Chordal structure and polynomial systems

Pablo A. Parrilo

Laboratory for Information and Decision Systems
Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Joint work with Diego Cifuentes (MIT)

MAV 2015
A polynomial system defined by m equations in n variables:

$$f_i(x_0, \ldots, x_{n-1}) = 0, \quad i = 1, \ldots, m$$

Construct a graph G ("primal graph") with n nodes, as:

- Nodes are variables $\{x_0, \ldots, x_{n-1}\}$.
- For each equation, add a clique connecting the variables appearing in that equation.
A polynomial system defined by \(m \) equations in \(n \) variables:

\[
f_i(x_0, \ldots, x_{n-1}) = 0, \quad i = 1, \ldots, m
\]

Construct a graph \(G \) (“primal graph”) with \(n \) nodes, as:

- Nodes are variables \(\{x_0, \ldots, x_{n-1}\} \).
- For each equation, add a clique connecting the variables appearing in that equation.

Example:

\[
I = \langle x_0^2 x_1 x_2 + 2x_1 + 1, \quad x_1^2 + x_2, \quad x_1 + x_2, \quad x_2 x_3 \rangle
\]
“Abstracted” the polynomial system to a (hyper)graph.
“Abstracted” the polynomial system to a (hyper)graph.

- Can the graph structure help solve this system?
- For instance, to optimize, or to compute Groebner bases?
- Or, perhaps we can do something better?
- Preserve graph (sparsity) structure?
- Complexity aspects?
(Hyper)Graphical modelling

Pervasive idea in many areas, in particular: numerical linear algebra, graphical models, constraint satisfaction, database theory, . . .

Key notions: chordality and treewidth.

Many names: Arnborg, Beeri/Fagin/Maier/Yannakakis, Blair/Peyton, Bodlaender, Courcelle, Dechter, Lauritzen/Spiegelhalter, Pearl, Robertson/Seymour, . . .

Reasonably well-known in discrete (0/1) optimization, what happens in the continuous side? (e.g., Waki et al., Lasserre, Bienstock, Jordan/Wainwright, Lavaei, etc)
(Hyper)Graphical modelling

Pervasive idea in many areas, in particular: numerical linear algebra, graphical models, constraint satisfaction, database theory, . . .

Key notions: chordality and treewidth.

Many names: Arnborg, Beeri/Fagin/Maier/Yannakakis, Blair/Peyton, Bodlaender, Courcelle, Dechter, Lauritzen/Spiegelhalter, Pearl, Robertson/Seymour, . . .

Remarkably (AFAIK) almost no work in computational algebraic geometry exploits this structure.
(Hyper)Graphical modelling

Pervasive idea in many areas, in particular: numerical linear algebra, graphical models, constraint satisfaction, database theory, . . .

Key notions: chordality and treewidth.

Many names: Arnborg, Beeri/Fagin/Maier/Yannakakis, Blair/Peyton, Bodlaender, Courcelle, Dechter, Lauritzen/Spiegelhalter, Pearl, Robertson/Seymour, . . .

Remarkably (AFAIK) almost no work in computational algebraic geometry exploits this structure.

Reasonably well-known in discrete (0/1) optimization, what happens in the continuous side? (e.g., Waki et al., Lasserre, Bienstock, Jordan/Wainwright, Lavaei, etc)
Chordality, treewidth, and a meta-theorem

Let G be a graph with vertices x_0, \ldots, x_{n-1}.
A vertex ordering $x_0 > x_1 > \cdots > x_{n-1}$ is a \textit{perfect elimination ordering} if for each x_i, the set

$$X_i := \{x_i\} \cup \{x_m : x_m \text{ is adjacent to } x_i, \ x_i > x_m\}$$

is such that the restriction $G|_{X_i}$ is a clique.
A graph is \textit{chordal} if it has a perfect elimination ordering.
Chordality, treewidth, and a meta-theorem

Let G be a graph with vertices x_0, \ldots, x_{n-1}. A vertex ordering $x_0 > x_1 > \cdots > x_{n-1}$ is a perfect elimination ordering if for each x_l, the set

$$X_l := \{x_l\} \cup \{x_m : x_m \text{ is adjacent to } x_l, \ x_l > x_m\}$$

is such that the restriction $G|_{X_l}$ is a clique. A graph is chordal if it has a perfect elimination ordering. A chordal completion of G is a chordal graph with the same vertex set as G, and which contains all edges of G. The treewidth of a graph is the clique number (minus one) of its smallest chordal completion.

Meta-theorem: NP-complete problems are "easy" on graphs of small treewidth.
Chordality, treewidth, and a meta-theorem

Let G be a graph with vertices x_0, \ldots, x_{n-1}.

A vertex ordering $x_0 > x_1 > \cdots > x_{n-1}$ is a **perfect elimination ordering** if for each x_l, the set

$$X_l := \{x_l\} \cup \{x_m : x_m \text{ is adjacent to } x_l, x_l > x_m\}$$

is such that the restriction $G|_{X_l}$ is a clique.

