Dynamic Flows with Adaptive Route Choice

Tobias Harks (with Lukas Graf and Leon Sering)

Universität Augsburg

ZIB, Berlin, 5.6.2019
The Physical Flow Model

- digraph $G = (V, E)$
The Physical Flow Model

- digraph $G = (V, E)$
- edge $e \in E$ has length $\tau_e \in \mathbb{Z}_+$

Commuters $(s_i, t_i), i \in I$ with $u_i \in [r_i, R_i]$ as constant.
The Physical Flow Model

- digraph $G = (V, E)$
- edge $e \in E$ has length $\tau_e \in \mathbb{Z}_+$
- edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)
The Physical Flow Model

- digraph $G = (V, E)$
- edge $e \in E$ has length $\tau_e \in \mathbb{Z}_+$
- edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)
- commuters $(s_i, t_i), i \in I$ with $u_i : [r_i, R_i] \rightarrow \mathbb{R}_+$ constant
The Physical Flow Model

- digraph $G = (V, E)$
- edge $e \in E$ has length $\tau_e \in \mathbb{Z}_+$
- edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)
- commuters $(s_i, t_i), i \in I$ with $u_i : [r_i, R_i] \rightarrow \mathbb{R}_+$ constant

![Diagram of the Physical Flow Model]
The Physical Flow Model

- digraph $G = (V, E)$
- edge $e \in E$ has length $\tau_e \in \mathbb{Z}_+$
- edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)
- commuters $(s_i, t_i), i \in I$ with $u_i : [r_i, R_i] \to \mathbb{R}_+$ constant

\[
\nu = 2 \text{ for } \theta \in [0, 1]
\]

\[
\tau_{sv} = 1 \quad \nu_{sv} = 2 \quad \nu_{vt} = 1
\]

\[
\tau_{vt} = 1
\]
The Physical Flow Model

- digraph $G = (V, E)$
- edge $e \in E$ has length $\tau_e \in \mathbb{Z}_+$
- edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)
- commuters $(s_i, t_i), i \in I$ with $u_i : [r_i, R_i] \to \mathbb{R}_+$ constant

\[f^+_e(\theta) \quad \text{queue } q_e(\theta) \quad f^-_e(\theta) \quad \text{outflow} \]

\[v \quad \tau_e \quad w \]

\[u = 2 \text{ for } \theta \in [0, 1] \]

\[T_{sv} = 1 \quad \nu_{sv} = 2 \quad T_{vt} = 1 \quad \nu_{vt} = 1 \]
The Physical Flow Model

- digraph $G = (V, E)$
- edge $e \in E$ has length $\tau_e \in \mathbb{Z}_+$
- edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)
- commuters $(s_i, t_i), i \in I$ with $u_i : [r_i, R_i] \to \mathbb{R}_+$ constant

$$u = 2 \text{ for } \theta \in [0, 1]$$
The Physical Flow Model

- digraph $G = (V, E)$
- edge $e \in E$ has length $\tau_e \in \mathbb{Z}_+$
- edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)
- commuters $(s_i, t_i), i \in I$ with $u_i : [r_i, R_i] \rightarrow \mathbb{R}_+$ constant

\[
\begin{align*}
&\nu_e \downarrow u e = 2 \quad \text{for } \theta \in [0, 1] \\
&\tau_{sv} = \frac{1}{1} \\
&\nu_{sv} = 2 \\
&\nu_{vt} = 1 \\
&\tau_{vt} = 1
\end{align*}
\]
The Physical Flow Model

- digraph $G = (V, E)$
- edge $e \in E$ has length $\tau_e \in \mathbb{Z}_+$
- edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)
- commuters $(s_i, t_i), i \in I$ with $u_i : [r_i, R_i] \to \mathbb{R}_+$ constant

\[u = 2 \text{ for } \theta \in [0, 1] \]
The Physical Flow Model

- digraph $G = (V, E)$
- edge $e \in E$ has length $\tau_e \in \mathbb{Z}_+$
- edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)
- commuters $(s_i, t_i), i \in I$ with $u_i : [r_i, R_i] \rightarrow \mathbb{R}_+$ constant

$u = 2$ for $\theta \in [0, 1]

\[\begin{align*}
&\quad \text{inflow} \\
&\quad v \\
&\quad \tau_e \\
&\quad w \\
&\quad \text{queue } q_e(\theta) \\
&\quad f_e^+(\theta) \\
&\quad f_e^-(\theta) \\
&\quad \text{outflow} \\
\end{align*} \]
The Physical Flow Model

