direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Preprint 10-2006

A note on the eigenvalues of saddle point matrices

Source file is available as :   Portable Document Format (PDF)

Author(s) : Jörg Liesen

Preprint series of the Institute of Mathematics, Technische Universität Berlin
Preprint 10-2006

MSC 2000

65F15 Eigenvalues, eigenvectors
65N22 Solution of discretized equations

Abstract :
Results of Benzi and Simoncini (Numer. Math. 103 (2006), pp.~173--196) on spectral properties of block $2\times 2$ matrices are generalized to the case of a symmetric positive semidefinite block at the (2,2) position. More precisely, a sufficient condition is derived when a (nonsymmetric) saddle point matrix of the form $[A\;\;B^T; -B\;C]$ with $A=A^T>0$, full rank $B$, and $C=C^T\geq 0$, is diagonalizable and has real and positive eigenvalues.

Keywords : saddle point problem, eigenvalues, Stokes problem, normal matrices

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe