On the Structure of Graphs of Minimum Degree at least 4

Matthias Kriesell

TU Ilmenau
We outline a proof that for every vertex x of a 4 -connected graph G there exists a subgraph H in G isomorphic to a subdivision of the complete graph K_{4} on four vertices such that $G-V(H)$ is connected and contains x. This implies an affirmative answer to a question of J.-I. Ітон and W. Kühnel whether every 4 -connected graph G contains a subdivision of K_{4} such that $G-V(H)$ is connected. A generalized, "induced" version of the statement is the key ingredience for their proof that every 4 -connected graph has an embedding in \mathbb{R}^{3} such that the intersection with every open halfspace is connected.

The motor for our induction is a result of Fontet and Martinov stating that every 4 -connected graph can be reduced to a smaller one by contracting a single edge, unless the graph is the square of a cycle or the line graph of a cubic graph. It turns out that this is the only ingredience of the proof where 4 -connectedness is used. We then generalize our result to connected graphs of minimum degree at least 4, by developing the respective motor, a structure theorem for the class of simple connected graphs of minimum degree at least 4 .

Figure 1: The nine bricks. Vertices of attachment are displayed solid.
A simple connected graph G of minimum degree 4 can not be reduced to a smaller such graph by deleting a single edge or contracting a single edge and simplifying if and only if it is the square of a cycle or the edge disjoint union of
copies of certain bricks as follows: The bricks are $K_{3}, K_{5}, K_{2,2,2}, K_{5}^{-}, K_{2,2,2}^{-}$, and the four graphs $K_{5}^{\nabla}, K_{2,2,2}^{\nabla}, K_{5}^{\triangleright \triangleleft}, K_{2,2,2}^{\triangleright \triangleleft}$ obtained from K_{5} and $K_{2,2,2}$ by deleting the edges of a triangle, or replacing a vertex x by two new vertices and adding four edges to the endpoints of two disjoint edges of its former neighborhood, respectively (see Figure 1). Bricks isomorphic to K_{5} or $K_{2,2,2}$ share exactly one vertex with the other bricks of the decomposition; vertices of degree 4 in any other brick are not contained in any further brick of the decomposition; the vertices of a brick isomorphic to K_{3} must have degree 4 in G and its neighbors are pairwise distinct; and at least one vertex of degree 2 in each brick isomorphic to K_{5}^{∇} must have degree 4 in G.