- digraph $G = (V, E)$
- edge $e \in E$ has length $\tau_e \in \mathbb{Z}_+$
- edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)
- commuters $(s_i, t_i), i \in I$ with $u_i : [r_i, R_i] \rightarrow \mathbb{R}_+$ constant

\[
\begin{align*}
\text{inflow} & \quad \nu \quad \tau_e \quad \downarrow \nu_e \quad w \\
& \quad f_e^+(\theta) \quad \text{queue} \quad q_e(\theta) \quad f_e^-(\theta) \quad \text{outflow}
\end{align*}
\]

\[
u = 2 \text{ for } \theta \in [0, 1]
\]
The Physical Flow Model

- digraph $G = (V, E)$
- edge $e \in E$ has length $\tau_e \in \mathbb{Z}_+$
- edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)
- commuters $(s_i, t_i), i \in I$ with $u_i : [r_i, R_i] \rightarrow \mathbb{R}_+$ constant

![Diagram of flow model]

$u = 2$ for $\theta \in [0, 1]$
The Physical Flow Model

- digraph $G = (V, E)$
- edge $e \in E$ has length $\tau_e \in \mathbb{Z}_+$
- edge $e \in E$ has inflow capacity $\nu_e \in \mathbb{Z}_+$ (queue service rate)
- commuters $(s_i, t_i), i \in I$ with $u_i : [r_i, R_i] \rightarrow \mathbb{R}_+$ constant

\[u = 2 \text{ for } \theta \in [0, 1] \]
Current length of a \(v-t \) path \(P \): travel time + waiting times in queues

\[
c(P) = \sum_{e \in P} \tau_e + q_e(\theta)/\nu_e
\]
The Behavioral Model

Current length of a \(v-t \) path \(P \): travel time + waiting times in queues

\[
c(P) = \sum_{e \in P} \tau_e + \frac{q_e(\theta)}{\nu_e}
\]

Definition (Instantaneous Dynamic Equilibrium (IDE))

At every point in time: if positive flow enters an edge, the edge must lie on a currently shortest path towards the respective sink.
The Behavioral Model – Single Sink

- let f be a dynamic flow
- total travel time of edge e at time θ: $c_e(\theta) = \tau_e + q_e(\theta)/\nu_e$
- define node labels $\ell_v(\theta)$ measuring the currently shortest travel time to t:

$$\ell_t(\theta) = 0, \ell_v(\theta) = \min_{e=vw \in E} c_e(\theta) + \ell_w(\theta) \text{ for all } v \in V \setminus \{t\}.$$

Definition (Active Edges)

An edge $e = vw \in E$ is active at time θ if

$$\ell_v(\theta) = \ell_w(\theta) + c_e(\theta).$$

$E_\theta \subseteq E$ set of active edges
The Behavioral Model – Single Sink

- let f be a dynamic flow
- total travel time of edge e at time θ: $c_e(\theta) = \tau_e + \frac{q_e(\theta)}{\nu_e}$
- define node labels $\ell_v(\theta)$ measuring the currently shortest travel time to t:

$$\ell_t(\theta) = 0, \quad \ell_v(\theta) = \min_{e=vw\in E} c_e(\theta) + \ell_w(\theta) \text{ for all } v \in V \setminus \{t\}.$$

Definition (Active Edges)

An edge $e = vw \in E$ is active at time θ if

$$\ell_v(\theta) = \ell_w(\theta) + c_e(\theta).$$

$E_\theta \subseteq E$ set of active edges

Definition (Instantaneous Dynamic Equilibrium)

For every $\theta \geq 0$: $f_e^+(\theta) > 0 \Rightarrow e \in E_\theta.$
Example:
Example:

\[\theta = 0.0 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[(1, 2) \]

\[(3, 1) \]

\[(1, 1) \]

\[(\tau_{s_2}, \nu_{s_2}) = (1, 2) \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]
Example:

\[\theta = 0.25 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]
Example:

\[\theta = 0.5 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[(3, 1) \]
\[(1, 2) \]
\[(1, 1) \]

\[(\tau_{v_2}, \nu_{v_2}) = (1, 2) \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]
Example:

\[
\theta = 0.75 \quad u_1(\theta) = 3 \text{ for } \theta \in [0, 1]
\]

\[
(3, 1) \quad (1, 1) \quad (\tau_{v_{s_2}}, \nu_{v_{s_2}}) = (1, 2)
\]

\[
(1, 1) \quad u_2(\theta) = 4 \text{ for } \theta \in [1, 2]
\]
Example:

\[^{1}\theta = 1.0\]

\[^{2}\nu_1(\theta) = 3\text{ for } \theta \in [0, 1]\]

\[^{3}\nu_2(\theta) = 4\text{ for } \theta \in [1, 2]\]

\[^{1}\nu_{S_2}(\theta) = (1, 2)\]
Example:

\[\theta = 1.25 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[(1, 2) \]

\[(3, 1) \]