A graph is **chordal** if it has a perfect elimination ordering.

A **chordal completion** of G is a chordal graph with the same vertex set as G, and which contains all edges of G.

The **treewidth** of a graph is the clique number (minus one) of its smallest chordal completion.

Meta-theorem:

NP-complete problems are "easy" on graphs of small treewidth.
Bad news? (I)

Subset sum problem, with data $A = \{a_1, \ldots, a_n\} \subset \mathbb{Z}$.
Is there a subset of A that adds up to S?

Letting s_i be the partial sums, we can write a polynomial system:

\[
0 = s_0
\]
\[
0 = (s_i - s_{i-1})(s_i - s_{i-1} - a_i)
\]
\[
S = s_n
\]

The graph associated with these equations is a path (treewidth=1)

\[\text{\begin{tikzpicture}
\node (s0) at (0,0) {s_0};
\node (s1) at (1,0) {s_1};
\node (s2) at (2,0) {s_2};
\node (sn) at (4,0) {s_n};
\draw (s0) -- (s1);
\draw (s1) -- (s2);
\draw (s2) -- (sn);
\end{tikzpicture} }\]

But, subset sum is NP-complete… :(}
Bad news? (II)

For *linear* equations, “good” elimination preserves graph structure (perfect!)

For polynomials, however, Groebner bases can destroy chordality. Ex: Consider $I = \langle x_0 x_2 - 1, x_1 x_2 - 1 \rangle$, whose associated graph is the path $x_0 - x_2 - x_1$. Every Groebner basis must contain the polynomial $x_0 - x_1$, breaking the sparsity structure.
Bad news? (II)

For linear equations, “good” elimination preserves graph structure (perfect!)

For polynomials, however, Groebner bases can destroy chordality.

Ex: Consider

\[I = \langle x_0 x_2 - 1, x_1 x_2 - 1 \rangle, \]

whose associated graph is the path \(x_0 \rightarrow x_2 \rightarrow x_1 \).
For linear equations, “good” elimination preserves graph structure (perfect!)

For polynomials, however, Groebner bases can destroy chordality.

Ex: Consider

\[I = \langle x_0 x_2 - 1, x_1 x_2 - 1 \rangle, \]

whose associated graph is the path $x_0 \rightarrow x_2 \rightarrow x_1$.

Every Groebner basis must contain the polynomial $x_0 - x_1$, breaking the sparsity structure.
Two papers

- Chordal elimination and Groebner bases (arXiv:1411:1745)
 - New *chordal elimination* algorithm, to exploit graphical structure.
 - Conditions under which chordal elimination succeeds.
 - For a certain class, complexity is *linear* in number of variables!
 (exponential in treewidth)
 - Implementation and experimental results

- Computing permanents, hyperdeterminants, and mixed discriminants
 (arXiv:1507:03046)
 - New polynomial time algorithm $O(n2^\omega)$ (ω is treewidth).
 - Hardness: mixed volume still hard, even with small treewidth.
Chordal elimination (sketch)

Given equations, construct graph G, a chordal completion, and a perfect elimination ordering.

Will produce a decreasing sequence of ideals $I = I_0 \supseteq I_1 \supseteq \cdots \supseteq I_{n-1}$.

Given current ideal I_l, split the generators

$$I_l = \underbrace{J_l}_{\in \mathbb{K}[X_l]} + \underbrace{K_{l+1}}_{\notin \mathbb{K}[X_l]}$$

and eliminate variable x_l

$$I_{l+1} = \text{elim}_{l+1}(J_l) + K_{l+1}$$

“Ideally” (!), I_l should be the l-th elimination ideal $\text{elim}_l(I)$...

Notice that by chordality, graph structure is always preserved!
When does chordal elimination succeed?

We need conditions for this to work, i.e., for $\mathbf{V}(I_l) = \mathbf{V}(\text{elim}_l(I))$.

Thm 1: Let I be an ideal and assume that for each l such that X_l is a maximal clique of G, the ideal $J_l \subseteq \mathbb{K}[X_l]$ is zero dimensional. Then, chordal elimination succeeds.

In particular, finite fields \mathbb{F}_q, and 0/1 problems.
When does chordal elimination succeed?

We need conditions for this to work, i.e., for $\mathbf{V}(I_l) = \mathbf{V}(\text{elim}_l(I))$.

Thm 1: Let I be an ideal and assume that for each l such that X_l is a maximal clique of G, the ideal $J_l \subseteq \mathbb{K}[X_l]$ is zero dimensional. Then, chordal elimination succeeds.

In particular, finite fields \mathbb{F}_q, and 0/1 problems.

Def: A polynomial f is *simplicial* if for each variable x_l, the monomial m_l of largest degree in x_l is unique and has the form $m_l = x_{d_l}^l$.

Thm 2: Let $I = \langle f_1, \ldots, f_s \rangle$ be an ideal such that for each $1 \leq i \leq s$, f_i is generic simplicial. Then, chordal elimination succeeds.
When does chordal elimination succeed?

