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We saw how the d-step Theorem follows from the following
lemma:
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Previously on“Hirsch wars”...

We saw how the d-step Theorem follows from the following
lemma:

Lemma

For every d-polytope P with n facets and diameter ¢ there is a
d + 1-polytope with one more facet and the same diameter §.
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We saw how the d-step Theorem follows from the following
lemma:
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We saw how the d-step Theorem follows from the following
lemma:
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Previously on“Hirsch wars”...

We saw how the d-step Theorem follows from the following
lemma:

Lemma

For every d-polytope P with n facets and diameter ¢ there is a
d + 1-polytope with one more facet and the same diameter §.

The strong d-step Theorem is the following modification of it:
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Previously on“Hirsch wars”...

We saw how the d-step Theorem follows from the following
lemma:
Lemma

For every d-polytope P with n facets and diameter ¢ there is a
d + 1-polytope with one more facet and the same diameter §.

The strong d-step Theorem is the following modification of it:

Lemma

For every d-spindle P with n facets and length A there is a
d + 1-spindle with one more facet and length A + 1.



The construction of counter-examples to the Hirsch conjecture
has two ingredients:
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Attack of the prismatoids

The construction of counter-examples to the Hirsch conjecture
has two ingredients:

@ A strong d-step theorem for spindles/prismatoids.
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Attack of the prismatoids

The construction of counter-examples to the Hirsch conjecture
has two ingredients:
@ A strong d-step theorem for spindles/prismatoids.

@ The construction of a prismatoid of dimension 5 and
“width” 6.
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A spindle is a polytope P with two distinguished vertices u and
v such that every facet contains either u or v (but not both).
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A spindle is a polytope P with two distinguished vertices u and
v such that every facet contains either u or v (but not both).

‘ v Definion
The length of a
spindle is the
graph distance
fromutov.




The strong d-step Theorem Prismatoids and map pairs 5-prismatoids Episode I Asymptotic diameter
00@00000 000000000 00000000000 00 0000000

Spindles

Definition
A spindle is a polytope P with two distinguished vertices u and
v such that every facet contains either u or v (but not both).

v v Definition
The length of a
spindle is the
graph distance
fromutov.

Exercise

3-spindles have
length < 3.
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Spindles

Theorem (Strong d-step theorem for spindles)

Let P be a spindle of dimension d, with n > 2d facets and
length \. Then there is another spindle P’ of dimension d + 1,
with n + 1 facets and length X + 1.
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Spindles

Theorem (Strong d-step theorem for spindles)

Let P be a spindle of dimension d, with n > 2d facets and
length \. Then there is another spindle P’ of dimension d + 1,
with n + 1 facets and length X + 1.

That is: we can increase the dimension, length and number of
facets of a spindle, all by one, until n = 2d.
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Spindles

Theorem (Strong d-step theorem for spindles)

Let P be a spindle of dimension d, with n > 2d facets and
length \. Then there is another spindle P’ of dimension d + 1,
with n + 1 facets and length X + 1.

That is: we can increase the dimension, length and number of
facets of a spindle, all by one, until n = 2d.

Corollary

In particular, if a spindle P has length > d then there is another
spindle P’ (of dimension n — d, with 2n — 2d facets, and length
> X+n—2d > n —d) that violates the Hirsch conjecture.
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A prismatoid is a polytope Q with two (parallel) facets Q* and
Q™ containing all vertices.

‘
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A prismatoid is a polytope Q with two (parallel) facets Q* and
Q™ containing all vertices.

The width of a

o prismatoid is the
Q ‘- dual-graph
distance from Q*
to Q.
T
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A prismatoid is a polytope Q with two (parallel) facets Q* and
Q™ containing all vertices.

The width of a
o prismatoid is the
Q ‘- dual-graph
distance from Q*
to Q.

3-prismatoids have
width < 3.




The strong d-step Theorem
00000e00

Prismatoids

Theorem (Strong d-step theorem, prismatoid version)

Let Q be a prismatoid of dimension d, with n > 2d vertices and
width 6. Then there is another prismatoid Q' of dimension
d + 1, with n + 1 vertices and width § + 1.
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Prismatoids

Theorem (Strong d-step theorem, prismatoid version)

Let Q be a prismatoid of dimension d, with n > 2d vertices and
width §. Then there is another prismatoid Q’ of dimension
d + 1, with n + 1 vertices and width § + 1.