\[(1, 1) \]

\[(\tau_{s_2}, \nu_{s_2}) = (1, 2) \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]
Example:

\[\theta = 1.5 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[(1, 2) \]

\[(3, 1) \]

\[(1, 1) \]

\[(\tau_{s_2}, \nu_{s_2}) = (1, 2) \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]

\[(1, 1) \]
Example:

\[\theta = 1.75 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[(1, 2) \]

\[(3, 1) \]

\[(1, 1) \]

\[(\tau_{v_s2}, \nu_{v_s2}) = (1, 2) \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]
Example:

\[\theta = 2.0 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[(1, 2) \]

\[(3, 1) \]

\[(1, 1) \]

\[(\tau_{vS_2}, \nu_{vS_2}) = (1, 2) \]

\[t \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]

\[s_1 \]

\[s_2 \]
Example:

\[\theta = 2.25 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[(1, 2) \]

\[(3, 1) \]

\[(1, 1) \]

\[(\tau_{s_2}, \nu_{s_2}) = (1, 2) \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]
Example:

\[\theta = 2.5 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[(1, 2) \]

\[(3, 1) \]

\[(1, 1) \]

\[(1, 1) \]

\[(\tau_{s_2}, \nu_{s_2}) = (1, 2) \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]
Example:

\[\theta = 2.75 \]

- \(u_1(\theta) = 3 \) for \(\theta \in [0, 1] \)
- \((1, 2) \)
- \((3, 1) \)
- \((1, 1) \)
- \((1, 1) \)

\(\tau_{S_2}, \nu_{S_2} = (1, 2) \)

- \(u_2(\theta) = 4 \) for \(\theta \in [1, 2] \)
Example:

\[\theta = 3.0 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[(3, 1) \]

\[(1, 2) \]

\[(1, 1) \]

\[(\tau_{vS_2}, \nu_{vS_2}) = (1, 2) \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]
Example:

\[\theta = 3.25 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]
Example:

\[\theta = 3.5 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[(3, 1) \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]

\[(1, 1) \]

\[(1, 1) \]

\[(\tau_{vS_2}, \nu_{vS_2}) = (1, 2) \]
Example:

\[\theta = 3.75 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[\begin{align*}
(3, 1) & \quad (1, 1) & \quad (\tau_{s_2}, \nu_{s_2}) = (1, 2) \\
\downarrow & \quad \downarrow & \quad \downarrow \\
S_1 & \quad V & \quad S_2
\end{align*} \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]
Example:

\[\theta = 4.0 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[(1, 2) \]

\[\tau_{v_{s_2}}, \nu_{v_{s_2}} = (1, 2) \]

\[(3, 1) \]

\[(1, 1) \]

\[(1, 1) \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]
Example:

\[\theta = 4.25 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]
Example:

\[\theta = 4.5 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[(3, 1) \]

\[(1, 1) \]

\[(1, 1) \]

\[\tau_{v_s_2}, \nu_{v_s_2} = (1, 2) \]

\[u_2(\theta) = 4 \] for \(\theta \in [1, 2] \)
Example:

\[\theta = 4.75 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[(1, 2) \]

\[s_1 \rightarrow v \]

\[(3, 1) \]

\[(1, 1) \]

\[(\tau_{s_2}, \nu_{s_2}) = (1, 2) \]

\[t \rightarrow s_2 \]

\[(1, 1) \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]
Example:

\[\theta = 5.0 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[(1, 2) \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]
Example:

\[\theta = 5.25 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]
Example:

\[\theta = 5.5 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]
Example:

\[\theta = 5.75 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[(1, 2) \]

\[(3, 1) \]

\[(1, 1) \]

\[(\tau_{v_{S_2}}, v_{v_{S_2}}) = (1, 2) \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]
Example:

\[\theta = 6.0 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[(1, 2) \]

\[(3, 1) \]

\[(1, 1) \]

\[(\tau_{vs_2}, \nu_{vs_2}) = (1, 2) \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]
Example:

\[\theta = 6.25 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[(3, 1) \]

\[(1, 2) \]

\[(1, 1) \]

\[(\tau_{v_{s2}}, \nu_{v_{s2}}) = (1, 2) \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]
Example:

\[\theta = 6.5 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[(1, 2) \]

\[(3, 1) \]

\[(1, 1) \]

\[(\tau_{v_2}, \nu_{v_2}) = (1, 2) \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]
Example:

\[\theta = 6.75 \]

\[u_1(\theta) = 3 \text{ for } \theta \in [0, 1] \]

\[(3, 1) \rightarrow (1, 1) \]

\[(1, 2) \rightarrow (1, 1) \]

\[\tau_{V_2}, \nu_{V_2} = (1, 2) \]

\[u_2(\theta) = 4 \text{ for } \theta \in [1, 2] \]
Example:

\[
\theta = 7.0 \quad u_1(\theta) = 3 \text{ for } \theta \in [0, 1]
\]

\[
u_2(\theta) = 4 \text{ for } \theta \in [1, 2]
\]
Related Work:

- fluid queueing model – Nash equilibria
 - Koch and Skutella ('11)
 - Cominetti, Correa and Larre ('15)
 - Cominetti, Correa and Olver ('17)
 - Sering Vargas-Koch ('19)

- IDE for used paths
 - Ran and Boyce ('89, '95)
 - Friesz et al. ('88)
Related Work:

- fluid queueing model – Nash equilibria
 - Koch and Skutella ('11)
 - Cominetti, Correa and Larre ('15)
 - Cominetti, Correa and Olver ('17)
 - Sering Vargas-Koch ('19)

- IDE for used paths
 - Ran and Boyce ('89, '95)
 - Friesz et al. ('88)
Related Work:

- fluid queueing model – Nash equilibria
 - Koch and Skutella (’11)
 - Cominetti, Correa and Larre (’15)
 - Cominetti, Correa and Olver (’17)
 - Sering Vargas-Koch (’19)

- IDE for used paths
 - Ran and Boyce (’89, ’95)
 - Friesz et al. (’88)
Related Work:

- fluid queueing model – Nash equilibria
 - Koch and Skutella ('11)
 - Cominetti, Correa and Larre ('15)
 - Cominetti, Correa and Olver ('17)
 - Sering Vargas-Koch ('19)

- IDE for used paths
 - Ran and Boyce ('89, '95)
 - Friesz et al. ('88)
Related Work:

- fluid queueing model – Nash equilibria
 - Koch and Skutella (’11)
 - Cominetti, Correa and Larre (’15)
 - Cominetti, Correa and Olver (’17)
 - Sering Vargas-Koch (’19)

- IDE for used paths
 - Ran and Boyce (’89, ’95)
 - Friesz et al. (’88)
Related Work:

- fluid queueing model – Nash equilibria
 - Koch and Skutella ('11)
 - Cominetti, Correa and Larre ('15)
 - Cominetti, Correa and Olver ('17)
 - Sering Vargas-Koch ('19)

- IDE for used paths
 - Ran and Boyce ('89, '95)
 - Friesz et al. ('88)
Related Work:

- fluid queueing model – Nash equilibria
 - Koch and Skutella ('11)
 - Cominetti, Correa and Larre ('15)
 - Cominetti, Correa and Olver ('17)
 - Sering Vargas-Koch ('19)

- IDE for used paths
 - Ran and Boyce ('89, '95)
 - Friesz et al. ('88)
Related Work:

- fluid queueing model – Nash equilibria
 - Koch and Skutella ('11)
 - Cominetti, Correa and Larre ('15)
 - Cominetti, Correa and Olver ('17)
 - Sering Vargas-Koch ('19)

- IDE for used paths
 - Ran and Boyce ('89, '95)
 - Friesz et al. ('88)
Related Work:

- Fluid queueing model – Nash equilibria
 - Koch and Skutella ('11)
 - Cominetti, Correa and Larre ('15)
 - Cominetti, Correa and Olver ('17)
 - Sering Vargas-Koch ('19)

- IDE for used paths
 - Ran and Boyce ('89, '95)
 - Friesz et al. ('88)
Related Work:

- fluid queueing model – Nash equilibria
 - Koch and Skutella ('11)
 - Cominetti, Correa and Larre ('15)
 - Cominetti, Correa and Olver ('17)
 - Sering Vargas-Koch ('19)

- IDE for used paths
 - Ran and Boyce ('89, '95)
 - Friesz et al. ('88)
Related Work:

- fluid queueing model – Nash equilibria
 - Koch and Skutella ('11)
 - Cominetti, Correa and Larre ('15)
 - Cominetti, Correa and Olver ('17)
 - Sering Vargas-Koch ('19)

- IDE for used paths
 - Ran and Boyce ('89, '95)
 - Friesz et al. ('88)
<table>
<thead>
<tr>
<th></th>
<th>Existence</th>
<th>Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Sink</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Multi-Sink</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Theorem

For any multi-source single-sink network G there exists an IDE flow.
For any multi-source single-sink network \(G \) there exists an IDE flow.

Given: An IDE flow \(f \) up to some time \(\theta \)
Existence in Single-Sink Networks

Theorem

For any multi-source single-sink network G there exists an IDE flow.

Given: An IDE flow f up to some time θ

Goal: Extending f to an IDE flow up to time $\theta + \varepsilon$ for some $\varepsilon > 0$
Existence in Single-Sink Networks

Theorem

For any multi-source single-sink network G there exists an IDE flow.

