Lecture Notes
on
Geometry of Numbers

Martin Henk

May 12, 2015
Contents

Once upon a time... iii
1 Basic (and some more) facts from Convexity 1
 Exercises 13
 Notes 15
2 Basic facts about Lattices 17
3 Minkowski’s successive minima 31
 References 41
Once upon a time...

One of the main research directions of number theory around the middle of the 19th century was devoted to the study of general quadratic forms $q(x)$ in n variables $x = (x_1, \ldots, x_n)^T$ and its values on integral points $z \in \mathbb{Z}^n$. In particular, for the class of positive definite quadratic forms, i.e., we can write $q(x) = x^T Q x$ with a positive definite matrix $Q \in \mathbb{R}^{n \times n}$, one was interested in upper bounds on its minimum on $\mathbb{Z}^n \setminus \{0\}$, i.e., $\min_{z \in \mathbb{Z}^n \setminus \{0\}} q(z)$. Of course, such a bound has to depend on Q and since

Acknowledgement. For helpful remarks, corrections and discussions I would like to thank André Apitzsch, Eva Linke, María de los Angeles Hernández Cifre, Eva Linke,...
1

Basic (and some more) facts from Convexity

In this chapter we will briefly collect some basic results and concepts concerning convex bodies, which may be considered as the main "continuous" component/ingredient of the Geometry of Numbers. For proofs of the results we will refer to the literature, mainly to the books [2, 5, 6, 7, 9, 11, 13, 14], which are also excellent sources for further information on the state of the art concerning convex bodies, polytopes and their applications. As usual we will start with setting up some basic notation; more specific ones will be introduced when needed.

Let $\mathbb{R}^n = \{x = (x_1, \ldots, x_n)^T : x_i \in \mathbb{R}\}$ be the n-dimensional Euclidean space, equipped with the standard inner product $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$, $x, y \in \mathbb{R}^n$.

For a subset $X \subseteq \mathbb{R}^n$, let $\text{lin} X$ and $\text{aff} X$ be its linear and affine hull, respectively, i.e., with respect to inclusions, the smallest linear or affine subspace containing X. If $X = \emptyset$ we set $\text{lin} X = \{0\}$, and $\text{aff} X = \emptyset$. The dimension of a set X is the dimension of its affine hull and will be denoted by $\dim X$. By $X + Y$ we mean the vectorwise addition of subsets $X, Y \subseteq \mathbb{R}^n$, i.e.,

$$X + Y = \{x + y : x \in X, y \in Y\}.$$

The multiplication λX of a set $X \subseteq \mathbb{R}^n$ with $\lambda \in \mathbb{R}$ is also declared vectorwise, i.e., $\lambda X = \{\lambda x : x \in X\}$. We write $-X = (-1)X$, $X - Y = X + (-1)Y$ and $x + Y$ instead of $\{x\} + Y$.

A subset $C \subseteq \mathbb{R}^n$ is called convex, iff for all $c_1, c_2 \in C$ and for all $\lambda \in [0, 1]$ hold $\lambda c_1 + (1 - \lambda) c_2 \in C$. A convex compact (i.e., bounded and closed) subset $K \subseteq \mathbb{R}^n$ is called a convex body. The set of all convex bodies in \mathbb{R}^n is denoted by \mathcal{K}^n. $K \in \mathcal{K}^n$ is called o-symmetric, i.e., symmetric with respect to the origin, if $K = -K$. The set of all o-symmetric convex bodies in \mathbb{R}^n is denoted by \mathcal{K}_o^n.

There is a simple one-to-one correspondence between n-dimensional o-symmetric convex bodies and norms on \mathbb{R}^n: given a norm $|\cdot| : \mathbb{R}^n \rightarrow \mathbb{R}_{\geq 0}$
we consider its unit ball \(\{ x \in \mathbb{R}^n : |x| \leq 1 \} \), which is a \(o \)-symmetric convex body by the definition of a norm. For the reverse correspondence we need the notion of a distance function. For \(K \in \mathcal{K}_o^n \), \(\dim K = n \), the function
\[
|.|_K : \mathbb{R}^n \to \mathbb{R}_{\geq 0} \text{ given by } |x|_K := \min \{ \rho \in \mathbb{R}_{\geq 0} : x \in \rho K \}
\]
is called the distance function of \(K \).

By the convexity and symmetry of \(K \) it is easily verified that \(|.|_K \) is indeed a norm. A well-studied family of \(o \)-symmetric convex bodies are the unit balls \(B^n_p := \{ x \in \mathbb{R}^n : |x|_p \leq 1 \} \) associated to the \(p \)-norms
\[
|x|_p := \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p}, \quad p \in [1, \infty), \quad \text{and } |x|_\infty := \max_{1 \leq i \leq n} \{|x_i|\}.
\]
In the Euclidean case, i.e., \(p = 2 \), we denote the Euclidean norm just by \(|.| \) and its unit ball by \(B_n \).

\[\begin{array}{cccc}
\frac{(-1)}{0} & \frac{(0)}{0} & \frac{(1)}{0} & \frac{(0)}{-1} \\
\frac{(-1)}{0} & \frac{(0)}{0} & \frac{(1)}{0} & \frac{(0)}{-1} \\
\end{array}\]

\(p = 1 \) \hspace{1cm} \(p = 2 \) \hspace{1cm} \(p = 4 \) \hspace{1cm} \(p = \infty \)

Figure 1.1: Unit balls of \(p \)-norms

\(B_{\infty}^n = \{ x \in \mathbb{R}^n : -1 \leq x_i \leq 1 \} \) is the \(o \)-symmetric (regular) cube with edge length 2, and \(B_1^n = \{ x \in \mathbb{R}^n : \sum_{i=1}^{n} |x_i| \leq 1 \} \) is called the (regular) crosspolytope.

One big advantage of convex sets \(K \) is their property that points not belonging to \(K \) can easily be separated from \(K \). In order to formulate this precisely and a bit more generally, we denote for \(a \in \mathbb{R}^n \setminus \{0\}, \ b \in \mathbb{R} \) by \(H(a, b) = \{ x \in \mathbb{R}^n : \langle a, x \rangle = b \} \) the hyperplane with normal vector \(a \) and right hand side \(b \). The associated two closed halfspaces are denoted by \(H_{\leq}(a, b) \) and \(H_{\geq}(a, b) \), respectively, i.e., \(H_{\leq}(a, b) = \{ x \in \mathbb{R}^n : \langle a, x \rangle \leq b \} \) and \(H_{\geq}(a, b) = H_{\leq}(-a, -b) \).

1.1 Theorem [Separation Theorem]. Let \(C_1, C_2 \subset \mathbb{R}^n \) be convex with \(C_1 \cap C_2 = \emptyset \).

i) Then there exists a separating hyperplane \(H(a, b) \), i.e., \(C_1 \subseteq H_{\leq}(a, b) \) and \(C_2 \subseteq H_{\geq}(a, b) \).

ii) If \(C_1 \) is compact, i.e., \(C_1 \in \mathcal{K}^n \) and \(C_2 \) is closed then there exists a strictly separating hyperplane \(H(a, b) \), i.e., \(C_1 \subset H_{\leq}(a, b) \) and \(C_2 \subseteq H_{\geq}(a, b) \) and \(C_1 \cap H(a, b) = \emptyset = C_2 \cap H(a, b) \).
Figure 1.2: Strictly separating hyperplane of two convex bodies

A hyperplane $H(a, b)$ passing through the boundary of a closed convex set C and containing C entirely in one of the two halfspaces, i.e., $C \cap H(a, b) \neq \emptyset$ and $C \subseteq H_{\leq}(a, b)$, say, is called a supporting hyperplane of C. The intersection of $F = C \cap H(a, b)$ is called a face of C, or more precisely, a k-face if $\dim F = k$. If $k = 0$ then F is called an extreme point of C. Faces themselves are closed convex sets, and the intersection of faces of C is again a face of C, where we regard the empty set as the (-1)-dimensional face of C. The boundary of C, denoted by $\text{bd} C$, is the union of its faces.

For a convex body $K \in \mathcal{K}^n$ and a given normal vector (direction) $a \in \mathbb{R}^n \setminus \{0\}$ the supporting hyperplane in direction a is given by $H(a, h_K(a))$ where

$$h_K : \mathbb{R}^n \to \mathbb{R} \text{ with } h_K(a) := \max\{\langle a, x \rangle : x \in K\}$$

is called the support function of K. The support function is positive homogeneous, i.e., $h_K(\lambda a) = \lambda h_K(a)$, $\lambda \in \mathbb{R}_{\geq 0}$, and sub-additive, i.e., $h_K(x + y) \leq h_K(x) + h_K(y)$ for all $x, y \in \mathbb{R}^n$. Indeed, these two properties characterize support functions of convex bodies among the real-valued functions on \mathbb{R}^n.

A quite general concept in different branches of mathematics is that of duality and/or polarity. In our setting it is defined as follows: for $X \subseteq \mathbb{R}^n$, the set

$$X^* := \{y \in \mathbb{R}^n : \langle x, y \rangle \leq 1 \text{ for all } x \in X\}$$

is called the polar set of X. As the intersection of convex closed sets containing the origin, the polar set is always a convex closed set containing 0. Its actual shape, however, depends on its position relative to the origin. For instance, X^* is bounded if and only if 0 is an interior point of X.

On the other hand, as stated in the next proposition, its shape behaves properly with respect to linear transformations and a polar set of a o-symmetric convex body is again an o-symmetric convex body.

1.2 Proposition.

i) Let $X \subseteq \mathbb{R}^n$, and let $M \in \text{GL}(n, \mathbb{R})$. Then $(MX)^* = M^{-\top}X^*$. Here $\text{GL}(n, \mathbb{R})$ denotes the general linear group of all invertible real $n \times n$
1. Basic (and some more) facts from Convexity

\[(B_1^1) \ast = B_{1/2} \ast (1/2), \]

\[(B_2^1) \ast = B_2, \]

\[(B_\infty^1) \ast = B_1. \]

Figure 1.3: Polar bodies of \(B_2 \) and \((B_1^1) \ast + B_2^1 \)

matrices.

ii) Let \(K \subseteq \mathbb{R}^n \) be convex and closed with \(0 \in K \). Then \((K^*)^* = K \).

iii) Let \(K \in \mathcal{K}_o^n \). Then \(K^* \in \mathcal{K}_o^n \) and \(|x|_{K^*} = \max_{y \in K} \langle x, y \rangle = h_K(x) \).

By Proposition 1.2 iii) and Hölder’s inequality for sums,

\[\sum_{i=1}^{n} |x_i y_i| \leq |x|_p \ |y|_{p/(p-1)}, \quad x, y \in \mathbb{R}^n, \ p \in (1, \infty), \]

with equality if and only if \(|x_i| = c |y_i|^{p-1} \) for a constant \(c \), the polar bodies of the \(p \)-norms are given by

\[(B_p^p)^* = B_p^{p-1}, \quad 1 < p < \infty, \]

and \((B_1^1)^* = B_\infty^\infty \) and thus \((B_\infty^1)^* = B_1^1 \).

Since we are mainly dealing with simple structured bounded convex sets, we define the volume of sets via the Jordan-Peano measure: A subset \(D \subset \mathbb{R}^n \) is called \((Jordan-Peano) \) measurable if its indicator function \(\chi_D : \mathbb{R}^n \to \{0, 1\} \) given by

\[\chi_D(x) := \begin{cases} 1, & x \in D, \\ 0, & x \notin D, \end{cases} \]

is Riemann integrable, i.e., the Riemann integral

\[\text{vol}(D) := \int_{\mathbb{R}^n} \chi_D(x) \, dx \]

exists. \(\text{vol}(D) \) is called the volume of \(D \). So the volume of a set \(D \) is based on the principle of exhausting or approximating \(D \) by ”small” \(n \)-dimensional boxes \(\{x \in \mathbb{R}^n : \alpha_i \leq x_i \leq \beta_i, 1 \leq i \leq n\}, \ \alpha_i < \beta_i \in \mathbb{R}, \) for which the volume is defined as \(\prod_{i=1}^{n} (\beta_i - \alpha_i) \). In particular, we have \(V(X) = 0 \) for a measurable set of \(\text{dim } X < n \), and

1.3 Proposition. Let \(X \subset \mathbb{R}^n \) be a measurable set. Then

\[\text{vol}(X) = \lim_{m \to \infty} \frac{\#(X \cap \frac{1}{m} \mathbb{Z}^n)}{m^n}, \]
where $\mathbb{Z}^n = \{ z \in \mathbb{R}^n : z_i \in \mathbb{Z} \}$ denotes the set of all points with integral coordinates.

Figure 1.4: Approximation by ”small” boxes centered at points of $\frac{1}{m}\mathbb{Z}^n$

The unit ball B_∞^n, i.e., the cube (box) of edge length 2 centered at the origin has $\text{vol}(B_\infty^n) = 2^n$. In general, the volume of the unit balls B_p^n can be expressed via the Γ-function $\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} \, dt$ as (cf. Exercise 1.3)

$$\text{vol}(B_p^n) = 2^n \frac{\Gamma(1 + 1/p)^n}{\Gamma(1 + n/p)} ,$$

where the $p = \infty$ case is covered by the limit of the formula above.