That is: we can increase the dimension, width and number of
vertices of a prismatoid, all by one, untiln = 2d.
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Prismatoids

Theorem (Strong d-step theorem, prismatoid version)

Let Q be a prismatoid of dimension d, with n > 2d vertices and
width §. Then there is another prismatoid Q’ of dimension
d + 1, with n + 1 vertices and width § + 1.

That is: we can increase the dimension, width and number of
vertices of a prismatoid, all by one, untiln = 2d.

Corollary

In particular, if a prismatoid Q has width > d then there is
another prismatoid Q’ (of dimension n — d, with 2n — 2d facets, and
width > § +n — 2d > n — d) that violates (the dual of) the Hirsch
conjecture.
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So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d.
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Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d. Its number
of vertices and facets is irrelevant...
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Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d. Its number
of vertices and facets is irrelevant...

Question
Do they exist?
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Width of prismatoids
So, to disprove the Hirsch Conjecture we only need to find a

prismatoid of dimension d and width larger than d. Its number
of vertices and facets is irrelevant...

Question
Do they exist?

@ 3-prismatoids have width at most 3 (exercise).
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Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d. Its number
of vertices and facets is irrelevant...

Question
Do they exist?

@ 3-prismatoids have width at most 3 (exercise).

@ 4-prismatoids have width at most 4 [S.-Stephen-Thomas,
2011].
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Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d. Its number
of vertices and facets is irrelevant...

Question
Do they exist?

@ 3-prismatoids have width at most 3 (exercise).

@ 4-prismatoids have width at most 4 [S.-Stephen-Thomas,
2011].

@ 5-prismatoids of width 6 exist [S., 2010]
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Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d. Its number
of vertices and facets is irrelevant...

Question
Do they exist?

@ 3-prismatoids have width at most 3 (exercise).

@ 4-prismatoids have width at most 4 [S.-Stephen-Thomas,
2011].

@ 5-prismatoids of width 6 exist [S., 2010] with 25 vertices
[Matschke-S.-Weibel 2011].
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Width of prismatoids

So, to disprove the Hirsch Conjecture we only need to find a
prismatoid of dimension d and width larger than d. Its number
of vertices and facets is irrelevant...

Question
Do they exist?

@ 3-prismatoids have width at most 3 (exercise).

@ 4-prismatoids have width at most 4 [S.-Stephen-Thomas,
2011].

@ 5-prismatoids of width 6 exist [S., 2010] with 25 vertices
[Matschke-S.-Weibel 2011].

@ 5-prismatoids of arbitrarily large width exist
[Matschke-S.-Weibel 2011].

[e}



OK,...how do you contruct/visualize/think of a 5-dimensional
prismatoid???

10
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Tricks of the trade

OK,...how do you contruct/visualize/think of a 5-dimensional
prismatoid???

@ Option 1: If you are a super-hero, use your XR5D vision
powers.
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Tricks of the trade

OK,...how do you contruct/visualize/think of a 5-dimensional
prismatoid???

@ Option 1: If you are a super-hero, use your XR5D vision
powers.

@ Option 2: If you are a Jedi knight, use the force.
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Tricks of the trade

OK,...how do you contruct/visualize/think of a 5-dimensional
prismatoid???

@ Option 1: If you are a super-hero, use your XR5D vision
powers.

@ Option 2: If you are a Jedi knight, use the force.
@ Option 3: If you are a human, use your math....
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Tricks of the trade

OK,...how do you contruct/visualize/think of a 5-dimensional
prismatoid???

@ Option 1: If you are a super-hero, use your XR5D vision
powers.

@ Option 2: If you are a Jedi knight, use the force.

@ Option 3: If you are a human, use your math....to find a
way to reduce the dimension of your object.
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Analyzing the combinatorics of a d-prismatoid Q can be done
via an intermediate slice . ..

i
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... which equals the Minkowski sum Q* + Q~ of the two bases

QT and Q.

N|—=
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Combinatorics of prismatoids

... which equals the Minkowski sum Q* + Q~ of the two bases
Q™ and Q. The normal fan of Q" + Q~ equals the “superposi-
tion” of those of Q+ and Q.

> @@
AR
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Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of
the normal fans of Q™ and Q.
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Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of
the normal fans of Q™ and Q.

