Preprint 680-2000

Title
Solving Project Scheduling Problems by Minimum Cut Computations
Authors
Rolf H. Möhring, Andreas S. Schulz, Frederik Stork, and Marc Uetz
Publication
To appear in Management Science. Latest revision: November 2002. This is a journal version which merges and extends the two earlier Reports 620 and 661.
Classification
not available
Keywords
Project Scheduling, Lagrangian Relaxation, Lower Bounds, Minimum Cuts, Ordering Heuristics
Abstract
In project scheduling, a set of precedence-constrained jobs has to be scheduled so as to minimize a given objective. In resource-constrained project scheduling, the jobs additionally compete for scarce resources. Due to its universality, the latter problem has a variety of applications in manufacturing, production planning, project management, and elsewhere. It is one of the most intractable problems in operations research, and has therefore become a popular playground for the latest optimization techniques, including virtually all local search paradigms. We show that a somewhat more classical mathematical programming approach leads to both competitive feasible solutions and strong lower bounds, within quite reasonable computation times. The basic ingredients of our approach are the Lagrangian relaxation of a time-indexed integer programming formulation and relaxation-based list scheduling, enriched with a useful idea from recent approximation algorithms for machine scheduling problems. The efficiency of the algorithm results from the insight that the relaxed problem can be solved by computing a minimum cut in an appropriately defined directed graph. Our computational study covers different types of resource-constrained project scheduling problems, based on several, notoriously hard test sets, including practical problem instances from chemical production planning.
Source
Download as [PDF] [ps.gz] [ps.Z] [ps]