As a function $\text{vol} : \mathcal{K}^n \to \mathbb{R}_{\geq 0}$ on the set of convex bodies, the volume shares the following properties: first of all it is valuation, i.e., it is an additive function on the space of all convex bodies, which means that for $K, L \in \mathcal{K}^n$ with $K \cup L \in \mathcal{K}^n$ it is $\text{vol}(K \cup L) = \text{vol}(K) + \text{vol}(L) - \text{vol}(K \cap L)$. The volume is translation invariant, i.e., $\text{vol}(t + X) = \text{vol}(X)$ for any measurable set X and $t \in \mathbb{R}^n$, and since $\text{vol}(A X) = |\det A| \text{vol}(X)$ for $A \in \text{GL}(n, \mathbb{R})$ the volume is also invariant with respect to rotations, i.e., $\text{vol}(A X) = \text{vol}(X)$ for any orthogonal matrix A of determinant 1. Moreover, the volume is homogeneous of degree n, i.e., $\text{vol}(\lambda K) = |\lambda|^n \text{vol}(K)$ and (strictly) monotone in the sense that for $K \subseteq L \in \mathcal{K}^n$ we have $\text{vol}(K) \leq \text{vol}(L)$ with equality iff $\dim L < n$ or $\dim L = n$ and $K = L$. Finally, we mention that the volume is also a continuous function with respect to the Hausdorff metric induced by the Hausdorff distance which for $K, L \in \mathcal{K}^n$ is defined as

$$d_H(K, L) := \min \{ \rho \in \mathbb{R}_{\geq 0} : K \subseteq L + \rho B_n \text{ and } L \subseteq K + \rho B_n \} .$$

For instance, for the convex bodies B_p^n we have (cf. Exercise 1.4)

$$d_H(B_p^n, B_q^n) = \sqrt{n} |n^{-1/p} - n^{-1/q}| .$$

d_H(\cdot, \cdot) defines a metric on \mathcal{K}^n which makes \mathcal{K}^n a complete space. The next theorem, known as Blaschke’s selection theorem, is a very useful tool in guaranteeing the existence of solutions of extremum problems.

1.4 Theorem [Blaschke selection theorem]. Any bounded sequence of convex bodies in \mathcal{K}^n contains a convergent subsequence.
Another theorem with an enormous aftermath is about the so-called Löwner-John ellipsoids. In its basic form it says

1.5 Theorem [Löwner-John ellipsoids]. For each convex body $K \in \mathcal{K}^n$, $\dim K = n$, there is an unique ellipsoid $a + A B_n$, $A \in \text{GL}(n, \mathbb{R})$ of maximal volume contained in K and it holds

$$a + A B_n \subseteq K \subset a + n A B_n.$$

If $K \in \mathcal{K}_0^n$ then we have $a = 0$ and the factor n can be replaced by \sqrt{n}.

The dilatation factors n or \sqrt{n} are also the smallest possible. For instance, in the symmetric case the bound is attained by the cube B_n^∞ or the crosspolytope B_n^1 whose maximal volume ellipsoid is a ball. In the general setting a simplex (see Figure 1.8) is an extremal case.

In some cases the Löwner-John ellipsoids provide an easy way to generalize inequalities valid for ellipsoids to arbitrary o-symmetric convex bodies. As an example we consider the so-called Mahler volume $M(K) := \text{vol}(K) \text{vol}(K^*)$ for $K \in \mathcal{K}_0^n$, $\dim K = n$. In view of Proposition 1.2 i) we know that the Mahler volume is invariant with respect to linear transformations, i.e., $M(A K) = M(K)$ for any $A \in \text{GL}(n, \mathbb{R})$, and hence, in order to bound $M(K)$ we may assume that B_n is the volume maximal ellipsoid contained in K. By Theorem 1.5 we have $B_n \subseteq K \subset \sqrt{n} B_n$ and thus $(1/\sqrt{n}) B_n \subseteq K^* \subseteq B_n$ (cf. Exercise 1.1). So by the monotonicity of the volume we get $\text{vol}(K) \text{vol}(K^*) \leq \text{vol}(\sqrt{n} B_n) \text{vol}(B_n)$ and $\text{vol}(K) \text{vol}(K^*) \geq \text{vol}(B_n) \text{vol}((1/\sqrt{n}) B_n)$, or

$$\sqrt{n}^{-n} M(B_n) \leq M(K) \leq \sqrt{n}^n M(B_n).$$

Of course, these bounds are not the best possible, but they show that $M(K)$ is bounded. In order to improve these bounds, we firstly observe that convex bodies mini- and maximizing $M(K)$ really exist. This, however, is a consequence of Theorem 1.4 and the fact that it suffices to consider convex bodies $K \in \mathcal{K}_0^n$ fulfilling $B_n \subseteq K \subset \sqrt{n} B_n$.
It was shown by Blaschke and Santaló that the maximum of $M(K)$ is only attained for ellipsoids, and so we have $M(K) \leq M(B_n) = \text{vol}(B_n)^2$. The lower bound leads to the so called Mahler conjecture claiming that

$$M(K) \geq M(B^\infty_n) = \text{vol}(B^\infty_n) \text{vol}(B^1_n) = \left(\frac{4^n}{n!} + o(1)\right) M(B_n).$$

This conjecture is open for $n \geq 3$, and it is also known that there is a whole family of (affinely inequivalent) convex bodies with $M(K) = M(B^\infty_o)$. The best known lower bounds are of the type $(\text{constant}^n) \cdot M(B_n)$, and the first who established such a bound were Bourgain and Milman.

1.6 Theorem [Bourgain-Milman]. *There exists a positive absolute constant C such that $\text{vol}(K)\text{vol}(K^*) \geq C^n \text{vol}(B_n)^2$ for any convex body $K \in K^n_o$, dim $K = n$.*

Most of the (classical) results in Geometry of Numbers are dealing with o-symmetric bodies because of their interpretation as unit balls of norms. On the other hand, most of the underlying geometric problems and structures can be formulated for arbitrary convex bodies and so there are many problems which have a symmetric and non-symmetric side. In particular, since there are already many results for o-symmetric bodies, one is interested in transformations making non-symmetric bodies symmetric such that the geometric sizes in question, e.g., volume, keeps controllable. A standard procedure in this respect is building the central symmetral $cs(K)$ of $K \in K^n_o$ defined by

$$cs : K^n \to K^n_o \text{ with } cs(K) := \frac{1}{2}(K - K). \quad (1.2)$$

Of course, $K \in K^n_o$ remains invariant under this map and $cs(t + K) = cs(K)$ for $t \in \mathbb{R}^n$. The following classical theorem by Rogers and Shephard completely describes the behavior of the volume with respect to this map.
1.7 Theorem [Rogers-Shephard]. Let $K \in \mathcal{K}^n$. Then

$$\text{vol}(K) \leq \text{vol}(cs(K)) \leq \frac{1}{2^n} \left(\frac{2^n}{n}\right)^{\frac{1}{n}} \text{vol}(K).$$

In the lower bound equality is attained iff $K \in \mathcal{K}^n_o$ and in the upper bound iff K is a simplex.