Given: An IDE flow f up to some time θ

Goal: Extending f to an IDE flow up to time $\theta + \varepsilon$ for some $\varepsilon > 0$

Equivalently: For all $v \in V$ distribute arriving flow in $[\theta, \theta + \varepsilon)$ onto active edges at time θ so that they stay active for some $\varepsilon > 0$.
Existence in Single-Sink Networks

Theorem

For any multi-source single-sink network \(G \) there exists an IDE flow.

Given: An IDE flow \(f \) up to some time \(\theta \)

Goal: Extending \(f \) to an IDE flow up to time \(\theta + \varepsilon \) for some \(\varepsilon > 0 \)

Equivalently: For all \(v \in V \) distribute arriving flow in the range \([\theta, \theta + \varepsilon) \) onto active edges at time \(\theta \) so that they stay active for some \(\varepsilon > 0 \).

Invariant: per extension interval, all inflows are constant and so are all outflows as well.
Existence in Single-Sink Networks

Theorem

For any multi-source single-sink network G there exists an IDE flow.

Given: An IDE flow f up to some time θ

Goal: Extending f to an IDE flow up to time $\theta + \varepsilon$ for some $\varepsilon > 0$

Equivalently: For all $v \in V$ distribute arriving flow in $[\theta, \theta + \varepsilon)$ onto active edges at time θ so that they stay active for some $\varepsilon > 0$.

Invariant: per extension interval, all inflows are constant and so all outflows as well.

Idea: Order nodes by increasing labels $\ell_v(\theta)$ (i.e. distance to t).
Existence in Single-Sink Networks

Theorem

For any multi-source single-sink network G there exists an IDE flow.

Given: An IDE flow f up to some time θ

Goal: Extending f to an IDE flow up to time $\theta + \varepsilon$ for some $\varepsilon > 0$

Equivalently: For all $v \in V$ distribute arriving flow in $[\theta, \theta + \varepsilon)$ onto active edges at time θ so that they stay active for some $\varepsilon > 0$.

Invariant: per extension interval, all inflows are constant and so all outflows as well.

Idea: Order nodes by increasing labels $\ell_v(\theta)$ (i.e. distance to t). Distribute inflow node by node starting with smallest labels $[\theta, \theta + \varepsilon)$.
Construction:

\[(v_e, \tau_e) = (2, 3)\]
Construction:

\[(\nu_e, \tau_e) = (2, 3) \]
Construction:

$(v_e, \tau_e) = (2, 3)$

V_1

V_2

V_3

V_4

V_5

V_t
Construction:

\((\nu_e, \tau_e) = (2, 3)\)

\(v_1 \rightarrow v_2\): (2, 1)
\(v_2 \rightarrow v_3\): (2, 2)
\(v_3 \rightarrow v_4\): (1, 1)
\(v_4 \rightarrow t\): (1, 1)
\(v_3 \rightarrow v_5\): (1, 5)
\(v_5 \rightarrow t\): (1, 2)

\(\ell_v\) and \(\ell_t\) graphs are shown for metric calculations.

The diagram illustrates the construction with labeled edges.
Construction:
Construction:
Construction:
How To Fix The Inflow ?

\[f_{vw}(\theta) > 0 \Rightarrow \ell_v(\theta) = c_{vw}(\theta) + \ell_w(\theta) \]
\[f_{vw}(\theta) = 0 \Rightarrow \ell_v(\theta) \leq c_{vw}(\theta) + \ell_w(\theta) \]
How To Fix The Inflow?

\[f_{vw}^+(\theta) > 0 \implies \ell_v(\theta) = c_{vw}(\theta) + \ell_w(\theta) \]
\[f_{vw}^+(\theta) = 0 \implies \ell_v(\theta) \leq c_{vw}(\theta) + \ell_w(\theta) \]
\[\iff f_{vw}^+(\theta) > 0 \implies \ell'_v(\theta) = c'_{vw}(\theta) + \ell'_w(\theta) \]
\[f_{vw}^+(\theta) = 0 \implies \ell'_v(\theta) \leq c'_{vw}(\theta) + \ell'_w(\theta). \]
How To Fix The Inflow?

\[f_{vw}^+(\theta) > 0 \Rightarrow \ell_v(\theta) = c_{vw}(\theta) + \ell_w(\theta) \]
\[f_{vw}^+(\theta) = 0 \Rightarrow \ell_v(\theta) \leq c_{vw}(\theta) + \ell_w(\theta) \]
\[f_{vw}^+(\theta) > 0 \Rightarrow \ell'_v(\theta) = c'_{vw}(\theta) + a_w \]
\[f_{vw}^+(\theta) = 0 \Rightarrow \ell'_v(\theta) \leq c'_{vw}(\theta) + a_w. \]
How To Fix The Inflow?

