Info

Vorlesungszeiten (times&locations):  Donnerstag, 10-12 & Freitag, 10-12, online ((average)weekly format: lectures 3 + exercises 1)

Vorlesungsbeginn (start): April 23rd; if you are interested in participating, please send me an email so that I can provide you with the “how´´ .

Inhalt (content): Lattices, reduction theory, packing and covering of convex bodies,
successive&covering minima, transference theorems, lattice points and convex bodies

Vorkenntnisse (requirements): Diskrete Geometrie I & II, bzw. fundierte Kenntnisse über strukturelle und metrische Eigenschaften konvexer Mengen. Discrete Geometry I/II, or solid knowledge on structural and metrical/analytic properties of convex sets.

Literatur: (vorläufig/preliminary)

John William Scott Cassels, An Introduction to the Geometry of Numbers, 1971.
Peter Manfred Gruber, Convex and Discrete Geometry, 2007.
Peter Manfred Gruber and Cornelius Gerrit Lekkerkerker, Geometry of Numbers, 1987.
Laszlo Lovász: An Algorithmic Theory of Numbers, Graphs, and Convexity, 1986.
Carl Ludwig Siegel, Lectures on the Geometry of Numbers, 1988.

If you have any questions, please send me an email.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.