Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Hirsch Wars Episode II Attack of the Prismatoids

Francisco Santos http://personales.unican.es/santosf

Departamento de Matemáticas, Estadística y Computación Universidad de Cantabria, Spain

MDS Summer Schhol, Döllnsee — August 14-16, 2012

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Previously on "Hirsch wars"...

We saw how the *d*-step Theorem follows from the following lemma:

Previously on "Hirsch wars" ...

We saw how the *d*-step Theorem follows from the following lemma:

Lemma

For every *d*-polytope *P* with *n* facets and diameter δ there is a d + 1-polytope with one more facet and the same diameter δ .

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Previously on"Hirsch wars"...

We saw how the *d*-step Theorem follows from the following lemma:

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Previously on"Hirsch wars"...

We saw how the *d*-step Theorem follows from the following lemma:

Previously on "Hirsch wars" ...

We saw how the *d*-step Theorem follows from the following lemma:

Lemma

For every *d*-polytope *P* with *n* facets and diameter δ there is a d + 1-polytope with one more facet and the same diameter δ .

The strong *d*-step Theorem is the following modification of it:

Previously on "Hirsch wars" ...

We saw how the *d*-step Theorem follows from the following lemma:

Lemma

For every *d*-polytope *P* with *n* facets and diameter δ there is a d + 1-polytope with one more facet and the same diameter δ .

The strong *d*-step Theorem is the following modification of it:

Lemma

For every *d*-spindle *P* with *n* facets and length λ there is a d + 1-spindle with one more facet and length $\lambda + 1$.

Prismatoids and map pairs

5-<mark>prismatoids</mark> ooooooooooo Episode III

Asymptotic diameter

Attack of the prismatoids

The construction of counter-examples to the Hirsch conjecture has two ingredients:

- A strong *d*-step theorem for spindles/prismatoids.
- The construction of a prismatoid of dimension 5 and "width" 6.

Prismatoids and map pairs

5-prismatoids 00000000000 Episode III

Asymptotic diameter

Attack of the prismatoids

The construction of counter-examples to the Hirsch conjecture has two ingredients:

• A strong *d*-step theorem for spindles/prismatoids.

2 The construction of a prismatoid of dimension 5 and "width" 6.

Prismatoids and map pairs

5-prismatoids 00000000000 Episode III

Asymptotic diameter

Attack of the prismatoids

The construction of counter-examples to the Hirsch conjecture has two ingredients:

- A strong *d*-step theorem for spindles/prismatoids.
- The construction of a prismatoid of dimension 5 and "width" 6.

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Definition

A *spindle* is a polytope P with two distinguished vertices u and v such that every facet contains either u or v (but not both).

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Definition

A *spindle* is a polytope P with two distinguished vertices u and v such that every facet contains either u or v (but not both).

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Definition

A *spindle* is a polytope P with two distinguished vertices u and v such that every facet contains either u or v (but not both).

Episode III

Asymptotic diameter

Theorem (Strong *d*-step theorem for spindles)

Let P be a spindle of dimension d, with n > 2d facets and length λ . Then there is another spindle P' of dimension d + 1, with n + 1 facets and length $\lambda + 1$.

That is: we can increase the dimension, length and number of facets of a spindle, all by one, until n = 2d.

Corollary

In particular, if a spindle P has length > d then there is another spindle P' (of dimension n - d, with 2n - 2d facets, and length $\geq \lambda + n - 2d > n - d$) that violates the Hirsch conjecture.

Episode III

Asymptotic diameter

Theorem (Strong *d*-step theorem for spindles)

Let P be a spindle of dimension d, with n > 2d facets and length λ . Then there is another spindle P' of dimension d + 1, with n + 1 facets and length $\lambda + 1$.

That is: we can increase the dimension, length and number of facets of a spindle, all by one, until n = 2d.

Corollary

In particular, if a spindle P has length > d then there is another spindle P' (of dimension n - d, with 2n - 2d facets, and length $\geq \lambda + n - 2d > n - d$) that violates the Hirsch conjecture.

Episode III

Asymptotic diameter

Theorem (Strong *d*-step theorem for spindles)

Let P be a spindle of dimension d, with n > 2d facets and length λ . Then there is another spindle P' of dimension d + 1, with n + 1 facets and length $\lambda + 1$.

That is: we can increase the dimension, length and number of facets of a spindle, all by one, until n = 2d.

Corollary

In particular, if a spindle P has length > d then there is another spindle P' (of dimension n - d, with 2n - 2d facets, and length $\geq \lambda + n - 2d > n - d$) that violates the Hirsch conjecture.

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Prismatoids

Definition

A *prismatoid* is a polytope Q with two (parallel) facets Q^+ and Q^- containing all vertices.

Definition

The width of a prismatoid is the dual-graph distance from Q^+ to Q^- .

Exercise

3-prismatoids have width \leq 3.

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Prismatoids

Definition

A *prismatoid* is a polytope Q with two (parallel) facets Q^+ and Q^- containing all vertices.

Definition

The width of a prismatoid is the dual-graph distance from Q^+ to Q^- .

Exercise

3-prismatoids have width \leq 3.

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Prismatoids

Definition

A *prismatoid* is a polytope Q with two (parallel) facets Q^+ and Q^- containing all vertices.