\[f_{vw}^+(\theta) > 0 \Rightarrow \ell_v(\theta) = c_{vw}(\theta) + \ell_w(\theta) \]
\[f_{vw}^+(\theta) = 0 \Rightarrow \ell_v(\theta) \leq c_{vw}(\theta) + \ell_w(\theta) \]
\[f_{vw}^+(\theta) > 0 \Rightarrow \ell'_v(\theta) = c'_{vw}(\theta) + a_w \]
\[f_{vw}^+(\theta) = 0 \Rightarrow \ell'_v(\theta) \leq c'_{vw}(\theta) + a_w. \]

\[
\min \sum_{e=vw\in\delta_v(\theta)} \int_0^{x_e} \frac{g_e(z)}{\nu_e} + a_w \, dz \quad (\text{OPT-} b_v^-(\theta))
\]

s.t.:
\[
\sum_{e=vw\in\delta_v(\theta)} x_e = b_v^-(\theta)
\]
\[x_e \geq 0, e \in \delta_v(\theta), \]

\[g_e(z) := \begin{cases}
 z - \nu_e, & \text{if } q_e(\theta) > 0 \\
 [z - \nu_e]_+, & \text{if } q_e(\theta) = 0.
\end{cases} \]
<table>
<thead>
<tr>
<th></th>
<th>Existence</th>
<th>Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Sink</td>
<td>Yes</td>
<td>?</td>
</tr>
<tr>
<td>Multi-Sink</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Termination flow terminates = all flow volume $V = \sum_{i} q_i u_i \left(R_i \neq r_i \right)$ reaches sink within finite time.
Agenda

Existence Termination

<table>
<thead>
<tr>
<th></th>
<th>Existence</th>
<th>Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Sink</td>
<td>Yes</td>
<td>?</td>
</tr>
<tr>
<td>Multi-Sink</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Termination

Flow terminates = all flow volume $V = \sum_{i \in I} u_i \cdot (R_i - r_i)$ reaches sink within finite time
Termination in Single-Sink Networks

Theorem

Within any multi-source single-sink network \(G = (V, E) \) all IDE flows terminate.
Lemma

If, after some time θ_0 the total amount of flow in some subgraph H (including t) is always smaller than 1, then all flow arriving at one of the nodes of $H(U)$ will arrive at t after a finite amount of time.

Proof: The total length of all queues in H is always smaller than 1.

\[\Delta_t \]

Flow only uses shortest paths within H (i.e. no cycles).
Proof by Contradiction

Let H be maximal and $H' := G \setminus H$.
Proof by Contradiction

Let H be maximal and $H' := G \setminus H$.
Proof by Contradiction

Let H be maximal and $H' := G \setminus H$.
Proof by Contradiction

Let H be maximal and $H' := G \setminus H$.
Proof by Contradiction

Let H be maximal and $H' := G \setminus H$.

Diagram:

- H' (red dashed box)
- H (blue dashed box)
- t (black node)

The diagram illustrates the relationship between H' and H within the context of the proof.
Proof by Contradiction

Let \(H \) be maximal and \(H' := G \setminus H \).
Proof by Contradiction

Let H be maximal and $H' := G \setminus H$.
Proof by Contradiction

Let H be maximal and $H' := G \setminus H$.
Proof by Contradiction

Let H be maximal and $H' := G \setminus H$.
Proof by Contradiction

Let H be maximal and $H' := G \setminus H$.
Proof by Contradiction

Let H be maximal and $H' := G \setminus H$.
Proof by Contradiction

Let H be maximal and $H' := G \setminus H$.
Proof by Contradiction

Let H be maximal and $H' := G \setminus H$.
Proof by Contradiction

Let H be maximal and $H' := G \setminus H$.
Proof by Contradiction

Let H be maximal and $H' := G \setminus H$.
Proof by Contradiction

Let H be maximal and $H' := G \setminus H$.
Agenda

<table>
<thead>
<tr>
<th></th>
<th>Existence</th>
<th>Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Sink</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multi-Sink</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
An Existence Theorem

Theorem

For any multi-source multi-sink network there exists an IDE flow.
An Existence Theorem

Theorem

For any multi-source multi-sink network there exists an IDE flow.

1. **Given:** An IDE flow f up to some time θ_0
An Existence Theorem

Theorem

For any multi-source multi-sink network there exists an IDE flow.

1. **Given:** An IDE flow f up to some time θ_0
2. **Goal:** Extending f to an IDE flow up to time $\theta_0 + \tau_{\text{min}}$
Theorem

For any multi-source multi-sink network there exists an IDE flow.

