Exercise sheet 1 for Representations of S_N and GL(V)

TU Berlin, Prof. Bürgisser, WS 2017/18

1. Let $\lambda, \mu \vdash N$ be partitions. We say that $\lambda \triangleleft_1 \mu$ iff

 $\exists u < v \quad (\mu_1 \dots, \mu_N) = (\lambda_1, \dots, \lambda_{u-1}, \lambda_u + 1, \lambda_{u+1}, \dots, \lambda_{v-1}, \lambda_v - 1, \lambda_{v+1}, \dots, \lambda_N).$ Prove that

 $\lambda \leq \mu \iff \exists \kappa_0, \dots, \kappa_r \vdash N : \kappa_0 = \lambda, \kappa_r = \mu, \ \forall \rho < r \ \kappa_\rho \triangleleft_1 \kappa_{\rho+1}.$

2.^{*} Let $\lambda, \mu \vdash_m N$. The Gale-Ryser Theorem states that the equivalence of the following two conditions:

(1) There exists $[\alpha_{ij}] \in \{0,1\}^{m \times m}$ such that $\sum_k \alpha_{ik} = \lambda_i$ and $\sum_k \alpha_{kj} = \mu_j$ for all i, j. (2) $\mu \leq \lambda'$.

In the lecture we only showed that (1) implies (2). The reverse implication can be elegantly derived from Fulkerson's max-flow/min cut theorem. Try to derive this, if you know this theorem.

- **3.** Let V be an S_N -module. Show that
 - (1) The character of V takes only real values.
 - (2) $V^* \simeq V$.
- **4.** Prove from the definition of Specht modules \mathscr{S}_{λ} that $\mathscr{S}_{\lambda} \otimes \mathbb{C}_{sgn} \simeq \mathscr{S}_{\lambda'}$ for $\lambda \vdash N$.
- 5. Show that the (2, 1)-isotypical component of the group algebra $\mathbb{C}[S_3]$ is given by

$$K = \Big\{ \sum_{\pi \in S_3} a_{\pi} \pi \mid a_{\mathrm{id}} + a_{(123)} + a_{(132)} = 0, \quad a_{(12)} + a_{(13)} + a_{(23)} = 0 \Big\}.$$