direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Preprint 644-1999

Minimal Lagrangian submanifolds with constant sectional curvature in indefinite complex space forms

Source file is available as :  

Author(s) : Luc Vrancken

Preprint series of the Institute of Mathematics, Technische Universität Berlin
Preprint 644-1999

MSC 2000

53B35 Hermitian and Kählerian structures
53B30 Lorentz metrics, indefinite metrics

Abstract :
We study minimal Lagrangian immersions from an indefinite real space form $M^n_s(c)$ into an indefinite complex space form $\tilde{M}^n_s(4\tilde{c})$. Provided that $c\not= \tilde{c}$, we show that $M^n$ has to be flat and we obtain an explicit description of the immersion. In the case the metric is positive definite or Lorentzian, this result was respectively obtained by Ejiri [4] and by Kriele and the author [5]. In the case that $c = \tilde{c}$, this theorem is no longer true, see for instance the examples discovered in [3] by Chen and the author.

Keywords : Lagrangian, constant sectional curvature, complex space forms

Zusatzinformationen / Extras


Schnellnavigation zur Seite über Nummerneingabe