Definition

The width of a prismatoid is the dual-graph distance from Q^+ to Q^- .

Exercise

3-prismatoids have width \leq 3.

Episode III

Asymptotic diameter

Prismatoids

Theorem (Strong *d*-step theorem, prismatoid version)

Let *Q* be a prismatoid of dimension *d*, with n > 2d vertices and width δ . Then there is another prismatoid *Q*' of dimension d + 1, with n + 1 vertices and width $\delta + 1$.

That is: we can increase the dimension, width and number of vertices of a prismatoid, all by one, until n = 2d.

Corollary

In particular, if a prismatoid Q has width > d then there is another prismatoid Q' (of dimension n –

Episode III

Asymptotic diameter

Prismatoids

Theorem (Strong *d*-step theorem, prismatoid version)

Let *Q* be a prismatoid of dimension *d*, with n > 2d vertices and width δ . Then there is another prismatoid *Q*' of dimension d + 1, with n + 1 vertices and width $\delta + 1$.

That is: we can increase the dimension, width and number of vertices of a prismatoid, all by one, until n = 2d.

Corollary

In particular, if a prismatoid Q has width > d then there is another prismatoid Q' (of dimension n - d, with 2n - 2d facets, and width $\geq \delta + n - 2d > n - d$) that violates (the dual of) the Hirsch conjecture.

Episode III

Asymptotic diameter

Prismatoids

Theorem (Strong *d*-step theorem, prismatoid version)

Let *Q* be a prismatoid of dimension *d*, with n > 2d vertices and width δ . Then there is another prismatoid *Q*' of dimension d + 1, with n + 1 vertices and width $\delta + 1$.

That is: we can increase the dimension, width and number of vertices of a prismatoid, all by one, until n = 2d.

Corollary

In particular, if a prismatoid Q has width > d then there is another prismatoid Q' (of dimension n - d, with 2n - 2d facets, and width $\geq \delta + n - 2d > n - d$) that violates (the dual of) the Hirsch conjecture.

Prismatoids and map pairs

5-prismatoids 00000000000 Episode III

Asymptotic diameter

d-step theorem for prismatoids

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension *d* and width larger than *d*. Its number of vertices and facets is irrelevant...

Question

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2010] with 25 vertices [Matschke-S.-Weibel 2011].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2011].

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension *d* and width larger than *d*. *Its number of vertices and facets is irrelevant...*

Question

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2010] with 25 vertices [Matschke-S.-Weibel 2011].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2011].

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension *d* and width larger than *d*. *Its number of vertices and facets is irrelevant...*

Question

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2010] with 25 vertices [Matschke-S.-Weibel 2011].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2011].

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension *d* and width larger than *d*. *Its number of vertices and facets is irrelevant...*

Question

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2010] with 25 vertices [Matschke-S.-Weibel 2011].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2011].

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension *d* and width larger than *d*. *Its number of vertices and facets is irrelevant...*

Question

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2010] with 25 vertices [Matschke-S.-Weibel 2011].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2011].

Episode III

Asymptotic diameter

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension *d* and width larger than *d*. *Its number of vertices and facets is irrelevant...*

Question

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2010] with 25 vertices [Matschke-S.-Weibel 2011].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2011].

Episode III

Asymptotic diameter

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension *d* and width larger than *d*. *Its number of vertices and facets is irrelevant...*

Question

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2010] with 25 vertices [Matschke-S.-Weibel 2011].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2011].

Episode III

Asymptotic diameter

Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a prismatoid of dimension *d* and width larger than *d*. *Its number of vertices and facets is irrelevant...*

Question

- 3-prismatoids have width at most 3 (exercise).
- 4-prismatoids have width at most 4 [S.-Stephen-Thomas, 2011].
- 5-prismatoids of width 6 exist [S., 2010] with 25 vertices [Matschke-S.-Weibel 2011].
- 5-prismatoids of arbitrarily large width exist [Matschke-S.-Weibel 2011].

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Tricks of the trade

- Option 1: If you are a super-hero, use your XR5D vision powers.
- Option 2: If you are a Jedi knight, use the force.

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Tricks of the trade

- Option 1: If you are a super-hero, use your **XR5D** vision powers.
- Option 2: If you are a Jedi knight, use the force.
- Option 3: If you are a human, use your math....to find a way to reduce the dimension of your object.

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Tricks of the trade

- Option 1: If you are a super-hero, use your **XR5D** vision powers.
- Option 2: If you are a Jedi knight, use the force.
- Option 3: If you are a human, use your math.... to find a way to reduce the dimension of your object.

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Tricks of the trade

- Option 1: If you are a super-hero, use your **XR5D** vision powers.
- Option 2: If you are a Jedi knight, use the force.
- Option 3: If you are a human, use your math.... to find a way to reduce the dimension of your object.

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Tricks of the trade

- Option 1: If you are a super-hero, use your **XR5D** vision powers.
- Option 2: If you are a Jedi knight, use the force.
- Option 3: If you are a human, use your math.... to find a way to reduce the dimension of your object.
Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Combinatorics of prismatoids

Analyzing the combinatorics of a d-prismatoid Q can be done via an intermediate slice ...

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Combinatorics of prismatoids

... which equals the Minkowski sum $Q^+ + Q^-$ of the two bases Q^+ and Q^- .

