria Linear Problem
- Multi-criteria Integer

Problem

Mathematical Tools for Engineering and Management

Mathematical Tools for Engineering and Management

Berlin Underground Network

Mathematical Tools for Engineering and Management

Timetables have influence on costs

Problem: timetable has influence on passenger waiting time AND costs
short passenger waiting times at transfers are a very natural goal

Removing timetables with long waiting times, we could miss some of small cost passenger waiting times should be small But small number of trains is sought, too Multi-criteria Optimization!

What is the objective?

- Minimize number of trains

- subject to restricted passenger waiting time

- Minimize passenger waiting time

- subject to limited number of trains
- Minimize weighted sum of passenger waiting time and number of trains

Mathematical Tools for Engineering and Management

Real World

Mathematical World

Mathematical Tools for Engineering and Management

Mathematical Tools for Engineering and Management

Properties of some timetables

- Multi-criteria Optimization
- Multi-criteria Linear Problem
- Multi-criteria Integer

Problem

Mathematical Tools for Engineering and Management

Graphical Representation

$\max \sum_{j=1}^{n} c_{j}^{1} x_{j}, \sum_{j=1}^{n} c_{j}^{2} x_{j}, \ldots, \sum_{j=1}^{n} c_{j}^{q} x_{j} \quad \substack{\text { Multipe } \\ \text { opijective } \\ \text { functions }}$

$\begin{array}{lll}\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & i=1, \ldots, m \\ & l_{j} \leq x_{j} \leq u_{j} & j=1, \ldots, n\end{array}$

General Form of
Multi-objective Linear Programs

A feasible solution \boldsymbol{x} is referred to as an efficient (nondominated) solution if there is no feasible solution \boldsymbol{y} such that

$$
\begin{aligned}
& \sum_{j=1}^{n} c_{j}^{p} y_{j} \geq \sum_{j=1}^{n} c_{j}^{p} x_{j} \quad p=1, \ldots, q \\
& \text { and } \\
& \sum_{j=1}^{n} c_{j}^{r} y_{j}>\sum_{j=1}^{n} c_{j}^{r} x_{j} \text { for somer }, 1 \leq r \leq q
\end{aligned}
$$

No objective can be improved without

 reduction of one of the other objectives

Combine all objectives into one objective by taking a linear combination

$$
\begin{aligned}
& \max \sum_{p=1}^{q} \lambda^{p}\left[\sum_{j=1}^{n} c_{j}^{p} x_{j}\right] \\
& \lambda^{1}, \ldots, \lambda^{q}>0
\end{aligned}
$$

Single objective linear program

$$
\max \sum_{j=1}^{n} \bar{c}_{j} x_{j} \quad \text { with } \quad \bar{c}_{j}=\sum_{p=1}^{q} \lambda^{p} c_{j}^{p}
$$

x is efficient if and only if there exists λ_{p} such that x is optimal for single obj. LP

Linear Combinations of Objectives

Idea: Maximize one objective subject to bounds on all other objectives

Constraint Methods

Maximize Revenue subject to Minimum Production value

Trade-off between two/more objectives: decision support tool

Trade-Off between objective and lower bounds

$$
\begin{aligned}
& \text { \#Cabrios }{ }^{9} \\
& =200 \\
& =11.25^{5}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Optimum }=200 \\
& \text { Optimum }=11.25
\end{aligned}
$$

Solution with revenue 200 and
11.25 cars would be ideal, but
is infeasible!

Find solution close to "Goal" solution
 Goal Programming

Efficient (non-dominated) solutions

Method 1: Linear Combination of Objectives

Method 2: Single Objective with Constraints for other objectives

Method 3: Goal Programming

- Multi-criteria Optimization
- Multi-criteria Linear Problem
- Multi-criteria Integer

Problem

Method 1: Linear Combination of Objectives

Method 2: Single Objective with Constraints for other objectives

Method 3: Goal Programming

Linear Programming

x is efficient if and only if there exists λ_{p} such that x is optimal for single obj. LP

Integer Programming

There exist efficient solutions that are not optimal for any linear combination

- Supported efficient (SE) solutions: efficient solutions that are optimal for a linear combination of objectives
- Non-supported efficient (NE) solutions: efficient solutions that are not optimal for any linear combination of objectives

Linear Combination of Objectives

Shortest path from 1 to 6 ?

- Minimize Length of path from 1 to 6
- Minimize \# of hops (= \# of nodes on path)

Solution:

- Min Length = 10
- Min Hops = 4

Constrained Shortest Path Problem

NP-hard in general; polynomial for \#hops
Constraint Methods: Shortest Path

Existence of non-supporting efficient solutions

Extra Constraint(s) make(s) easy combinatorial problems often NP-hard

Many more techniques, in particular heuristics