Remark

The normal fan of a d — 1-polytope can be thought of as a
(geodesic, polytopal) cell decomposition (“map”) of the
d — 2-sphere.
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Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of
the normal fans of Q™ and Q.

Remark

The normal fan of a d — 1-polytope can be thought of as a
(geodesic, polytopal) cell decomposition (“map”) of the
d — 2-sphere.

Theorem

Let Q be a d-prismatoid with bases Q" and Q~ and let G* and
G~ be the corresponding maps in the (d — 2)-sphere (central
projection of the normal fans of Q* and Q7).
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Combinatorics of prismatoids

So: the combinatorics of Q follows from the superposition of
the normal fans of Q™ and Q.

Remark

The normal fan of a d — 1-polytope can be thought of as a
(geodesic, polytopal) cell decomposition (“map”) of the
d — 2-sphere.

Theorem

Let Q be a d-prismatoid with bases Q" and Q~ and let G* and
G~ be the corresponding maps in the (d — 2)-sphere (central
projection of the normal fans of Q* and Q~). Then, the width of Q
equals 2 plus the minimum number of steps needed to go from
a vertex of G to a vertex of G~ in the (graph of) the
superposition of the two maps.

12
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Example: (part of) a 4-prismatoid

4-prismatoid of width > 4
;

pair of (geodesic, polytopal) maps in S? so that two
steps do not let you go from a blue vertex to a red vertex.
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Example: The Klee-Walkup (unbounded) 4-spindle

Remember that Klee and Walkup, in 1967, disproved the Hirsch
conjecture:
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Example: The Klee-Walkup (unbounded) 4-gpindle

Remember that Klee and Walkup, in 1967, disproved the Hirsch
conjecture:

Theorem 2 (Klee-Walkup 1967)

There is an unbounded 4-polyhedron with 8 facets and
diameter 5.



Prismatoids and map pairs
0O0000e000

Example: The Klee-Walkup (unbounded) 4-spindle

Remember that Klee and Walkup, in 1967, disproved the Hirsch
conjecture:

Theorem 2 (Klee-Walkup 1967)

There is an unbounded 4-polyhedron with 8 facets and
diameter 5.

The Klee-Walkup polytope is an “unbounded 4-spindle”.
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Example: The Klee-Walkup (unbounded) 4-spindle

Remember that Klee and Walkup, in 1967, disproved the Hirsch
conjecture:
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“Non-Hirsch” 4-prismatoids do not exist:

17
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4-prismatoids have width < 4

“Non-Hirsch” 4-prismatoids do not exist:

Theorem (S.-Stephen-Thomas, 2011)

In every transversal pair of maps in the sphere there is a path
of length two from some blue vertex to some red vertex.
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4-prismatoids have width < 4

“Non-Hirsch” 4-prismatoids do not exist:

Theorem (S.-Stephen-Thomas, 2011)

In every transversal pair of maps in the sphere there is a path
of length two from some blue vertex to some red vertex.

That is to say:
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4-prismatoids have width < 4

“Non-Hirsch” 4-prismatoids do not exist:

Theorem (S.-Stephen-Thomas, 2011)

In every transversal pair of maps in the sphere there is a path
of length two from some blue vertex to some red vertex.

That is to say:

Corollary (S.-Stephen-Thomas, 2011)
Every prismatoid of dimension 4 has width (at most) four.
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A 4-dimensional prismatoid of width > 47?

However, we can construct them if we are happy with (infinite,
periodic) maps in the plane ...
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A 4-dimensional prismatoid of width > 47

However, we can construct them if we are happy with (infinite,
periodic) maps in the plane ...
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A 4-dimensional prismatoid of width > 47?

However, we can construct them if we are happy with (infinite,
periodic) maps in the plane ...
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A 4-dimensional prismatoid of width > 47?

However, we can construct them if we are happy with (infinite,
periodic) maps in the plane ...
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A 4-dimensional prismatoid of width > 47?

However, we can construct them if we are happy with (infinite,
periodic) maps in the plane ...
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A 4-dimensional prismatoid of width > 47?

However, we can construct them if we are happy with (infinite,
periodic) maps in the plane ...

e 1, 90
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...or with finite ones in the torus!

2 &
-
-

g

IX

b
X

O
54

M
54

A

IX

b

18



00000000 000000000 90000000000 00 0000000

To construct 5-dimensional prismatoids we should look at “pairs
of maps” in the 3-sphere.

