Exercise sheet #5

Prof. Peter Bürgisser and Dr. Pierre Lairez

due on May 27 at the beginning of the lecture

Exercise A (10 points). Let *X* be a topological space and let *Y* be a subset of *X*.

- 1. Let *F* be a subset of *Y*. Let \overline{F} denote the closure of *F* in *X* and \overline{F}^{Y} denote the closure of *F* in space *Y*. Show that $\overline{F}^{Y} = \overline{F} \cap Y$.
- 2. Assume that *Y* is dense. Show that *X* is irreducible if and only if *Y* is irreducible in the induced topology.

Exercise B (10 points). Let U and V be quasi-affine sets over \mathbb{C} and let $\alpha : \mathbb{C}[V] \to \mathbb{C}[U]$ be a morphism of \mathbb{C} -algebras.

Give an example where α is not the comorphism φ^* of a regular map $\varphi: U \to V$.

Exercise C (10 points). Let *A* be the subalgebra of $\mathbb{C}[t]$ of all polynomials f(t) such that f(1) = f(-1).

1. Show that *A* is generated by $t^2 - 1$ and $t^3 - t$.

Let *X* be an algebraic set such that $\mathbb{C}[X] \simeq A$.

- 2. Show that *X* is birationally equivalent to $\mathbb{A}^1_{\mathbb{C}}$.
- 3. Show that X is isomorphic to $V(Y^2 X^3 X^2) \subset \mathbb{C}^2$.

Exercise D (Ring of invariants and quotient variety, 20 points). Let *A* be a finitely generated \mathbb{C} -algebra and let *G* be a finite subgroup of the automorphism group of *A*. Let A^G the the subalgebra of all $a \in A$ such that g(a) = a for all $g \in G$. We aim at proving that A^G is finitely generated. For $a \in A$ and $1 \le i \le |G|$, let $\tau_i(a)$ be the coefficient of $T^{|G|-i}$ in the polynomial $\prod_{a \in G} (T - g(a))$.

- 1. a) Show that $\tau_i(a) \in A^G$ for all $a \in A$ and all $1 \le i \le |G|$.
 - b) Show that if $a \in A^G$, then $\tau_1(a) = -|G|a$.
 - c) Show that $\tau_1 : A \to A^G$ is an A^G -linear map.

Let u_1, \ldots, u_r be a set of generators of the algebra *A*. Let *B* be the subalgebra of A^G generated by the $\tau_i(u_j)$, for $1 \le i \le |G|$ and $1 \le j \le r$.

- 2. a) Show that *A* is finitely generated *B*-module.
 - b) Show that A^G is a finite generated *B*-module. (*Hint: use questions 1b and 1c.*)
 - c) Conclude that A^G is finitely generated \mathbb{C} -algebra.
- 3. Let *X* be an algebraic set. Let *G* be a finite subgroup of the automorphism group of *X*. Show that there exists an algebraic set *Y* and a regular map $\pi : X \to Y$ such that the following universal property holds:
 - (i) $\pi \circ g = \pi$ for all $g \in G$;
 - (ii) for all algebraic set Z and all regular map $f : X \to Z$ such that $f \circ g = f$ for all $g \in G$, there exists a unique map $h : Y \to Z$ such that $f = h \circ \pi$.

Moreover, show that *Y* is unique up to isomorphism.