We need conditions for this to work, i.e., for $V(I_l) = V(\text{elim}_l(I))$.

Thm 1: Let I be an ideal and assume that for each l such that X_I is a maximal clique of G, the ideal $J_l \subseteq K[X_I]$ is zero dimensional. Then, chordal elimination succeeds.

In particular, finite fields \mathbb{F}_q, and 0/1 problems.

Def: A polynomial f is *simplicial* if for each variable x_l, the monomial m_l of largest degree in x_l is unique and has the form $m_l = x_i^{d_l}$.

Thm 2: Let $I = \langle f_1, \ldots, f_s \rangle$ be an ideal such that for each $1 \leq i \leq s$, f_i is generic simplicial. Then, chordal elimination succeeds.

[Intuition: interaction of (iterated) “closure/extension thm” + chordality]

[Intuition: variety has “small” coordinate projections, can compute those, and glue them]
Complexity

For “nice” cases, complexity is linear in number of variables n, number of equations s, and exponential in treewidth κ.

Thm: Let I be such that each (maximal) \tilde{H}^i is q-dominated. The complexity of computing I_i is $\tilde{O}(s + lq^\alpha \kappa)$. We can find all elimination ideals in $\tilde{O}(nq^\alpha \kappa)$.

E.g., we recover known results on linear-time colorability for bounded treewidth:

Cor: Let G be a graph and \bar{G} a chordal completion with largest clique of size κ. We can describe all q-colorings of G in $\tilde{O}(nq^\alpha \kappa)$.
Implementation and examples

Implemented in Sage, using Singular and PolyBoRi (for \mathbb{F}_2).

- Graph colorings (counting q-colorings)
- Cryptography (“baby” AES, Cid et al.)
- Sensor Network localization
- Discretization of polynomial equations
Results: Crypto - AES variant (Cid et al.) - $\mathbb{F}_2[x]$

Performance on $SR(n, 1, 2, 4)$ for chordal elimination, and computing (lex/degrevlex) Gröbner bases (PolyBoRi).

<table>
<thead>
<tr>
<th>n</th>
<th>Variables</th>
<th>Equations</th>
<th>Seed</th>
<th>ChordElim</th>
<th>LexGB</th>
<th>DegrevlexGB</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>176</td>
<td>320</td>
<td>0</td>
<td>575.516</td>
<td>402.255</td>
<td>256.253</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>609.529</td>
<td>284.216</td>
<td>144.316</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>649.408</td>
<td>258.965</td>
<td>133.367</td>
</tr>
<tr>
<td>10</td>
<td>288</td>
<td>528</td>
<td>0</td>
<td>941.068</td>
<td>> 1100, aborted</td>
<td>1279.879</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>784.709</td>
<td>> 1400, aborted</td>
<td>1150.332</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1124.942</td>
<td>> 3600, aborted</td>
<td>> 2500, aborted</td>
</tr>
</tbody>
</table>

- For small problems standard Gröbner bases outperform chordal elimination, particularly using degrevlex order.
- Nevertheless, chordal elimination scales better, being faster than both methods for $n = 10$.
- In addition, standard Gröbner bases have higher memory requirements, which is reflected in the many experiments that aborted for this reason.
Results: Sensor network localization - $\mathbb{Q}[x]$

Find positions, given a few known fixed anchors and pairwise distances.

Comparison with Singular: DegrevlexGB, LexFGLM

- Natural graph structure
 \[
 \|x_i - x_j\|^2 = d_{ij}^2 \quad ij \in A \\
 \|x_i - a_k\|^2 = e_{ij}^2 \quad ik \in B
 \]

- Simplicial, therefore exact elimination

- Underconstrained regime: chordal is much better

- Overconstrained regime: competitive (plot)
The *permanent* of a matrix is

\[
\text{perm}(M) := \sum_{\pi} \prod_{i=1}^{n} M_{i,\pi(i)}
\]

where the sum is over all permutations \(\pi \in S_n \).

Very difficult (\#P-hard).

What happens under small treewidth?

What about generalizations (e.g., mixed discriminants, mixed volumes, etc)?
New tree-decomposition (DP) algorithms for permanents, mixed discriminants and hyperdeterminants

Hardness results for mixed volumes and above.
(Hyper)graphical structure *may* simplify optimization/solving

- Under assumptions (treewidth + algebraic structure), tractable!
- Yields practical, competitive, implementable algorithms
- Ongoing and future work: other polynomial solving approaches (e.g., triangular sets, homotopies, full numerical algebraic geometry...)

If you want to know more:

Thanks for your attention!
Summary

- (Hyper)graphical structure may simplify optimization/solving
- Under assumptions (treewidth + algebraic structure), tractable!
- Yields practical, competitive, implementable algorithms
- Ongoing and future work: other polynomial solving approaches (e.g., triangular sets, homotopies, full numerical algebraic geometry...)

If you want to know more:

Thanks for your attention!