In fact, the lower bound is just an application of the famous Brunn-Minkowski theorem

1.8 Theorem [Brunn-Minkowski]. Let $K, L \in \mathcal{K}^n$ and $\lambda \in [0, 1]$. Then

$$\text{vol}(\lambda K + (1 - \lambda) L)^{\frac{1}{n}} \geq \lambda \text{vol}(K)^{\frac{1}{n}} + (1 - \lambda) \text{vol}(L)^{\frac{1}{n}} \quad (1.3)$$

with equality iff K and L are contained in parallel hyperplanes, or K and L are homothetic, i.e., there exists a $\mu \in \mathbb{R}_{\geq 0}$ and $t \in \mathbb{R}^n$ with $L = t + \mu K$.

In words, the n-th root of the volume is a concave function on \mathcal{K}^n. Due to the (weighted) arithmetic-geometric mean inequality (1.3) also implies

$$\text{vol}(\lambda K + (1 - \lambda) L) \geq \lambda \text{vol}(K) \lambda \text{vol}(L)^{1-\lambda}, \quad (1.4)$$

i.e., the volume is a log-concave function. In fact, if (1.4) holds for all $K, L \in \mathcal{K}^n$ then it also implies (1.3).

Next we turn to some more discrete aspects of convex sets. Let $x_1, \ldots, x_m \in \mathbb{R}^n$ and let $\lambda_i \in \mathbb{R}_{\geq 0}$, $1 \leq i \leq m$, with $\sum_{i=1}^{m} \lambda_i = 1$. Then $x = \sum_{i=1}^{m} \lambda_i x_i$ is called a convex combination of x_1, \ldots, x_m. As linear or affine sets are closed with respect to taking finite linear or affine combinations, convex sets are closed with respect to taking finite convex combinations. More precisely (cf. Exercise 1.5), $K \subseteq \mathbb{R}^n$ is convex if and only if

$$K = \left\{ \sum_{i=1}^{m} \lambda_i x_i : m \in \mathbb{N}, x_i \in K, \lambda_i \geq 0, \sum_{i=1}^{m} \lambda_i = 1 \right\}.$$

In analogy to linear and affine hulls of a subset $X \subseteq \mathbb{R}^n$ we define the convex hull, $\text{conv} X$, of X as the smallest – with respect to inclusions – convex set containing X, i.e.,

$$\text{conv} X := \bigcap_{C \subseteq \mathbb{R}^n, C \text{ convex}, X \subseteq C} C.$$

As in the linear and affine setting, the convex hull of a set X is the set of all finite convex combinations which can be formed by elements of X. In fact, due to a classical result of Carathéodory it suffices to consider convex combinations consisting of at most $\text{dim} X + 1$ elements (cf. Exercise 1.6).
1.9 Theorem [Carathéodory]. Let $X \subseteq \mathbb{R}^n$. Then

$$\text{conv } X = \left\{ \sum_{i=1}^{\dim X+1} \lambda_i x_i : x_i \in X, \lambda_i \geq 0, \sum_{i=1}^{\dim X+1} \lambda_i = 1 \right\}.$$

By Caratheodory’s theorem one can easily argue that the convex hull of a compact set X is again compact, but observe, convex hulls of closed sets do not necessarily need to be closed. We also note that for $X, Y \subseteq \mathbb{R}^n$

$$\text{conv } X + \text{conv } Y = \text{conv } (X + Y).$$

If $\# X < \infty$, i.e., $X \subset \mathbb{R}^n$ is finite, the convex body conv X is called a polytope, and we shall denote the set of all polytopes and all o-symmetric polytopes by \mathcal{P}^n and \mathcal{P}_o^n, respectively. In order to emphasize the dimension of a polytope $P \in \mathcal{P}^n$, P will be called an m-polytope if $\dim P = m$. In the case of a polytope $P \in \mathcal{P}^n$, the extreme points, i.e., the 0-dimensional faces are called vertices, the 1-dimensional faces are called edges and facets are $(\dim P - 1)$-dimensional faces. Each polytope is the convex hull of its vertices, in fact, each convex body is the convex hull of its extreme points (cf. Exercise 1.9). The vertices of the cube B_∞^n, for instance, are given by the 2^n vectors whose coordinate are plus or minus 1, and so we have

$$B_\infty^n = \text{conv } \{(\epsilon_1, \ldots, \epsilon_n)^T, \epsilon_i \in \{-1, 1\}\}. \quad (1.5)$$

Given a polytope $P = \text{conv } \{x_1, \ldots, x_m\} \in \mathcal{P}^n$, the polar set of P is given by the system of inequalities $P^* = \{y \in \mathbb{R}^n : \langle x_i, y \rangle \leq 1, 1 \leq i \leq m\}$. In general, such a set, i.e., a set given by finitely many linear (weak) inequalities is called a polyhedron. It was firstly shown by Minkowski and Weyl that bounded polyhedra are polytopes and vice versa.

1.10 Theorem [Minkowski-Weyl]. $C \subset \mathbb{R}^n$ is a convex polytope if and only if it is a bounded polyhedron.
So we always have two representations of polytopes, either as the convex hull of some points, e.g., the vertices or as the intersection of finitely many linear inequalities, e.g., the inequalities corresponding to facet defining supporting hyperplanes. For instance, the cube has also the presentation

$$B^\infty_n = \{ x \in \mathbb{R}^n : \langle \pm e_i, x \rangle \leq 1, 1 \leq i \leq n \},$$

(1.6)

where $e_i = (0, \ldots, 0, 1, 0, \ldots, 0)^T$ with the 1 at the i-th position denotes the i-th unit vector. In comparison with the representation as the convex hull of 2^n points we only need $2n$ linear inequalities here for describing the cube. The convex hull of $n + 1$ affinely independent points in \mathbb{R}^n is called an n-simplex or just a simplex, e.g., $T_n = \text{conv} \{0, e_1, \ldots, e_n\}$ is the so-called standard simplex. By definition, any other simplex is an affine transformation of T_n. If the distance between any two points of a simplex is equal, the simplex will be called regular. Denoting by $f_i(P)$ the number of i-faces of a polytope $P \in \mathcal{P}^n$, we find for an n-simplex that $f_i(T_n) = \binom{n+1}{i+1}$, $i = 0, \ldots, n - 1$, and for the cube B^∞_n and the crosspolytope B^1_n we have

$$f_{n-1-i}(B^1_n) = f_i(B^\infty_n) = 2^{n-i} \binom{n}{i}, i = 0, \ldots, n - 1.$$

Here the first equality follows from the general fact that the polarity map induces an inclusion reversing bijection between the i-faces of a polytope P and the $(n - 1 - i)$-faces of P^*, where we assume that $0 \in \text{int} P$, i.e., the origin is an interior point of P.