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Combinatorics of prismatoids

... which equals the Minkowski sum $Q^+ + Q^-$ of the two bases Q^+ and Q^- . The normal fan of $Q^+ + Q^-$ equals the "superposition" of those of Q^+ and Q^- .

Episode III 00 Asymptotic diameter

Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of the normal fans of Q^+ and Q^- .

Remark

The normal fan of a d - 1-polytope can be thought of as a (geodesic, polytopal) cell decomposition ("map") of the d - 2-sphere.

Theorem

Episode III

Asymptotic diameter

Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of the normal fans of Q^+ and Q^- .

Remark

The normal fan of a d-1-polytope can be thought of as a (geodesic, polytopal) cell decomposition ("map") of the d-2-sphere.

Theorem

Episode III 00 Asymptotic diameter

Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of the normal fans of Q^+ and Q^- .

Remark

The normal fan of a d-1-polytope can be thought of as a (geodesic, polytopal) cell decomposition ("map") of the d-2-sphere.

Theorem

Episode III oo Asymptotic diameter

Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of the normal fans of Q^+ and Q^- .

Remark

The normal fan of a d-1-polytope can be thought of as a (geodesic, polytopal) cell decomposition ("map") of the d-2-sphere.

Theorem

Prismatoids and map pairs

5-prismatoids 00000000000 Episode III

Asymptotic diameter

Example: a 3-prismatoid

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Example: (part of) a 4-prismatoid

4-prismatoid of width > 4 \updownarrow pair of (geodesic, polytopal) maps in S^2 so that two steps do not let you go from a blue vertex to a red vertex.

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Example: (part of) a 4-prismatoid

4-prismatoid of width > 4 \$pair of (geodesic, polytopal) maps in S^2 so that two steps do not let you go from a blue vertex to a red vertex.

Example: The Klee-Walkup (unbounded) 4-spindle

Remember that Klee and Walkup, in 1967, disproved the Hirsch conjecture:

Theorem 2 (Klee-Walkup 1967)

There is an unbounded 4-polyhedron with 8 facets and diameter 5.

Example: The Klee-Walkup (unbounded) 4-spindle

Remember that Klee and Walkup, in 1967, disproved the Hirsch conjecture:

Theorem 2 (Klee-Walkup 1967)

There is an unbounded 4-polyhedron with 8 facets and diameter 5.

Example: The Klee-Walkup (unbounded) 4-spindle

Remember that Klee and Walkup, in 1967, disproved the Hirsch conjecture:

Theorem 2 (Klee-Walkup 1967)

There is an unbounded 4-polyhedron with 8 facets and diameter 5.

The Klee-Walkup polytope is an "unbounded 4-spindle".

What is the corresponding "transversal pair of (geodesic, poly-topal) maps"?

Example: The Klee-Walkup (unbounded) 4-spindle

Remember that Klee and Walkup, in 1967, disproved the Hirsch conjecture:

Prismatoids and map pairs

5-prismatoids

pisode III

Asymptotic diameter

Example: The Klee-Walkup (unbounded) 4-spindle

Prismatoids and map pairs

5-prismatoids

pisode III

Asymptotic diameter

4-prismatoids have width \leq 4

"Non-Hirsch" 4-prismatoids do not exist:

Theorem (S.-Stephen-Thomas, 2011)

In every transversal pair of maps in the sphere there is a path of length two from some blue vertex to some red vertex.

That is to say:

Corollary (S.-Stephen-Thomas, 2011)

Asymptotic diameter

4-prismatoids have width \leq 4

"Non-Hirsch" 4-prismatoids do not exist:

Theorem (S.-Stephen-Thomas, 2011)

In every transversal pair of maps in the sphere there is a path of length two from some blue vertex to some red vertex.

That is to say:

Corollary (S.-Stephen-Thomas, 2011)

Asymptotic diameter

4-prismatoids have width \leq 4

"Non-Hirsch" 4-prismatoids do not exist:

Theorem (S.-Stephen-Thomas, 2011)

In every transversal pair of maps in the sphere there is a path of length two from some blue vertex to some red vertex.

That is to say:

Corollary (S.-Stephen-Thomas, 2011)

Asymptotic diameter

4-prismatoids have width \leq 4

"Non-Hirsch" 4-prismatoids do not exist:

Theorem (S.-Stephen-Thomas, 2011)

In every transversal pair of maps in the sphere there is a path of length two from some blue vertex to some red vertex.

That is to say:

Corollary (S.-Stephen-Thomas, 2011)

Episode III

Asymptotic diameter

A 4-dimensional prismatoid of width > 4?

Episode III

Asymptotic diameter

A 4-dimensional prismatoid of width > 4?

Episode III

Asymptotic diameter

A 4-dimensional prismatoid of width > 4?

Episode III

Asymptotic diameter

A 4-dimensional prismatoid of width > 4?

Episode III

Asymptotic diameter

A 4-dimensional prismatoid of width > 4?

Episode III

Asymptotic diameter

A 4-dimensional prismatoid of width > 4?

However, we can construct them if we are happy with (infinite, periodic) maps in the plane ...

... or with finite ones in the torus!

Prismatoids and map pairs

5-prismatoids •0000000000 Episode III

Asymptotic diameter

5-prismatoids of width > 5

To construct 5-dimensional prismatoids we should look at "pairs of maps" in the 3-sphere.