19
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5-prismatoids of width > 5

To construct 5-dimensional prismatoids we should look at “pairs
of maps” in the 3-sphere.

That is, we want a pair of (geodesic, polytopal) cell
decompositions of the 3-sphere such that if we draw them one
on top of the other (common refinement) there is no path of
length < 3 from a blue vertex to a red vertex.

Main idea: If non-Hirsch pairs of maps exist in the torus we
should have room enough to construct it in the sphere too . ..
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A 5-prismatoid of width > 5
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A 5-prismatoid of width > 5
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A 5-prismatoid of width > 5

20



The strong d-step Theorem Prismatoids and map pairs 5-prismatoids Episode IlI Asymptotic diameter
00000000 000000000 0@000000000 00 0000000

20



The strong d-step Theorem Prismatoids and map pairs 5-prismatoids Episode llI Asymptotic diameter
00000000 000000000 0@000000000 [e]e] 0000000

A 5-prismatoid of width > 5

20
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A 5-prismatoid of width > 5

20



Theorem

The following prismatoid Q, of dimension 5 and with 48
vertices, has width six.



The following prismatoid Q, of dimension 5 and with 48
vertices, has width six.

21
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A 5-prismatoid of width > 5

Theorem

The following prismatoid Q, of dimension 5 and with 48
vertices, has width six.

X4 Xo X3 X4 X5 X4 Xo X3 X4 X5

8
Otg 0 0o o 1 O0 o o x18 17t
0 +18 0 0 0 0 +18 0 -1
0 0 +45 0 +45 0 0 0 1
_ 0 0 0 445 0 +45 0 0 -1
Q'_°°”V% 0 0 15 +15 —1

| MAAARAARY ©

+15 +15 0 0
0 0 £30 =+30 +30 +£30 0 o -1
+40 0 £10 0 —1

0 £10 £40 ©
+10 0 0 +40 0 +40 0 £10 -1

21
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The following prismatoid Q, of dimension 5 and with 48
vertices, has width six.

There is a 43-dimensional polytope with 86 facets and diameter
(at least) 44.

21
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It has been verified computationally that the dual graph of Q
(modulo symmetry) has the following structure:

A_B/ \E/ \H/ N
N NGNS

bl
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A 5-prismatoid of width > 5

Proof 2.

Show that there are no blue vertex a and red vertex b such that
a is a vertex of the blue cell containing b and b is a vertex of the
red cell containing a. O

29



The strong d-step Theorem Prismatoids and map pairs 5-prismatoids Episode llI Asymptotic diameter
00000000 000000000 00000®00000 00 0000000

Smaller 5-prismatoids of width > 5

With the same ideas

Theorem
The following 5-prismatoid with 28 vertices (and 274 facets)
has width 6.

g X4 X2 X3 X4 X5 X4 X2 X3  Xg X5 2
% Oii8 0 0o o 171 Oo9 o +18 0 -1t %
0 0 +30 0 1 0 43 0 0 -1 =
Q := conv g 0 0 0 =£30 1 E giso 0 0 o0 71§
0 +5 0 =£25 1 125 0 0 45 —1
0 0 18 £18 1 18 +18 0 0 1

24
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Smaller 5-prismatoids of width > 5

With the same ideas

Theorem
The following 5-prismatoid with 28 vertices (and 274 facets)
has width 6.

g X4 X2 X3 X4 X5 X4 X2 X3  Xg X5 2
§ Oii8 0 0o o 171 Oo9 o +18 0 -1t %
0 0 +30 0 1 0 43 0 0 -1 =
Q := conv g 0 0 0 =£30 1 giso o o0 0 -1
0 +5 0 =£25 1 125 0 0 45 —1
0 0 18 £18 1 18 +18 0 0 1
Corollary

There is a non-Hirsch polytope of dimension 23 with 46 facets.

24
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And with some more work:

There is a 5-prismatoid with 25 vertices and of width 6.

25
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Smaller 5-prismatoids of width > 5

And with some more work:

Theorem (Matschke-Santos-Weibel, 2011)
There is a 5-prismatoid with 25 vertices and of width 6.

Corollary
There is a non-Hirsch polytope of dimension 20 with 40 facets.

25
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Smaller 5-prismatoids of width > 5

And with some more work:

Theorem (Matschke-Santos-Weibel, 2011)
There is a 5-prismatoid with 25 vertices and of width 6.

Corollary
There is a non-Hirsch polytope of dimension 20 with 40 facets.

This one has been explicitly computed. It has 36, 442 vertices,
and diameter 21.

25
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_| poly20dim21.ext

V-representation
begin
48 21 rational

11 1 02 ] ] ] 1 ) [ ] ] ] ] ) 1 1 ] ] ]
11 8 8 16 -5 ] [ 1 ] [ ] ] ] [ ] 8 1 1 ] ]
11 8 [ ] ] [ 1 ] [ ] ] ] [ ] 8 ] 1 1 ]
11 8 o -6 -10 ] 8 1 2 8 0 ] 8 8 2 8 8 ] 1 1
11 8 R [ 8 8 o 8 8 8 8 8 8 8 8 8 8 ] 1
11 8 R 3 0 8 o 8 8 0 0 8 8 8 8 8 8 0 ]
11 8 0 [ £ 0 0 o ) 0 0 0 0 0 ° 8 8 0 0 0
11 8 8 19 7 [l [ 1 ) [ [l ] 8 [l ) 1 [ [l [l [l
11 3188 -1/50 e 23 [l [ 1 ? [ [l [l [l [ 8 8 ] ] ] ]
11 -3/180 -1/50 [l [l [ o [ [ [l [l [l [ ] 8 ] ] ] ]
11 -3/2000 7/2000 6 388/10 [ [ o o [ [ [ ] [ 1 8 8 8 ] ]
11 372000 7/2000 6 -248/10 10DDODDD 19PAAGGD 16600000 199PPDDRDDD 1 ) 8 8 8 8 8
11 372009 7/2000 6 -248/10 -10000000 [ 1 [ [ [l [l [l 1 8 8 8 8 0 0
11 3/2008 7/2080 6 -245/10 10PPOODD ~1006GGE 6 ) [l [l [l 1 1 ) 8 8 0 0 0
11 3/2000 7/2000 0 -248/10 1000PRRD 10000000 -10000000 2 [ [l [l [l 1 ) 1 8 ] ] ]
11 3/2000 7/2000 0 -248/10 10000OPD 19900000 10000000 -1099PREEEED o [l ] ] 1 ] 1 ] ] ] ]
11 3/2000 7/2008 0 -248/10 100000PD 19GAEGG0 10000000 1PPAPARRRRG 10000000000 ] ] 1 o 8 ] ] ] ]
11 3/2000 7/2000 6 -248/10 1000DDPD 19PARGGD 10000000 10PAPPRERDD 16600000000 -199999DBDEED o 8 1 2 8 8 8 ] ]
11 372000 7/2000 6 -248/10 10PDOODD 19PPRGGD 10000000 10PPPPPRRDD 1GAEEEO000 100DDDDORDDD -19RERRREGEE 8 1 8 8 8 8 8 8
11 372009 7/2080 6 -248/10 10PPODDD 10PGGGGD 16600000 199PPDDEDDD 1 o 8 8 8 0 0
1.1 [ 1 [ [ [ 1 1 [ [ [ [ ] ) 1 8 0 0 0
14 4 5 1 ] ] [ 6o 1 1 [l ] ] [l [ 1 [l [l [l [l
1 8 -33/2 1 [l [l [ 1 ? 1 1 ] [l [l [ 8 ] ] ] ]
1 T 0 ] ] [ 1 o ] 1 1 ] [ o 8 ] ] ] ]
14 -5572 [l 1 [l [l [ o [ [ [l 1 1 [ 2 8 8 8 ] 0
141 47 18 8 8 8 8 1 8 8 0 0 1 8 8 8 8 8 0 8
1.1 L] 8 8 0 8 1 8 8 0 0 8 8 1 8 8 8 0 0
1.1 2 1 1 e 0 0 1 ) 0 0 0 0 0 ) 8 8 0 0 0
1 18 e 15  -1/5 [l [ 1 [ [ [l [l [l [ ? 1 8 ] ] ]
1 -1 2999/100 8 -3/25  -1/5 [l [l 1 ? [ [l [l [l [ ? [ ] ] ] ]
1 -1 299999/10000 © 8 1/100 [l 1 o [ [ [l [l [l [ ? [ ] ] ] ]
1-1-2745/188 B 1/5008  1/800 1 [ o [ [ [l [l [l [ o 8 8 8 0 0
1-1 -27 © 1/508 -1/88 [l [ o [ [ [l [l © 100000 100PPDOD 1PPPRRRD 10000000 10DODODDD 10PRROGG 1000009900
1-1 -27 8 1/508 -1/88 [l [ 1 [ [l [l [l 6 166660 o [ [ [ [ [
1.1 27 © 1/568 -1/80 [l [l 1 ) [l [l [l © 166660 10000000 8 8 0 0 0
14 27 © 1/508 -1/80 [l [ 1 [ [ [l [l © 100000 1009MDDD -10800000 ] ] ] ]
1 -27 © 1/508 -1/80 [l [ o [ [ [l ] © 100000 10000000 1PAAREEO -10000000 ] ] ]
141 -27 © 1/508 -1/80 [l [ o [ [ [l [l © 100000 10000000 1PPPPRRD 1000000 -100000009 ] ]
1-1 -27 © 1/508 -1/80 [l [ o [ [ [l [l © 100000 10000DDD 1PPPPPRR 100000 100000999 -10DDEEEED 0
1-1 -27 o 1/508 -1/88 [l [ o 8 [ [l [l © 100000 100PPDOD 19PPRRRD 10000000 10DODODDD 10PARGGG -1000009990
end

allbases
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There are 5-dimensional prismatoids with n vertices and width

Q(vh).
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There are 5-dimensional prismatoids with n vertices and width

Q(vh).

Start with the following “simple, yet more drastic” pair of maps
in the torus.
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Asymptotic width in dimension five
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Asymptotic width in dimension five

Consider the red and blue maps as lying in two parallel tori in
the 3-sphere.
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Asymptotic width in dimension five

Consider the red and blue maps as lying in two parallel tori in
the 3-sphere.

Complete the tori maps to the whole
3-sphere (you need quadratically
many cells for that).
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Asymptotic width in dimension five

Consider the red and blue maps as lying in two parallel tori in
the 3-sphere.

Complete the tori maps to the whole
3-sphere (you need quadratically
many cells for that).

Between the two tori you basically get
the superposition of the two tori
maps. Ol
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Previously on Hirsch wars. ..
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Let H(n,d) := max{diam(P) : P is a d polytope with n facets}.

Conjecture: Warren M. Hirsch (1957)
vn,d, H(n,d) <n-—d.

Theorem [Kalai-Kleitman 1992]

H(n,d) < n'°%29+2  yn d.

Theorem [Barnette 1967, Larman 1970]
H(n,d) <n29=3  vn.d.

Polynomial Hirsch conjecture/question
There are ¢ and k such that H(n,d) < ¢ - (n — d)X, ¥n,d
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Let H(n,d) := max{diam(P) : P is a d polytope with n facets}.

vn,d, H(n,d) <n-—-d.
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Let H(n,d) := max{diam(P) : P is a d polytope with n facets}.

vn,d, H(n,d) <n-—-d.

H(n,d) <n©%d+2  yn d.
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The Phantom Conjecture
Let H(n,d) := max{diam(P) : P is a d polytope with n facets}.
Conjecture: Warren M. Hirsch (1957)
vn,d, H(n,d) <n-—d.

Theorem [Kalai-Kleitman 1992]

H(n,d) < nl°%29+2  yn d.

Theorem [Barnette 1967, Larman 1970]
H(n,d) <n2¢=3  wvn,d.
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The Phantom Conjecture
Let H(n,d) := max{diam(P) : P is a d polytope with n facets}.
Conjecture: Warren M. Hirsch (1957)
vn,d, H(n,d) <n-—d.

Theorem [Kalai-Kleitman 1992]

H(n,d) < nl°%29+2  yn d.

Theorem [Barnette 1967, Larman 1970]
H(n,d) <n2¢=3  wvn,d.

There are ¢ and k such that H(n,d) < c-(n —d), vn,d
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Theorem (Strong d-step Theorem, S. 2010)

If a prismatoid Q has width > d then there is another prismatoid
Q/ (of dimension n — d, with 2n — 2d facets, and width > §+n—2d > n—d)
that violates (the dual of) the Hirsch conjecture.

Theorem (Matschke-S.-Weibel 2012)
There is a 5-dim. prismatoid of width 6 with 25 vertices.

Corollary
There is a non-Hirsch polytope of dimension 20 with 40 facets.