1. **Given:** An IDE flow f up to some time θ_0
2. **Goal:** Extending f to an IDE flow up to time $\theta_0 + \tau_{\text{min}}$
3. Define the set of possible (not necessary IDE-) extension of f:
 \[K := \{ g \in L^2([\theta_0, \theta_0 + \tau_{\text{min}}] \times E) \mid g \text{ extension of } f \} \]
An Existence Theorem

Theorem

For any multi-source multi-sink network there exists an IDE flow.

1. **Given:** An IDE flow f up to some time θ_0
2. **Goal:** Extending f to an IDE flow up to time $\theta_0 + \tau_{\text{min}}$
3. Define the set of possible (not necessary IDE-) extension of f: $K := \{ g \in L^2([\theta_0, \theta_0 + \tau_{\text{min}}])^{I \times E} \mid g \text{ extension of } f \}$
4. Consider the mapping $\mathcal{A} : K \rightarrow L^2([\theta_0, \theta_0 + \tau_{\text{min}}])^{I \times E}$, $g = (g_{i,e}) \mapsto h = (h_{i,e})$,
An Existence Theorem

Theorem

For any multi-source multi-sink network there exists an IDE flow.

1. **Given:** An IDE flow f up to some time θ_0
2. **Goal:** Extending f to an IDE flow up to time $\theta_0 + \tau_{\text{min}}$
3. Define the set of possible (not necessary IDE-) extension of f:
 \[
 K := \{ g \in L^2([\theta_0, \theta_0 + \tau_{\text{min}}]^{I \times E}) \mid g \text{ extension of } f \} \]
4. Consider the mapping
 \[
 A : K \rightarrow L^2([\theta_0, \theta_0 + \tau_{\text{min}}]^{I \times E}),
 g = (g_{i,e}) \mapsto h = (h_{i,e}),
 \]
 where $h_{i,vw}(\theta) := \ell_{i,w}(\theta) + c_{vw}(\theta) - \ell_{i,v}(\theta)$

\[\text{Diagram:}\]

- Node w connected to node v
An Existence Theorem

Theorem

For any multi-source multi-sink network there exists an IDE flow.

1. **Given**: An IDE flow \(f \) up to some time \(\theta_0 \)
2. **Goal**: Extending \(f \) to an IDE flow up to time \(\theta_0 + \tau_{\text{min}} \)
3. Define the set of possible (not necessary IDE-) extension of \(f \):
 \[
 K := \{ g \in L^2([\theta_0, \theta_0 + \tau_{\text{min}}])^{I \times E} | g \text{ extension of } f \} \]
4. Consider the mapping
 \[
 \mathcal{A} : K \rightarrow L^2([\theta_0, \theta_0 + \tau_{\text{min}}])^{I \times E}, \quad g = (g_{i,e}) \mapsto h = (h_{i,e}),
 \]
 where \(h_{i,vw}(\theta) := \ell_{i,v}(\theta) + c_{vw}(\theta) - \ell_{i,v}(\theta) \)
 i.e. \(h_{i,vw}(\theta) = 0 \iff vw \text{ is active} \)
An Existence Theorem

Theorem

For any multi-source multi-sink network there exists an IDE flow.

1. **Given:** An IDE flow f up to some time θ_0
2. **Goal:** Extending f to an IDE flow up to time $\theta_0 + \tau_{\text{min}}$
3. Define the set of possible (not necessary IDE-) extension of f:
 \[K := \{ g \in L^2([\theta_0, \theta_0 + \tau_{\text{min}}])^{I \times E} | g \text{ extension of } f \} \]
4. Consider the mapping
 \[\mathcal{A} : K \rightarrow L^2([\theta_0, \theta_0 + \tau_{\text{min}}])^{I \times E}, \quad g = (g_{i,e}) \mapsto h = (h_{i,e}), \]
 where $h_{i,vw}(\theta) := \ell_{i,w}(\theta) + c_{vw}(\theta) - \ell_{i,v}(\theta)$
 i.e. $h_{i,vw}(\theta) = 0 \iff vw \text{ is active}$

Then: $g \in K$ is IDE extension $\iff \langle g, \mathcal{A}(g) \rangle = 0$
An Existence Theorem

Theorem

For any multi-source multi-sink network there exists an IDE flow.

1. **Given:** An IDE flow f up to some time θ_0
2. **Goal:** Extending f to an IDE flow up to time $\theta_0 + \tau_{\text{min}}$
3. Define the set of possible (not necessary IDE-) extension of f:
 \[K := \{ g \in L^2([\theta_0, \theta_0 + \tau_{\text{min}}])_{I \times E} | \text{g extension of f} \} \]
4. Consider the mapping
 \[A : K \to L^2([\theta_0, \theta_0 + \tau_{\text{min}}])_{I \times E}, g = (g_{i,e}) \mapsto h = (h_{i,e}), \]
 where $h_{i,vw}(\theta) := \ell_{i,w}(\theta) + c_{vw}(\theta) - \ell_{i,v}(\theta)$
 i.e. $h_{i,vw}(\theta) = 0 \iff vw \text{ is active}$
 Then: $g \in K$ is IDE extension $\iff \langle g, A(g) \rangle = 0$
 $\iff \langle A(g), g' - g \rangle \geq 0 \text{ f.a. } g' \in K$
An Existence Theorem

Theorem

For any multi-source multi-sink network there exists an IDE flow.

Given: An IDE flow f up to some time θ_0

Goal: Extending f to an IDE flow up to time $\theta_0 + \tau_{\text{min}}$

Define the set of possible (not necessary IDE-) extension of f:

$K := \{ g \in L^2([\theta_0, \theta_0 + \tau_{\text{min}}])^{I \times E} \mid g \text{ extension of } f \}$

Consider the mapping

$A : K \rightarrow L^2([\theta_0, \theta_0 + \tau_{\text{min}}])^{I \times E}, g = (g_{i,e}) \mapsto h = (h_{i,e})$

where $h_{i,vw}(\theta) := \ell_{i,w}(\theta) + c_{vw}(\theta) - \ell_{i,v}(\theta)$

i.e. $h_{i,vw}(\theta) = 0 \iff vw \text{ is active}$

Then: $g \in K$ is IDE extension $\iff \langle g, A(g) \rangle = 0$

$\iff \langle A(g), g' - g \rangle \geq 0 \text{ f.a. } g' \in K$

Such a g always exists (A weak-strong-continuous, K non-empty, closed, convex, bounded).
An Existence Theorem

Theorem

For any multi-source multi-sink network there exists an IDE flow. (even for more general network inflow functions u_i)

1. **Given:** An IDE flow f up to some time θ_0
2. **Goal:** Extending f to an IDE flow up to time $\theta_0 + \tau_{\text{min}}$
3. Define the set of possible (not necessary IDE-) extension of f:
 $K := \{ g \in L^2([\theta_0, \theta_0 + \tau_{\text{min}}])^{I \times E} \mid g \text{ extension of } f \}$
4. Consider the mapping
 $\mathcal{A} : K \rightarrow L^2([\theta_0, \theta_0 + \tau_{\text{min}}])^{I \times E}$, $g = (g_{i,e}) \mapsto h = (h_{i,e})$,
 where $h_{i,\ell,w}(\theta) := \ell_{i,w}(\theta) + c_{\ell,w}(\theta) - \ell_{i,v}(\theta)$
 i.e. $h_{i,\ell,w}(\theta) = 0 \iff \ell_{i,v}(\theta)$

 Then: $g \in K$ is IDE extension $\iff \langle g, \mathcal{A}(g) \rangle = 0$
 $\iff \langle \mathcal{A}(g), g' - g \rangle \geq 0$ f.a. $g' \in K$

5. Such a g always exists (\mathcal{A} weak-strong-continuous, K non-empty, closed, convex, bounded).
Agenda

<table>
<thead>
<tr>
<th></th>
<th>Existence</th>
<th>Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Sink</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multi-Sink</td>
<td>Yes</td>
<td>?</td>
</tr>
</tbody>
</table>
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Non-Termination in Multi-Sink Networks

Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
There exists a multi-source multi-sink network for which any IDE flow does not terminate.
There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
There exists a multi-source multi-sink network for which any IDE flow does not terminate.
There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
There exists a multi-source multi-sink network for which any IDE flow does not terminate.
There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Non-Termination in Multi-Sink Networks

Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Non-Termination in Multi-Sink Networks

Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Non-Termination in Multi-Sink Networks

Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Non-Termination in Multi-Sink Networks

Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Non-Termination in Multi-Sink Networks

Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
There exists a multi-source multi-sink network for which any IDE flow does not terminate.
There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Non-Termination in Multi-Sink Networks

Theorem

There exists a multi-source multi-sink network for which any IDE flow does not terminate.
Summary

<table>
<thead>
<tr>
<th></th>
<th>Existence?</th>
<th>Termination?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Sink</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multi-Sink</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

THANK YOU!
<table>
<thead>
<tr>
<th></th>
<th>Existence?</th>
<th>Termination?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Sink</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Multi-Sink</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Existence?</td>
<td>Termination?</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Single-Sink</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multi-Sink</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Existence?</td>
<td>Termination?</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Single-Sink</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multi-Sink</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
Summary

<table>
<thead>
<tr>
<th></th>
<th>Existence?</th>
<th>Termination?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Sink</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multi-Sink</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Summary

<table>
<thead>
<tr>
<th></th>
<th>Existence?</th>
<th>Termination?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Sink</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multi-Sink</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

THANK YOU!