That is, we want a pair of (geodesic, polytopal) cell decompositions of the 3-sphere such that if we draw them one on top of the other (common refinement) there is no path of length \leq 3 from a blue vertex to a red vertex.

Main idea: If non-Hirsch pairs of maps exist in the torus we should have room enough to construct it in the sphere too ...

5-prismatoids of width > 5

To construct 5-dimensional prismatoids we should look at "pairs of maps" in the 3-sphere.

That is, we want a pair of (geodesic, polytopal) cell decompositions of the 3-sphere such that if we draw them one on top of the other (common refinement) there is no path of length \leq 3 from a blue vertex to a red vertex.

Main idea: If non-Hirsch pairs of maps exist in the torus we should have room enough to construct it in the sphere too ...

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

A 5-prismatoid of width > 5

Theorem

The following prismatoid Q, of dimension 5 and with 48 vertices, has width six.
Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

A 5-prismatoid of width > 5

Theorem

The following prismatoid *Q*, of dimension 5 and with 48 vertices, has width six.

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

A 5-prismatoid of width > 5

Theorem

The following prismatoid *Q*, of dimension 5 and with 48 vertices, has width six.

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

A 5-prismatoid of width > 5

Theorem

The following prismatoid *Q*, of dimension 5 and with 48 vertices, has width six.

Corollary

There is a 43-dimensional polytope with 86 facets and diameter (at least) 44.

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

A 5-prismatoid of width > 5

Proof 1.

It has been verified computationally that the dual graph of *Q* (modulo symmetry) has the following structure:

$$A \longrightarrow B \bigvee_{D}^{C} \underbrace{\bigvee_{E}}_{G} \underbrace{F}_{G} \underbrace{\bigvee_{I}}_{J} \xrightarrow{I} K \longrightarrow L$$

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

A 5-prismatoid of width > 5

Proof 2.

Show that there are no blue vertex a and red vertex b such that a is a vertex of the blue cell containing b and b is a vertex of the red cell containing a.

Smaller 5-prismatoids of width > 5

With the same ideas

Theorem

The following 5-prismatoid with 28 vertices (and 274 facets) has width 6.

8 <i>Q</i> := conv		x ₂ 0 0 ±5	x ₃ 0 ±30 0 +18	x_4 0 ±30 ±25 ±18	x ₅ 1 1 1 2 1 2 1 1 1	x_1 0 ±30 ±25	x_2 0 ±30 0 +18	x ₃ ±18 0 0 0	$x_4 \\ 0 \\ 0 \\ \pm 5 \\ 0$	<i>x</i> ₅ 1 -1 2 -1 2 -1 2 -1 2	O WWWWI WWW
MMA.	0	0	±18	± 18	1	±18	±18	Ō	0	-1	MMN,

Corollary

There is a non-Hirsch polytope of dimension 23 with 46 facets.

Smaller 5-prismatoids of width > 5

With the same ideas

Theorem

The following 5-prismatoid with 28 vertices (and 274 facets) has width 6.

Corollary

There is a non-Hirsch polytope of dimension 23 with 46 facets.

Smaller 5-prismatoids of width > 5

And with some more work:

Theorem (Matschke-Santos-Weibel, 2011)

There is a 5-prismatoid with 25 vertices and of width 6.

Corollary

There is a non-Hirsch polytope of dimension 20 with 40 facets.

This one has been explicitly computed. It has 36, 442 vertices, and diameter 21.

Smaller 5-prismatoids of width > 5

And with some more work:

Theorem (Matschke-Santos-Weibel, 2011)

There is a 5-prismatoid with 25 vertices and of width 6.

Corollary

There is a non-Hirsch polytope of dimension 20 with 40 facets.

This one has been explicitly computed. It has 36, 442 vertices, and diameter 21.

Smaller 5-prismatoids of width > 5

And with some more work:

Theorem (Matschke-Santos-Weibel, 2011)

There is a 5-prismatoid with 25 vertices and of width 6.

Corollary

There is a non-Hirsch polytope of dimension 20 with 40 facets.

This one has been explicitly computed. It has 36, 442 vertices, and diameter 21.

Prismatoids and map pairs

5-prismatoids 000000000000

Episode III

Asymptotic diameter

V-representation begin 49.21 rational	P
begin 49 21 rotional	P
46 /1 rdtiondi	8
	ě
	8
	1
	ĩ
	ē
1 1 8 8 39 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8
1 1 8 8 19 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8
1 1 3/100 -1/50 0 -23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
1 1 -3/100 -1/50 0 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9
1 1 - 3/2000 7/2000 0 308/10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
1 1 3/2000 7/2000 0 -248/10 10000000 10000000 100000000 100000000	0
	8
	0
	0
	8
	â
	ñ
1 1 3/2000 7/2000 0 -248/10 10000000 10000000 100000000 100000000	8
	ē
1-1 4 -15 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0	8
1-1 0-33/2 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0	0
1-1 -1 -16 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	9
	0
1-1 -17 18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0
	9
1-1 22 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
	8
	8
	â
	1999
	8
	ē
1 -1 -27 0 1/580 -1/88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8
1 -1 -27 0 1/500 -1/80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8
1 -1 -27 8 1/588 -1/88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8
1 -1 -27 0 1/590 -1/00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
1 -1 -27 0 1/500 -1/88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6661
end	
ol Ibases	
printcopdess.	

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Asymptotic width in dimension five

Theorem

There are 5-dimensional prismatoids with n vertices and width $\Omega(\sqrt{n})$.

Sketch of proof

Start with the following "simple, yet more drastic" pair of maps in the torus.

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Asymptotic width in dimension five

Theorem

There are 5-dimensional prismatoids with n vertices and width $\Omega(\sqrt{n})$.

Sketch of proof

Start with the following "simple, yet more drastic" pair of maps in the torus.

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

5-prismatoids

Episode III

Asymptotic diameter

Asymptotic width in dimension five

Consider the red and blue maps as lying in two parallel tori in the 3-sphere.

Complete the tori maps to the whole 3-sphere (you need quadratically many cells for that).

Between the two tori you basically get the superposition of the two tori maps.

5-prismatoids

Episode III

Asymptotic diameter

Asymptotic width in dimension five

Consider the red and blue maps as lying in two parallel tori in the 3-sphere.

Complete the tori maps to the whole 3-sphere (you need quadratically many cells for that).

Between the two tori you basically get the superposition of the two tori maps.

Asymptotic width in dimension five

Consider the red and blue maps as lying in two parallel tori in the 3-sphere.

Complete the tori maps to the whole 3-sphere (you need quadratically many cells for that).

Between the two tori you basically get the superposition of the two tori maps.

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Hirsch Wars Episode III Revenge of the linear bound

Francisco Santos http://personales.unican.es/santosf

Departamento de Matemáticas, Estadística y Computación Universidad de Cantabria, Spain

MDS Summer Schhol, Döllnsee — August 14–16, 2012

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Previously on Hirsch wars...

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

The Phantom Conjecture

Let $H(n, d) := \max\{\text{diam}(P) : P \text{ is a } d \text{ polytope with } n \text{ facets}\}.$

Conjecture: Warren M. Hirsch (1957)

 $\forall n, d, \qquad H(n, d) \leq n - d.$

Theorem [Kalai-Kleitman 1992]

 $H(n,d) \leq n^{\log_2 d+2}, \qquad \forall n,d.$

Theorem [Barnette 1967, Larman 1970]

 $H(n,d) \leq n2^{d-3}, \quad \forall n,d.$

Polynomial Hirsch conjecture/question

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

The Phantom Conjecture

Let $H(n, d) := \max\{\operatorname{diam}(P) : P \text{ is a } d \text{ polytope with } n \text{ facets}\}.$

Conjecture: Warren M. Hirsch (1957)

 $\forall n, d, \qquad H(n, d) \leq n - d.$

Theorem [Kalai-Kleitman 1992]

 $H(n,d) \leq n^{\log_2 d+2}, \qquad \forall n,d.$

Theorem [Barnette 1967, Larman 1970]

 $H(n,d) \leq n2^{d-3}, \quad \forall n,d.$

Polynomial Hirsch conjecture/question

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

The Phantom Conjecture

Let $H(n, d) := \max{\text{diam}(P) : P \text{ is a } d \text{ polytope with } n \text{ facets}}.$

Conjecture: Warren M. Hirsch (1957)

 $\forall n, d, \qquad H(n, d) \leq n - d.$

Theorem [Kalai-Kleitman 1992]

 $H(n,d) \leq n^{\log_2 d+2}, \quad \forall n, d.$

Theorem [Barnette 1967, Larman 1970]

 $H(n,d) \leq n2^{d-3}, \quad \forall n,d.$

Polynomial Hirsch conjecture/question

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

The Phantom Conjecture

Let $H(n, d) := \max{\text{diam}(P) : P \text{ is a } d \text{ polytope with } n \text{ facets}}.$

Conjecture: Warren M. Hirsch (1957)

 $\forall n, d, \qquad H(n, d) \leq n - d.$

Theorem [Kalai-Kleitman 1992]

 $H(n,d) \leq n^{\log_2 d+2}, \qquad \forall n,d.$

Theorem [Barnette 1967, Larman 1970]

 $H(n,d) \leq n2^{d-3}, \quad \forall n,d.$

Polynomial Hirsch conjecture/question

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

The Phantom Conjecture

Let $H(n, d) := \max{\text{diam}(P) : P \text{ is a } d \text{ polytope with } n \text{ facets}}.$

Conjecture: Warren M. Hirsch (1957)

 $\forall n, d, \qquad H(n, d) \leq n - d.$

Theorem [Kalai-Kleitman 1992]

 $H(n,d) \leq n^{\log_2 d+2}, \qquad \forall n,d.$

Theorem [Barnette 1967, Larman 1970]

 $H(n,d) \leq n2^{d-3}, \quad \forall n,d.$

Polynomial Hirsch conjecture/question

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

The Phantom Conjecture

Let $H(n, d) := \max{\text{diam}(P) : P \text{ is a } d \text{ polytope with } n \text{ facets}}.$

Conjecture: Warren M. Hirsch (1957)

 $\forall n, d, \qquad H(n, d) \leq n - d.$

Theorem [Kalai-Kleitman 1992]

 $H(n,d) \leq n^{\log_2 d+2}, \qquad \forall n, d.$

Theorem [Barnette 1967, Larman 1970]

 $H(n,d) \leq n2^{d-3}, \quad \forall n,d.$

Polynomial Hirsch conjecture/question

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Attack of the Prismatoids

Theorem (Strong *d*-step Theorem, S. 2010)

If a prismatoid Q has width > d then there is another prismatoid Q' (of dimension n - d, with 2n - 2d facets, and width $\geq \delta + n - 2d > n - d$) that violates (the dual of) the Hirsch conjecture.

