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Mit Lösungsansätzen von Kathlén Kohn

Exercise 1. Let X be an affine variety, Y ⊆ X closed, and J ⊆ A(X) an ideal. We
define the vanishing ideal IX(Y) := { f ∈ A(X) | ∀p ∈ Y : f (p) = 0} and the zero
set ZX(J) := {p ∈ X | ∀ f ∈ J : f (p) = 0}. Show that ZX(IX(Y)) = Y and that
IX(ZX(J)) =

√
J.

Macaulay2

Exercise 2 (Exercise 1 on Sheet 2). Let I = 〈x2 − yz, xz− x〉 and X := Z(I) ⊆ A3.
Use Macaulay2 to verify that I is radical and to compute the prime ideals of the
irreducible components of X.

Solution. QQ[x,y,z]

I = ideal(x^2-y*z, x*z-x)

dim I, degree I --this shows that X is a curve of degree 4

radical(I) == I --this shows that I is radical

Components = decompose(I) --X has 3 irreducible components

Components / dim, Components / degree

--hence X consists of 2 lines and a quadratic curve

Exercise 3 (Exercise 3 on Sheet 3). In C4 with coordinates x, y, z, t, let X be the union
of the two planes

Z(x, y) and Z(z, x− t).

(1) Find the vanishing ideal I := I(X) ⊂ C[x, y, z, t] with Macaulay2.

(2) For any a ∈ C, let Ia ⊂ C[x, y, z] be the ideal obtained by substituting t = a in I,
and let Xa = Z(Ia) ⊂ A3.
Compute with Macaulay2 the prime ideals of the irreducible components of X1

and X0, and see that X1 is two skew lines, whereas X0 is two lines intersecting
at the origin.

(3) Verify with Macaulay2 that I1 is radical but that I0 is not. Compute the radical
ideal of I0.
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(4) Why is it enough to consider a = 1 to deduce that all ideals Ia for a 6= 0 are
radical?

Solution. R = QQ[x,y,z,t]

J1 = ideal(x,y)

J2 = ideal(z,x-t)

I = intersect(J1,J2)

--or use the radical of the product:

I = radical(J1*J2)

decompose I --in this way, we can get the 2 planes back

sub0 = {t => 0}

sub1 = {t => 1}

I0 = sub(I,sub0)

I1 = sub(I,sub1)

decompose I0 --2 lines meeting at origin

decompose I1 --2 skew lines

radical(I1) == I1 --I1 is radical!

rad0 = radical(I0)

rad0 == I0 --I0 is not radical!

Let a ∈ C be non-zero. Then we have that

Ia = 〈xz, yz, x(x− a), y(x− a)〉

=

〈
1
a

xz, yz,
1
a2 x(x− a),

1
a

y(x− a)
〉

=
〈x

a
z, yz,

x
a

(x
a
− 1
)

, y
(x

a
− 1
)〉

.

Using the change or coordinates x̃ := x
a , we get that

Ia = 〈x̃z, yz, x̃(x̃− 1), y(x̃− 1)〉.

Hence, Ia is radical if and only if I1 is radical.

Exercise 4 (Exercise 1 on Sheet 1). Consider the following curve in C3:

C := {(t3, t4, t5) | t ∈ C} = {(x, y, z) ∈ C3 | x3 = yz, y2 = xz, z2 = x2y}.

Verify with Macaulay2 that one needs indeed three equations to define C.
Helpful command: mingens
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Solution. QQ[x,y,z]

I = ideal(x^3-y*z, y^2-x*z, z^2-x^2*y)

dim I, degree I --this shows that C is a curve of degree 5

mingens I --this shows that there is no smaller set of defining equations

Exercise 5 (Exercise 2 on Sheet 1). Consider the set

X := {
( m00 m01 m02

m10 m11 m12

)
∈ C2×3 | m00m11 = m10m01, m00m12 = m10m02, m01m12 = m11m02}

of all 2× 3-matrices of rank at most 1. Verify with Macaulay2 that X has dimension
four and that one needs indeed three equations to define X.

Solution. R = QQ[m_(0,0)..m_(1,2)]

M = matrix{{m_(0,0), m_(0,1), m_(0,2)},{m_(1,0), m_(1,1), m_(1,2)}}

-- or use this alternative version with shorter code:

M = transpose genericMatrix (R,3,2)

I = minors (2,M)

dim I, degree I --this shows that X has dimension 4 and degree 3

mingens I --this shows that there is no smaller set of defining equations

Exercise 6 (Related to Exercise 3 on Sheet 1). Consider the cubic surface S ⊆ R3

defined by

f = 81(x3 + y3 + z3)− 189(x2y + x2z + xy2 + xz2 + y2z + yz2)

+ 54xyz + 126(xy + xz + yz)− 9(x2 + y2 + z2)− 9(x + y + z) + 1.

Verify with Macaulay2 that there are 27 real lines on S and compute them explicitly!
How many of these lines are defined over Q?

Solution. R = QQ[x,y,z,a,b,c,d][s]

f = 81*(x^3+y^3+z^3)-189*(x^2*y+x^2*z+x*y^2+x*z^2+y^2*z+y*z^2)+54*x*y*z

+126*(x*y+x*z+y*z)-9*(x^2+y^2+z^2)-9*(x+y+z)+1

sub1 = {x => s, y => s*a+(1-s)*c, z => s*b+(1-s)*d}

sub2 = {x => c, y => s, z => s*b+(1-s)*d}

sub3 = {x => c, y => d, z => s}

g1 = sub(f,sub1)

(M,C1) = coefficients g1

I1 = ideal flatten entries C1
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S1 = QQ[a,b,c,d]

I1 = sub(I1,S1)

dim I1, degree I1 --this yields 22 solutions

g2 = sub(f,sub2)

(M,C2) = coefficients g2

I2 = ideal flatten entries C2

S2 = QQ[b,c,d]

I2 = sub(I2,S2)

dim I2, degree I2 --this yields 5 solutions

g3 = sub(f,sub3)

(M,C3) = coefficients g3

I3 = ideal flatten entries C3

S3 = QQ[b,d]

I3 = sub(I3,S3)

dim I3, degree I3 --this yields 0 solutions

sol2 = decompose I2 --explicit solutions for 5 lines

#sol2 --I2 has been really decomposed in 5 points

sol2 / degree --check degree of all ideals in sol2

sol1 = decompose I1

#sol1 --I1 can be only decomposed in 16 prime ideals over Q

sol1 / degree --12 lines still come in pairs

--these lines are not defined over Q

Pairs = apply(6, i -> sol1#(i+10))

--we extract the one and only quadratic equation in each pair

Quadratics = Pairs / mingens / entries / flatten / last

S = QQ[d]

Quadratics = apply (Quadratics, q -> sub(q,S))

--we compute the discriminants of the quadratic equations

Discriminants = apply (Quadratics, q

-> (coefficient(d,q))^2-4*coefficient(d^2,q)*coefficient(d^0,q))

--since these are all positive, every pair yields 2 real lines
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Hence, 15 lines are defined over Q, 12 lines only over R. We can write down explicit
solutions in terms of square roots by simply using the p-q-formula.