Theorem (Matschke-S.-Weibel 2012)

There are 5-dim. prismatoids with n vertices and width Q(+/n).
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Attack of the Prismatoids

Theorem (Strong d-step Theorem, S. 2010)

If a prismatoid Q has width > d then there is another prismatoid
Q’ (of dimension n — d, with 2n — 2d facets, and width > 6 +n —2d > n —d)
that violates (the dual of) the Hirsch conjecture.
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Attack of the Prismatoids

Theorem (Strong d-step Theorem, S. 2010)

If a prismatoid Q has width > d then there is another prismatoid
Q’ (of dimension n — d, with 2n — 2d facets, and width > 6 +n —2d > n —d)
that violates (the dual of) the Hirsch conjecture.

Theorem (Matschke-S.-Weibel 2012)
There is a 5-dim. prismatoid of width 6 with 25 vertices.

Corollary
There is a non-Hirsch polytope of dimension 20 with 40 facets.

Theorem (Matschke-S.-Weibel 2012)
There are 5-dim. prismatoids with n vertices and width Q(y/n).
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Once we have a non-Hirsch polytope we can derive more via:

@ Products of several copies of it (dimension increases).
@ Gluing several copies of it (dimension is fixed).

To analyze the asymptotics of these operations, we call excess
of a d-polytope P with n facets and diameter ¢ the number
0 d—(n—d)
P):= —-1=——
«(P) n—d n—d

E. g.: The excess of our non-Hirsch polytope with n — d = 20
and with diameter 21 is
21 -20
20

=5%.
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Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:

@ Products of several copies of it (dimension increases).
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Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:

@ Products of several copies of it (dimension increases).
@ Gluing several copies of it (dimension is fixed).
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Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:
@ Products of several copies of it (dimension increases).
@ Gluing several copies of it (dimension is fixed).
To analyze the asymptotics of these operations, we call excess
of a d-polytope P with n facets and diameter ¢ the number

e(P)::nﬁd—1:5_n(i;d).
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Many non-Hirsch polytopes

Once we have a non-Hirsch polytope we can derive more via:
@ Products of several copies of it (dimension increases).
@ Gluing several copies of it (dimension is fixed).
To analyze the asymptotics of these operations, we call excess
of a d-polytope P with n facets and diameter ¢ the number

e(P)::nﬁd—1:5_n(i;d).

E. g.: The excess of our non-Hirsch polytope with n — d = 20
and with diameter 21 is
21 -20
20

=5%.
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@ Taking products preserves the excess: for each k € N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

@ Giluing several copies (slightly) decreases the excess.
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Many non-Hirsch polytopes
@ Taking products preserves the excess: for each k € N,

there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.
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Many non-Hirsch polytopes

@ Taking products preserves the excess: for each k € N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

@ Gluing several copies (slightly) decreases the excess.
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Many non-Hirsch polytopes

@ Taking products preserves the excess: for each k € N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

@ Gluing several copies (slightly) decreases the excess.

n—d:(n1+n2—d)—d:(n1—d)+(n2—d)
6=061+0d —1
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Many non-Hirsch polytopes

@ Taking products preserves the excess: for each k € N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

@ Gluing several copies (slightly) decreases the excess.

n—-d=(My+n—d)—d=(ny—d)+(nz—d)

0=201+d — 1
0 _ _ ) _ 1
n1ld -1= ngid —1=e = ﬁ_1 = €T m=d)+(na—a)
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Many non-Hirsch polytopes

@ Taking products preserves the excess: for each k € N,
there is a non-Hirsch polytope of dimension 20k with 40k
facets and with excess equal to 0.05 = 5%.

@ Gluing several copies (slightly) decreases the excess.

Corollary

For each k € N there is an infinite family of non-Hirsch
polytopes of fixed dimension 20k and with excess (tending to)

y
0.05 <1 — k) .
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But we know there are “worst” prismatoids: 5-prismatoids of
arbitrarily large width.
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The excess of a prismatoid

But we know there are “worst” prismatoids: 5-prismatoids of
arbitrarily large width. Will those produce non-Hirsch polytopes
with worst excess?
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The excess of a prismatoid

But we know there are “worst” prismatoids: 5-prismatoids of
arbitrarily large width. Will those produce non-Hirsch polytopes
with worst excess?

To analyze the asymptotics of this, let us call excess of a
prismatoid of width ¢ with n vertices and dimension d the

quantity
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The excess of a prismatoid

But we know there are “worst” prismatoids: 5-prismatoids of
arbitrarily large width. Will those produce non-Hirsch polytopes
with worst excess?