Theorem (Matschke-S.-Weibel 2012)

There is a 5-dim. prismatoid of width 6 with 25 vertices.

Corollary

There is a non-Hirsch polytope of dimension 20 with 40 facets.

Theorem (Matschke-S.-Weibel 2012)

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Attack of the Prismatoids

Theorem (Strong *d*-step Theorem, S. 2010)

If a prismatoid Q has width > d then there is another prismatoid Q' (of dimension n - d, with 2n - 2d facets, and width $\geq \delta + n - 2d > n - d$) that violates (the dual of) the Hirsch conjecture.

Theorem (Matschke-S.-Weibel 2012)

There is a 5-dim. prismatoid of width 6 with 25 vertices.

Corollary

There is a non-Hirsch polytope of dimension 20 with 40 facets.

Theorem (Matschke-S.-Weibel 2012)

Theorem (Strong *d*-step Theorem, S. 2010)

If a prismatoid Q has width > d then there is another prismatoid Q' (of dimension n - d, with 2n - 2d facets, and width $\geq \delta + n - 2d > n - d$) that violates (the dual of) the Hirsch conjecture.

Theorem (Matschke-S.-Weibel 2012)

There is a 5-dim. prismatoid of width 6 with 25 vertices.

Corollary

There is a non-Hirsch polytope of dimension 20 with 40 facets.

Theorem (Matschke-S.-Weibel 2012)

Theorem (Strong *d*-step Theorem, S. 2010)

If a prismatoid Q has width > d then there is another prismatoid Q' (of dimension n - d, with 2n - 2d facets, and width $\geq \delta + n - 2d > n - d$) that violates (the dual of) the Hirsch conjecture.

Theorem (Matschke-S.-Weibel 2012)

There is a 5-dim. prismatoid of width 6 with 25 vertices.

Corollary

There is a non-Hirsch polytope of dimension 20 with 40 facets.

Theorem (Matschke-S.-Weibel 2012)

Theorem (Strong *d*-step Theorem, S. 2010)

If a prismatoid Q has width > d then there is another prismatoid Q' (of dimension n - d, with 2n - 2d facets, and width $\geq \delta + n - 2d > n - d$) that violates (the dual of) the Hirsch conjecture.

Theorem (Matschke-S.-Weibel 2012)

There is a 5-dim. prismatoid of width 6 with 25 vertices.

Corollary

There is a non-Hirsch polytope of dimension 20 with 40 facets.

Theorem (Matschke-S.-Weibel 2012)

Theorem (Strong *d*-step Theorem, S. 2010)

If a prismatoid Q has width > d then there is another prismatoid Q' (of dimension n - d, with 2n - 2d facets, and width $\geq \delta + n - 2d > n - d$) that violates (the dual of) the Hirsch conjecture.

Theorem (Matschke-S.-Weibel 2012)

There is a 5-dim. prismatoid of width 6 with 25 vertices.

Corollary

There is a non-Hirsch polytope of dimension 20 with 40 facets.

Theorem (Matschke-S.-Weibel 2012)

Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:

- Products of several copies of it (dimension increases).
- ② Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess of a *d*-polytope *P* with *n* facets and diameter δ the number

$$\epsilon(P) := \frac{\delta}{n-d} - 1 = \frac{\delta - (n-d)}{n-d}$$

E. g.: The excess of our non-Hirsch polytope with n - d = 20 and with diameter 21 is

$$\frac{21-20}{20}=5\%.$$
Once we have a non-Hirsch polytope we can derive more via:

- Products of several copies of it (dimension increases).
- 2 Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess of a *d*-polytope *P* with *n* facets and diameter δ the number

$$\epsilon(P) := \frac{\delta}{n-d} - 1 = \frac{\delta - (n-d)}{n-d}.$$

$$\frac{21-20}{20}=5\%.$$

Asymptotic diameter

Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:

- Products of several copies of it (dimension increases).
 - 2 Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess of a *d*-polytope *P* with *n* facets and diameter δ the number

$$\epsilon(P) := \frac{\delta}{n-d} - 1 = \frac{\delta - (n-d)}{n-d}$$

$$\frac{21-20}{20}=5\%.$$

Once we have a non-Hirsch polytope we can derive more via:

- Products of several copies of it (dimension increases).
- ② Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess of a *d*-polytope *P* with *n* facets and diameter δ the number

$$\epsilon(P) := \frac{\delta}{n-d} - 1 = \frac{\delta - (n-d)}{n-d}$$

$$\frac{21-20}{20}=5\%.$$

Once we have a non-Hirsch polytope we can derive more via:

- Products of several copies of it (dimension increases).
- ② Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess of a *d*-polytope *P* with *n* facets and diameter δ the number

$$\epsilon(P) := \frac{\delta}{n-d} - 1 = \frac{\delta - (n-d)}{n-d}$$

$$\frac{21-20}{20}=5\%.$$

Once we have a non-Hirsch polytope we can derive more via:

- Products of several copies of it (dimension increases).
- ② Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess of a *d*-polytope *P* with *n* facets and diameter δ the number

$$\epsilon(P) := \frac{\delta}{n-d} - 1 = \frac{\delta - (n-d)}{n-d}$$

$$\frac{21-20}{20}=5\%.$$

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

- Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension 20k with 40k facets and with excess equal to 0.05 = 5%.
- 2 Gluing several copies (slightly) decreases the excess.