In particular, for those n-polytopes P we have: if $P = \text{conv} \{v_1, \ldots, v_m\}$ with vertices v_i, $1 \leq i \leq m$, then $P^* = \{ x \in \mathbb{R}^n : \langle v_i, x \rangle \leq 1, 1 \leq i \leq m \}$
with facets $P^* \cap H(v_i,1)$, $1 \leq i \leq m$, and vice versa. Thus, in view of (1.6) and (1.5) we get the representations for the crosspolytope

$$B_n^1 = \text{conv} \{ \pm e_i : 1 \leq i \leq n \} = \{ x \in \mathbb{R}^n : (\epsilon_1, \ldots, \epsilon_n)^T, x) \leq 1, \epsilon_i \in \{-1,1\} \}.$$

In principle, it is an easy task to calculate the volume of a polytope. To this end we note that the volume of an n-dimensional pyramid $P = \text{conv} \{ Q, w \}$ over an $(n-1)$-dimensional polytope $Q \subset H(a,b)$, say, and with apex $w \notin H(a,b)$ is given by $\text{vol}(P) = (1/n) \text{vol}_{n-1}(Q) \text{dist}(Q, w)$. Here $\text{vol}_{n-1}(\cdot)$ denotes the $(n-1)$-dimensional volume and $\text{dist}(Q, w) = |\langle a, v \rangle - b|/|a|$ is the distance between w and $\text{aff} Q = H(a,b)$.

![Figure 1.10: Pyramid over Q with apex w](image)

Hence, since the volume is additive we can dissect (without gaps) a polytope P into pyramids over its facets F_1, \ldots, F_m, and a common apex $w \in P$, say, and get $\text{vol}(P) = (1/n) \sum_{i=1}^m \text{vol}_{n-1}(F_i) \text{dist}(F_i, w)$. Since the volume is translation invariant the apex w can also lie outside of P, we just have to take the signed distances. For instance, let $\text{aff} F_i = H(a_i, b_i)$ with $|a_i| = 1$ and $P \subset H \leq (a_i, b_i)$, then with respect to the point $w = \mathbf{0}$ we get

$$\text{vol}(P) = \frac{1}{n} \sum_{i=1}^m \text{vol}_{n-1}(F_i) b_i = \frac{1}{n} \sum_{i=1}^m \text{vol}_{n-1}(F_i) h_P(a_i). \quad (1.7)$$

This recursive formula, however, is apparently inapplicable for practical computations. In fact, it is known that computing the volume of a polytope is a $\#P$- problem. Another ad hoc approach for computing the volume of a polytope is to dissect the polytope into simplices, since the volume of an n-simplex $S = \text{conv} \{ v_0, \ldots, v_n \}$ can easily be calculated as

$$\text{vol}(S) = \frac{1}{n!} |\det(v_1 - v_0, \ldots, v_n - v_0)| = \frac{1}{n!} \left| \det \left(\begin{array}{c} v_0 \\ 1 \\ \vdots \\ v_{n+1} \\
\end{array} \right) \right|.$$
Figure 1.11: "Pyramid" formula for computing volume of polytopes

Here, however, the question is how to dissect P in as few as possible simplices, which is not as easy as it might look. For instance, "even" for the cube B^n_∞, the minimal number of simplices in a dissection is only known in small dimensions and the best bounds differ by an exponential factor.

A dissection of a polytope $P \in \mathbb{P}^n$, $\dim P = n$, into n-simplices S_i, $1 \leq i \leq m$, i.e., $P = \bigcup_{i=1}^m S_i$ and $\text{int}(S_i) \cap \text{int}(S_j) = \emptyset$, $i \neq j$, is called a triangulation if $S_i \cap S_j$ is a face of both, S_i and S_j. The theorem of Carathéodory (Theorem 1.9) implies that a polytope can be covered by the simplices generated by its vertices, the next theorem strengthens this statement in the sense that we can even triangulate it with its vertices.

1.11 Theorem. $P \in \mathbb{P}^n$, $\dim P = n$, can be triangulated into simplices without introducing new vertices, i.e., the vertices of each simplex of the triangulation are a subset of the vertices of P.

Figure 1.12: A triangulation of the 3-cube into 5 simplices
Exercises

1.1 Show that

i) If $X_1 \subseteq X_2 \subseteq \mathbb{R}^n$ then $X_2^* \subseteq X_1^*.$

ii) If $X_i \subseteq \mathbb{R}^n$, $i \in I$, then $(\bigcup_{i \in I} X_i)^* = \bigcap_{i \in I} X_i^*.$

iii) If $X \subseteq \mathbb{R}^n$ then $X \subseteq (X^*)^*.$

iv) If $X \subseteq \mathbb{R}^n$ then $X = X^*$ if and only if $X = B_n.$

1.2 Let $X \subseteq \mathbb{R}^n$ and $t \in \mathbb{R}^n$ such that $0 \in \text{int } X \cap \text{int } (t + X).$ Show that

$$(t + X)^* = \left\{ \frac{1}{1 + \langle t, y \rangle} y : y \in X^* \right\}.$$

1.3 i) Let $K \in \mathcal{K}^n_0$, $\dim K = n$, and let $p \in (1, \infty)$. Show that

$$\int_{\mathbb{R}^n} e^{-|x|^p_K} \, dx = \Gamma(n/p + 1) \, \text{vol}(K).$$

ii) Show for $1 \leq p < \infty$

$$\text{vol}(B_n^p) = 2^n \frac{\Gamma(1 + 1/p)^n}{\Gamma(1 + n/p)},$$

and $\text{vol}(B_n^\infty) = 2^n$.

1.4 Show that for $1 \leq p, q \leq \infty$

$$d_H(B_n^p, B_n^q) = \sqrt{n} |n^{-1/p} - n^{-1/q}|.$$

1.5 Show that $K \subseteq \mathbb{R}^n$ is convex if and only if

$$K = \left\{ \sum_{i=1}^m \lambda_i x_i : m \in \mathbb{N}, x_i \in K, \lambda_i \geq 0, \sum_{i=1}^m \lambda_i = 1 \right\}.$$

1.6 Let $X \subseteq \mathbb{R}^n$. Show that

i) $\text{conv } X = \left\{ \sum_{i=1}^m \lambda_i x_i : m \in \mathbb{N}, x_i \in X, \lambda_i \geq 0, \sum_{i=1}^m \lambda_i = 1 \right\}.$

ii) Show that the integer m in the identity above can be replaced by $\dim X + 1.$
1.7 Let $P \in \mathcal{P}^n$ be an n-dimensional polytope with facets F_1, \ldots, F_m, and let $a_i \in \mathbb{R}^n$, $|a_i| = 1$, $b_i \in \mathbb{R}$, such that $\text{aff} F_i = H(a_i, b_i)$ and $P \subset H(a_i, b_i)$, $1 \leq i \leq m$. Show that

$$\sum_{i=1}^m \text{vol}_{n-1}(F_i) a_i = 0.$$

(Hint: Formula (1.7) might help.)

1.8 Let $K, L \in \mathcal{K}^n$, $\dim K = \dim L = n$. Show that $\text{int} K + \text{int} L = \text{int} (K + L)$.

1.9 Show that each convex body is the convex hull of its extreme points.

1.10 Show that the number of simplices in any dissection of the cube B_n^∞ into simplices can not be smaller than $2^n n!/(n + 1)^{(n+1)/2}$.
Rough Notes

1) The number of i-faces of an n-simplex, $\binom{n+1}{i+1}$, is also the minimum number of i-faces which an n-polytope can have. In particular we have $\sum_{i=0}^{n-1} f_i(P) \geq 2^n - 2$ with equality if and only if P is an n-simplex. There is a very appealing conjecture by Gil Kalai claiming that for o-symmetric n-polytopes the lower bound $2^n - 2$ can be replaced by $3^n - 1$ as it is attained by the cube. The cube, however, is as in the case of the Mahler conjecture not the only potential minimizer. In fact, the known bodies for which the Mahler volume is minimal are (up to combinatorial equivalence) precisely those polytopes for which the sum of the i-faces seems to be minimal (see Kalai’s paper [8]). The conjecture of Kalai has been confirmed in dimensions ≤ 4 [12], and the only result in the spirit of the conjecture for general dimensions is due to Figiel, Lindenstrauss and Milman [3]

$$\ln f_0(P) \ln f_{n-1}(P) \geq cn,$$

where c is an absolute constant. The interesting proof utilizes the L"owner-John ellipsoid of o-symmetric convex bodies.

2) The Mahler conjecture has also a “non-symmetric side”. Here we consider for $K \in K^n$, $\dim K = n$, the product

$$\overline{M}(K) = \min_{z \in \text{int} K} \text{vol}(K) \text{vol}((K - z)^*).$$

It is known that, as in the o-symmetric case, it is maximized only for ellipsoids, but the lower bound is open for $n \geq 3$. Simplices are conjectured to be the only minimizer, i.e.,

$$\overline{M}(K) \geq \overline{M}(T_n) = \frac{(n+1)^{n+1}}{(n!)^2},$$

with equality if and only if K is an n-simplex.

3) The survey of Gardner [4] gives excellent access to the huge amount of classical and modern aspects of the Brunn-Minkowski inequality. A highly recommended article on modern aspects of convex geometry (in general) is (still) [1] by Ball.

4) For more information on the surprising and marvellous world of triangulations&friends we refer to the recent book [10] of De Loera, Rambau and Santos.
Basic facts about Lattices

In this chapter we will start to introduce the second and discrete ingredient of the Geometry of Numbers: lattices. Although (or should one say because) trivial to define, they have a surprisingly rich geometric structure and even basic theoretical as well as elementary algorithmic questions are still unsolved.

2.1 Definition [Lattice]. Let \(b_1, \ldots, b_n \in \mathbb{R}^n \) be linearly independent. The set
\[
\Lambda = \{ z_1 b_1 + z_2 b_2 + \cdots + z_k b_k : z_i \in \mathbb{Z}, 1 \leq i \leq n \}
\]
is called an \((n\text{-dimensional})\) lattice. The set of generating vectors \(\{b_1, \ldots, b_n\} \) or the matrix \(B = (b_1, \ldots, b_n) \) with columns \(b_i \) is called the basis of \(\Lambda \). An element \(b \in \Lambda \) is called the lattice point of \(\Lambda \). The set of all \(n\text{-dimensional} \) lattices in \(\mathbb{R}^n \) is denoted by \(\mathcal{L}^n \).

In other words, a lattice is of the form \(\Lambda = B \mathbb{Z}^n \), where \(B \) is a regular \(n \times n \)-matrix, i.e., \(B \in \text{GL}(n, \mathbb{R}) \). In the case that \(B \) is the identity matrix we obtain the lattice \(\mathbb{Z}^n \) itself, which is also called integral lattice or (standard lattice). The unit vectors \(e_1, \ldots, e_n \) are a (canonical) basis of \(\mathbb{Z}^n \), but, of course, there are many (infinitely many) more bases of \(\mathbb{Z}^n \). For instance, the vectors \(b_1 = (1, 1)^\top \) and \(b_2 = (-1, 0)^\top \) or \(b_1 = (25, 16)^\top \) and \(b_2 = (64, 41)^\top \) are also bases of \(\mathbb{Z}^2 \) (since \(e_1 \) and \(e_2 \) are integral linear combinations of these vectors). In order to characterize all bases of \(\mathbb{Z}^n \) we need the following definition.

2.2 Definition [Unimodular matrix]. An integral matrix \(U \in \mathbb{Z}^{n \times n} \) is called unimodular iff \(|\det U| = 1 \). The group of all unimodular matrices is denoted by \(\text{GL}(n, \mathbb{Z}) \).

Observe that a matrix is unimodular if and only if the matrix and its inverse are integral matrices, which implies that \(\text{GL}(n, \mathbb{Z}) \) is precisely the set of all bases of \(\mathbb{Z}^n \) as pointed out in the next proposition.
2.3 Proposition. \(\text{GL}(n, \mathbb{Z}) = \{ U \in \mathbb{R}^{n \times n} : U \mathbb{Z}^n = \mathbb{Z}^n \} \).