To analyze the asymptotics of this, let us call excess of a
prismatoid of width ¢ with n vertices and dimension d the

quantity
§—d

n—-d
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Lemma

Via the strong d-step Theorem, a prismatoid of a certain
excess produces non-Hirsch polytopes of that same excess.
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Lemma

Via the strong d-step Theorem, a prismatoid of a certain
excess produces non-Hirsch polytopes of that same excess.

Proof.
The dimension, number of facets and diameter of the
non-Hirsch polytope produced by the strong d-step Theorem

are
n—d, 2(n—d), d+(n—2d).

7
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Lemma

Via the strong d-step Theorem, a prismatoid of a certain
excess produces non-Hirsch polytopes of that same excess.

Proof.
The dimension, number of facets and diameter of the
non-Hirsch polytope produced by the strong d-step Theorem
are

n—d, 2(n—d), d+(n—2d).
So, its excess is

§+(n—-2d)—(n—d) d-d
n—d n—d’

7
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In dimension 5, we know how to construct polytopes of
arbitrarily large width & ~ /(n)
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Prismatoids of large width won'’t help (much)

In dimension 5, we know how to construct polytopes of
arbitrarily large width 6 ~ /(n). .. but their excess tends to

Zero:
=5 i ¥n=5

n—-5 n—>5 =0

lim
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Prismatoids of large width won'’t help (much)

In dimension 5, we know how to construct polytopes of
arbitrarily large width 6 ~ /(n). .. but their excess tends to

Zero.
0-5 —Iim\f_5:0.

“mn—5_ n—>5

Let us be optimistic and suppose that we could construct
5-prismatoids with n vertices and linear width ~ an.
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Prismatoids of large width won'’t help (much)

In dimension 5, we know how to construct polytopes of
arbitrarily large width 6 ~ /(n). .. but their excess tends to

Zero.
0-5 —Iim\f_5:0.

“mn—5_ n—>5

Let us be optimistic and suppose that we could construct
5-prismatoids with n vertices and linear width ~ an.

Their excess will now tend to a.
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Prismatoids of large width won'’t help (much)

In dimension 5, we know how to construct polytopes of
arbitrarily large width 6 ~ /(n). .. but their excess tends to

Zero.
0-5 —Iim\f_5:0.

“mn—5_ n—>5

Let us be optimistic and suppose that we could construct
5-prismatoids with n vertices and linear width ~ an.

Their excess will now tend to «.. So, we still get only polytopes
that violate Hirsch by a constant (“linear” Hirsch bound).
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OK, let us be more optimistic. =~~~ o
width greater than linear?

In fixed dimension, certainly not:



OK, let us be more optimistic. Can we hope for prismatoids of
width greater than linear?
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Revenge of the linear bound

OK, let us be more optimistic. Can we hope for prismatoids of
width greater than linear?

In fixed dimension, certainly not:
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Revenge of the linear bound

OK, let us be more optimistic. Can we hope for prismatoids of
width greater than linear?

In fixed dimension, certainly not:

Theorem

The width of a d-dimensional prismatoid with n vertices cannot
exceed 29-2n,
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Revenge of the linear bound

OK, let us be more optimistic. Can we hope for prismatoids of
width greater than linear?

In fixed dimension, certainly not:

Theorem

The width of a d-dimensional prismatoid with n vertices cannot
exceed 29-2n,

Proof.

This is a general result for the (dual) diameter of a polytope
[Barnette, Larman, ~1970]. O
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In fact, in dimension five we can tighten the upper bound a little
bit:
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In fact, in dimension five we can tighten the upper bound a little
bit:

The width of a 5-dimensional prismatoid with n vertices cannot
exceed n/3 + 1.

40
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Revenge of the linear bound

In fact, in dimension five we can tighten the upper bound a little
bit:

Theorem
The width of a 5-dimensional prismatoid with n vertices cannot
exceed n/3 + 1.

Corollary

Using the Strong d-step Theorem for 5-prismatoids it is
impossible to violate the Hirsch conjecture by more than 33%.
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THE END
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stay tuned for the abstract trilogy
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THE END
OF THE GEOMETRIC TRILOGY

stay tuned for the abstract trilogy coming (soon?) to a lecture room near you.
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