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

- Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension 20*k* with 40*k* facets and with excess equal to 0.05 = 5%.
- 2 Gluing several copies (slightly) decreases the excess.

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

- Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension 20k with 40k facets and with excess equal to 0.05 = 5%.
- Is Gluing several copies (slightly) decreases the excess.

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Many non-Hirsch polytopes

- Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension 20*k* with 40*k* facets and with excess equal to 0.05 = 5%.
- Is Gluing several copies (slightly) decreases the excess.

 $\frac{\delta_1}{n_1-d} - 1 = \frac{\delta_2}{n_2-d} - 1 = \epsilon \qquad \Rightarrow \qquad \frac{\delta}{n-d} - 1 = \epsilon - \frac{1}{(n_1-d)+(n_2-d)}.$

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

- Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension 20*k* with 40*k* facets and with excess equal to 0.05 = 5%.
- Is Gluing several copies (slightly) decreases the excess.

$$\frac{\delta_1}{n_1-d}-1=\frac{\delta_2}{n_2-d}-1=\epsilon \qquad \Rightarrow \qquad \frac{\delta}{n-d}-1=\epsilon-\frac{1}{(n_1-d)+(n_2-d)}.$$

Many non-Hirsch polytopes

- Taking products preserves the excess: for each $k \in \mathbb{N}$, there is a non-Hirsch polytope of dimension 20k with 40k facets and with excess equal to 0.05 = 5%.
- Is Gluing several copies (slightly) decreases the excess.

Corollary

For each $k \in \mathbb{N}$ there is an infinite family of non-Hirsch polytopes of fixed dimension 20k and with excess (tending to)

$$0.05\left(1-\frac{1}{k}\right)$$

Asymptotic diameter

The excess of a prismatoid

But we know there are "worst" prismatoids: 5-prismatoids of arbitrarily large width. Will those produce non-Hirsch polytopes with worst excess?

To analyze the asymptotics of this, let us call *excess* of a prismatoid of width δ with *n* vertices and dimension *d* the quantity

$$\frac{\delta - d}{n - d}$$

The excess of a prismatoid

But we know there are "worst" prismatoids: 5-prismatoids of arbitrarily large width. Will those produce non-Hirsch polytopes with worst excess?

To analyze the asymptotics of this, let us call *excess* of a prismatoid of width δ with *n* vertices and dimension *d* the quantity

$$\frac{\delta - d}{n - d}$$

Asymptotic diameter

The excess of a prismatoid

But we know there are "worst" prismatoids: 5-prismatoids of arbitrarily large width. Will those produce non-Hirsch polytopes with worst excess?

To analyze the asymptotics of this, let us call *excess* of a prismatoid of width δ with *n* vertices and dimension *d* the quantity

 $\frac{\delta - d}{n - d}$

Asymptotic diameter

The excess of a prismatoid

But we know there are "worst" prismatoids: 5-prismatoids of arbitrarily large width. Will those produce non-Hirsch polytopes with worst excess?

To analyze the asymptotics of this, let us call *excess* of a prismatoid of width δ with *n* vertices and dimension *d* the quantity

$$\frac{\delta - d}{n - d}$$

Prismatoids and map pairs

5-prismatoids 000000000000 Episode III

Asymptotic diameter

Lemma

Via the strong d-step Theorem, a prismatoid of a certain excess produces non-Hirsch polytopes of that same excess.

Proof.

The dimension, number of facets and diameter of the non-Hirsch polytope produced by the strong *d*-step Theorem are

$$n-d$$
, $2(n-d)$, $\delta + (n-2d)$.

So, its excess is

$$\frac{\delta + (n-2d) - (n-d)}{n-d} = \frac{\delta - d}{n-d}.$$

Prismatoids and map pairs

5-prismatoids 00000000000 Episode III

Asymptotic diameter

Lemma

Via the strong d-step Theorem, a prismatoid of a certain excess produces non-Hirsch polytopes of that same excess.

Proof.

The dimension, number of facets and diameter of the non-Hirsch polytope produced by the strong *d*-step Theorem are

$$n-d$$
, $2(n-d)$, $\delta + (n-2d)$.

So, its excess is

$$\frac{\delta + (n-2d) - (n-d)}{n-d} = \frac{\delta - d}{n-d}.$$

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Lemma

Via the strong d-step Theorem, a prismatoid of a certain excess produces non-Hirsch polytopes of that same excess.

Proof.

The dimension, number of facets and diameter of the non-Hirsch polytope produced by the strong *d*-step Theorem are

$$n-d$$
, $2(n-d)$, $\delta + (n-2d)$.

So, its excess is

$$\frac{\delta + (n-2d) - (n-d)}{n-d} = \frac{\delta - d}{n-d}.$$

In dimension 5, we know how to construct polytopes of arbitrarily large width $\delta \sim \sqrt{(n)}$... but their excess tends to zero:

$$\lim \frac{\delta - 5}{n - 5} = \lim \frac{\sqrt{n - 5}}{n - 5} = 0.$$

Let us be optimistic and suppose that we could construct 5-prismatoids with *n* vertices and linear width $\simeq \alpha n$.