Proof. \(U \in \text{GL}(n, \mathbb{Z}) \) if and only if \(U, U^{-1} \in \mathbb{Z}^{n \times n} \), which is equivalent to \(U \mathbb{Z}^n \subseteq \mathbb{Z}^n \) and \(U^{-1} \mathbb{Z}^n \subseteq \mathbb{Z}^n \). Since the last inclusion is equivalent to \(\mathbb{Z}^n \subseteq U \mathbb{Z}^n \) we are done. Observe that \(\mathbb{Z}^n \subseteq U \mathbb{Z}^n \) implies that \(U \) is a regular matrix. \(\square \)

By this proposition we can easily describe all bases of a given lattice.

2.4 Lemma. Let \(\Lambda = B \mathbb{Z}^n \in \mathcal{L}^n \). \(A = (a_1, \ldots, a_n) \) is a basis of \(\Lambda \) if and only if there exists a \(U \in \text{GL}(n, \mathbb{Z}) \) such that \(A = BU \).

Proof. \(A \) is a basis of \(\Lambda \) if and only if \(A \mathbb{Z}^n = \Lambda = B \mathbb{Z}^n \). Since \(B \) is regular this identity is equivalent to \(B^{-1}A \mathbb{Z}^n = \mathbb{Z}^n \) which by Proposition 2.3 is equivalent to \(B^{-1}A \in \text{GL}(n, \mathbb{Z}) \). \(\square \)

So two different bases of a lattice \(\Lambda \) are related by an unimodular transformation, and thus \(|\det B| \) is independent of the chosen basis \(B \) of \(\Lambda \). Hence it makes sense to associate this size to the lattice.

2.5 Definition [Determinant, fundamental cell]. Let \(\Lambda = B \mathbb{Z}^n \in \mathcal{L}^n \) with basis \(B = (b_1, \ldots, b_n) \).

i) \(\det \Lambda = |\det B| \) is called determinant of \(\Lambda \).

ii) \(P_B = \{ \rho_1 b_1 + \cdots + \rho_n b_n : 0 \leq \rho_i < 1, 1 \leq i \leq n \} = B [0, 1)^n \) is called fundamental cell or fundamental parallelepiped of \(\Lambda \) (with respect to the basis \(B \)).

Since \(\text{vol}(B [0, 1)^n) = |\det B| \text{vol}([0, 1)^n) = |\det B| \) we have for \(\Lambda = B \mathbb{Z}^n \in \mathcal{L}^n \) that

\[
\text{vol}(P_B) = \det \Lambda, \tag{2.5.1}
\]

i.e., the determinant is the volume of a fundamental cell. Another apparent, but useful property of a fundamental cell is expressed via the identity

\[
(P_B - P_B) \cap \Lambda = \{0\}. \tag{2.5.2}
\]

Observe that \(P_B - P_B = B (-1, 1)^n \) and thus, the only vector in \(P_B - P_B \) which has a representation as an integral combination of the columns of \(B \) is \(0 \).

Before we state the main property of such a fundamental cell, we introduce a notation which can be interpreted as a kind of rounding of a vector \(x \in \mathbb{R}^n \) with respect to a lattice, or more precisely with respect to a basis \(B \) of a lattice \(\Lambda \). To this end let \(B \in \text{GL}(n, \mathbb{R}) \) and for \(x = \sum_{i=1}^{n} \rho_i b_i \in \mathbb{R}^n \), \(\rho_i \in \mathbb{R} \), we write

\[
|x|_B = \sum_{i=1}^{n} |\rho_i| b_i.
\]
where \(|\rho| \) is the largest integer not bigger than \(\rho \). In particular, \(\lfloor x \rfloor_B \in B \mathbb{Z}^n \) and \(x - \lfloor x \rfloor_B \in P_B \).

2.6 Proposition. Let \(\Lambda = B \mathbb{Z}^n \in \mathcal{L}_n \). Then
\[
\mathbb{R}^n = \bigcup_{b \in \Lambda} (b + P_B),
\]
i.e., \(\mathbb{R}^n \) is the pairwise disjoint union of the lattice translates \(b + P_B \).

Proof. Each \(x \in \mathbb{R}^n \) can be decomposed as \(x = (x - \lfloor x \rfloor_B) + \lfloor x \rfloor_B \), where the first summand is in \(P_B \) and the latter is a lattice point of \(\Lambda \). To show that the union is pairwise disjoint, we note that the intersection of two lattice translates \(b + P_B, \tilde{b} + P_B, b, \tilde{b} \in \Lambda \), is non-empty, if and only if \(b - \tilde{b} \in (P_B - P_B) \cap \Lambda \). By observation (2.5.2) this is equivalent to \(b = \tilde{b} \).

The next theorem gives a characterization of lattices as the discrete subgroups \(S \) of \(\mathbb{R}^n \) which spans \(\mathbb{R}^n \) as a vectorspace. Here "discrete" just means that there exists an \(\epsilon > 0 \) such that \(|s_1 - s_2| \geq \epsilon \) for any \(s_1, s_2 \in S \).

The main part of the proof of this theorem is covered by the next lemma which will also be used later on.

2.7 Lemma. Let \(S \subset \mathbb{R}^n \) be a discrete subgroup containing \(n \) linearly independent elements \(s_1, \ldots, s_n \in S \). There exist \(b_1, \ldots, b_n \in S \) such that for \(1 \leq k \leq n \)
\[
\text{lin} \{ s_1, \ldots, s_k \} \cap S = \{ z_1 b_1 + \cdots + z_k b_k : z_i \in \mathbb{Z} \}.
\] (2.7.1)

Proof. We will construct the vectors \(b_1, \ldots, b_n \) inductively. For \(k = 1 \) let \(b_1 \neq 0 \) be the (Euclidean) shortest vector in \(\text{conv} \{ 0, s_1 \} \cap S \). Since \(S \) is discrete such a choice is possible, and since \(S \) is a subgroup we certainly have \(\{ z_1 b_1 : z_1 \in \mathbb{Z} \} \subseteq \text{lin} \{ s_1 \} \cap S \). For the reverse inclusion, let \(s \in \text{lin} \{ s_1 \} \cap S \) and let \(\lambda \in \mathbb{R} \) such that \(s = \lambda b_1 \). Then \(s - |\lambda| b_1 = (\lambda - |\lambda|) b_1 \), and by the minimality of \(b_1 \) we conclude \(\lambda = |\lambda| \in \mathbb{Z} \). Hence (2.7.1) holds for \(k = 1 \).

