direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Preprint 04-2012

High order asymptotic expansion for the acoustics in viscous gases close to rigid walls

Source file is available as :   Portable Document Format (PDF)

Author(s) : Kersten Schmidt , Anastasia Thöns-Zueva

Preprint series of the Institute of Mathematics, Technische Universität Berlin
Preprint 04-2012

MSC 2000

35C20 Asymptotic expansions
35J25 Boundary value problems for second-order, elliptic equations
41A60 Asymptotic approximations, asymptotic expansions
35B40 Asymptotic behavior of solutions

Abstract :
We derive a complete asymptotic expansion for the singularly perturbed problem of the acoustic wave propagation inside gases with small viscosity, this for the non-resonant case in smooth bounded domains in two dimensions. Close to rigid walls the tangential velocity shows a boundary layer of size $O(\sqrt{\eta})$ where $\eta$ is the dynamic viscosity. The asymptotic expansion based on the technique of multiscale expansion is in powers of $\sqrt{\eta}$ and takes into account curvature effects. The terms of the velocity and pressure expansion are defined independently by partial differential equations, where the normal component of velocities or the normal derivative of the pressure, respectively, are prescribed on the boundary. The asymptotic expansion is rigorously justified with optimal error estimates.

Keywords : Acoustic wave propagation, Singularly perturbed PDE, Asymptotic Expansions

Zusatzinformationen / Extras


Schnellnavigation zur Seite über Nummerneingabe