In dimension 5, we know how to construct polytopes of arbitrarily large width $\delta \sim \sqrt{(n)}$... but their excess tends to zero:

$$\lim \frac{\delta-5}{n-5} = \lim \frac{\sqrt{n-5}}{n-5} = 0.$$

Let us be optimistic and suppose that we could construct 5-prismatoids with n vertices and linear width $\simeq \alpha n$.

In dimension 5, we know how to construct polytopes of arbitrarily large width $\delta \sim \sqrt{(n)}$... but their excess tends to zero:

$$\lim \frac{\delta-5}{n-5} = \lim \frac{\sqrt{n-5}}{n-5} = 0.$$

Let us be optimistic and suppose that we could construct 5-prismatoids with *n* vertices and linear width $\simeq \alpha n$.

In dimension 5, we know how to construct polytopes of arbitrarily large width $\delta \sim \sqrt{(n)}$... but their excess tends to zero:

$$\lim \frac{\delta-5}{n-5} = \lim \frac{\sqrt{n-5}}{n-5} = 0.$$

Let us be optimistic and suppose that we could construct 5-prismatoids with *n* vertices and linear width $\simeq \alpha n$.

In dimension 5, we know how to construct polytopes of arbitrarily large width $\delta \sim \sqrt{(n)}$... but their excess tends to zero:

$$\lim \frac{\delta-5}{n-5} = \lim \frac{\sqrt{n-5}}{n-5} = 0.$$

Let us be optimistic and suppose that we could construct 5-prismatoids with *n* vertices and linear width $\simeq \alpha n$.

Prismatoids and map pairs

5-prismatoids

pisode III

Asymptotic diameter

Revenge of the linear bound

OK, let us be *more* optimistic. Can we hope for prismatoids of width greater than linear?

In fixed dimension, certainly not:

Theorem

The width of a d-dimensional prismatoid with n vertices cannot exceed 2^{d—3}n.

Proof.

This is a general result for the (dual) diameter of a polytope [Barnette, Larman, \sim 1970].

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Revenge of the linear bound

OK, let us be *more* optimistic. Can we hope for prismatoids of width greater than linear?

In fixed dimension, certainly not:

Theorem

The width of a d-dimensional prismatoid with n vertices cannot exceed 2^{d-3}n.

Proof.

This is a general result for the (dual) diameter of a polytope [Barnette, Larman, \sim 1970].

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Revenge of the linear bound

OK, let us be *more* optimistic. Can we hope for prismatoids of width greater than linear?

In fixed dimension, certainly not:

Theorem

The width of a d-dimensional prismatoid with n vertices cannot exceed $2^{d-3}n$.

Proof.

This is a general result for the (dual) diameter of a polytope [Barnette, Larman, ${\sim}1970$].

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

Revenge of the linear bound

OK, let us be *more* optimistic. Can we hope for prismatoids of width greater than linear?

In fixed dimension, certainly not:

Theorem

The width of a d-dimensional prismatoid with n vertices cannot exceed $2^{d-3}n$.

Proof.

This is a general result for the (dual) diameter of a polytope [Barnette, Larman, \sim 1970].

Prismatoids and map pairs

5-prismatoids

pisode III

Asymptotic diameter

Revenge of the linear bound

OK, let us be *more* optimistic. Can we hope for prismatoids of width greater than linear?

In fixed dimension, certainly not:

Theorem

The width of a d-dimensional prismatoid with n vertices cannot exceed $2^{d-3}n$.

Proof.

This is a general result for the (dual) diameter of a polytope [Barnette, Larman, \sim 1970].

Prismatoids and map pairs

5-prismatoids

pisode III

Asymptotic diameter

Revenge of the linear bound

In fact, in dimension five we can tighten the upper bound a little bit:

Theorem

The width of a 5-dimensional prismatoid with n vertices cannot exceed n/3 + 1.

Prismatoids and map pairs

5-prismatoids

pisode III

Asymptotic diameter

Revenge of the linear bound

In fact, in dimension five we can tighten the upper bound a little bit:

Theorem

The width of a 5-dimensional prismatoid with n vertices cannot exceed n/3 + 1.

Prismatoids and map pairs

5-prismatoids

pisode III

Asymptotic diameter

Revenge of the linear bound

In fact, in dimension five we can tighten the upper bound a little bit:

Theorem

The width of a 5-dimensional prismatoid with n vertices cannot exceed n/3 + 1.

Corollary

Using the Strong d-step Theorem for 5-prismatoids it is impossible to violate the Hirsch conjecture by more than 33%.

rismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

THE END

OF THE GEOMETRIC TRILOGY

Prismatoids and map pairs

5-prismatoids

Episode III

Asymptotic diameter

THE END OF THE GEOMETRIC TRILOGY

rismatoids and map pairs

5-prismatoids

E<mark>pisode III</mark>

Asymptotic diameter

THE END OF THE GEOMETRIC TRILOGY

rismatoids and map pairs

5-prismatoids

E<mark>pisode III</mark>

Asymptotic diameter

THE END OF THE GEOMETRIC TRILOGY