direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Preprint 5-2018

PDE Eigenvalue Iterations with Applications in Two-dimensional Photonic Crystals

Source file is available as :   Portable Document Format (PDF)

Author(s) : Robert Altmann , Marine Froidevaux

Preprint series of the Institute of Mathematics, Technische Universität Berlin
Preprint 5-2018

MSC 2000

65N25 Eigenvalue problems
65J10 Equations with linear operators

Abstract :
The first part of this paper is devoted to the approximative solution of linear and Hermitian eigenvalue problems where the differential operator satisfies a Garding inequality. For this, known iterative schemes for the matrix case such as the inverse power or Arnoldi method are extended to the infinite-dimensional case. This formally allows one to apply different spatial discretizations in each iteration step and thus, justifies the use of adaptive methods. The second part considers eigenvalue problems as they appear in two-dimensional models of photonic crystals for the computation of band-gaps. If the permittivity of the material is frequency-dependent, then this leads to a nonlinear eigenvalue problem. For this, we consider two strategies. First, a linearization combined with the application of the inverse power method and second, a direct application of Newton's iteration.

Keywords : nonlinear eigenvalue problem, photonic crystals, inverse power

Zusatzinformationen / Extras


Schnellnavigation zur Seite über Nummerneingabe