Let us assume that we have already found \(b_1, \ldots, b_m, m \geq 1, \) satisfying (2.7.1) for \(1 \leq k \leq m < n \). Next we consider the \((m + 1) \)-dimensional parallelepiped
\[
P_{m+1} = \left\{ \sum_{i=1}^{m} \alpha_i b_i + \alpha_{m+1} s_{m+1} : 0 \leq \alpha_i \leq 1 \right\}.
\]
Let \(b_{m+1} \in P_{m+1} \cap S \) having minimum positive distance to \(\text{lin} \{ b_1, \ldots, b_k \} \), i.e.,
\[
b_{m+1} = \sum_{i=1}^{m} \alpha_i b_i + \alpha_{m+1} s_{m+1},
\] (2.7.2)
and \(\overline{\alpha}_{m+1} > 0 \) is minimal among all points in \(P_{m+1} \cap S \). Obviously, by our inductive construction we have

\[
\text{lin} \{ \mathbf{b}_1, \ldots, \mathbf{b}_{m+1} \} = \text{lin} \{ \mathbf{s}_1, \ldots, \mathbf{s}_{m+1} \}, \tag{2.7.3}
\]

and together with the discrete subgroup property of \(S \) we get \(\{ z_1 \mathbf{b}_1 + \cdots + z_{m+1} \mathbf{b}_{m+1} : z_i \in \mathbb{Z} \} \subseteq \text{lin} \{ \mathbf{s}_1, \ldots, \mathbf{s}_{m+1} \} \cap S \). Again, in order to establish the reverse inclusion, let \(\mathbf{s} \in \text{lin} \{ \mathbf{s}_1, \ldots, \mathbf{s}_{m+1} \} \cap S \) which, by (2.7.3), can be written as \(\mathbf{s} = \sum_{i=1}^{m+1} \beta_i \mathbf{b}_i \) for some scalars \(\beta_i \in \mathbb{R} \), and we have to show that \(\beta_i \in \mathbb{Z} \). On account of (2.7.2), we can write

\[
\mathbf{s} - \sum_{i=1}^{m+1} |\beta_i| \mathbf{b}_i = \sum_{i=1}^{m+1} (\beta_i - |\beta_i|) \mathbf{b}_i
\]

\[
= \sum_{i=1}^{m} ((\beta_i - |\beta_i|) + \overline{\alpha}_i (\beta_{m+1} - |\beta_{m+1}|)) \mathbf{b}_i
\]

\[
+ \overline{\alpha}_{m+1} (\beta_{m+1} - |\beta_{m+1}|) \mathbf{b}_{m+1}.
\]

For abbreviation we write \(\mu_i \) for all of these scalars in front of the vectors \(\mathbf{b}_i \) in the last sum. Then \(0 \leq \mu_{m+1} < \overline{\alpha}_{m+1} \leq 1 \), and by the discrete subgroup property of \(S \) and the definition of \(P_{m+1} \) we also know

\[
\mathbf{s} - \sum_{i=1}^{m+1} |\beta_i| \mathbf{b}_i - \sum_{i=1}^{m} |\mu_i| \mathbf{b}_i = \sum_{i=1}^{m} (\mu_i - |\mu_i|) \mathbf{b}_i + \mu_{m+1} \mathbf{b}_{m+1} \in S \cap P_{m+1}.
\]

By the minimality of \(\overline{\alpha}_{m+1} \) we must have \(\mu_{m+1} = 0 \) and so \(\beta_{m+1} = |\beta_{m+1}| \in \mathbb{Z} \). Thus

\[
\mathbf{s} - \beta_{m+1} \mathbf{b}_{m+1} = \sum_{i=1}^{m} \beta_i \mathbf{b}_i \in \text{lin} \{ \mathbf{s}_1, \ldots, \mathbf{s}_m \} \cap S,
\]

and by our inductive hypothesis, (2.7.1) implies the integrality of the other scalars \(\beta_i, 1 \leq i \leq m \). \(\square \)

2.8 Theorem

\(S \subset \mathbb{R}^n \) is a lattice if and only if \(S \) a discrete subgroup of \(\mathbb{R}^n \) and it contains \(n \) linearly independent points.

Proof. Obviously, a lattice \(\Lambda = B \mathbb{Z}^n \) is a subgroup of \(\mathbb{R}^n \) containing \(n \) linearly independent points. Since \(\mathbf{0} \) is an interior point of the convex set \(P_B - P_B = B(-1,1)^n \), there exists an \(\epsilon > 0 \) such that \(\epsilon B_n \subset P_B - P_B \). Since \((P_B - P_B) \cap \Lambda = \{ \mathbf{0} \} \) (cf. (2.5.2)) and since \(\Lambda \) is a subgroup we conclude \(|\mathbf{b}_1 - \mathbf{b}_2| \geq \epsilon \) for all \(\mathbf{b}_1 \neq \mathbf{b}_2 \in \Lambda \), i.e., \(\Lambda \) is discrete.

For the reverse implication, we observe that Lemma [2.7] more precisely equation (2.7.1) for \(k = n \), implies that there exists \(n \) linearly independent \(\mathbf{b}_1, \ldots, \mathbf{b}_n \in S \) such that

\[
S = \{ z_1 \mathbf{b}_1 + \cdots + z_n \mathbf{b}_n : z_i \in \mathbb{Z} \},
\]
2. Basic facts about Lattices

i.e., \(S \) is a lattice. □

Vectors \(\mathbf{b}_1, \ldots, \mathbf{b}_k \) of a lattice \(\Lambda \) fulfilling \(2.7.1 \) i.e., they generate all lattice point in a certain plane (here \(\text{lin} \{\mathbf{s}_1, \ldots, \mathbf{s}_k\} \)) are of particular interest and we define

2.9 Definition [Primitive set of lattice vectors]. Let \(\mathbf{b}_1, \ldots, \mathbf{b}_k \in \Lambda \in \mathcal{L}^n \) be linearly independent. The set \(\{\mathbf{b}_1, \ldots, \mathbf{b}_k\} \) is called a primitive set of lattice vectors if

\[
\text{lin} \{\mathbf{b}_1, \ldots, \mathbf{b}_k\} \cap \Lambda = (\mathbf{b}_1, \ldots, \mathbf{b}_k)\mathbb{Z}^k.
\]

So lattice vectors are primitive if each lattice point in their linear hull can be represented as an integral combination of these vectors.

2.10 Lemma. Let \(\Lambda \in \mathcal{L}^n \).

i) Each primitive set of vectors can be supplemented to a basis of the lattice, and each subset of a basis is a primitive set.

ii) Let \(\mathbf{b}_1, \ldots, \mathbf{b}_n \) be a basis of \(\Lambda \), let \(\mathbf{c} = \sum_{i=1}^n z_i \mathbf{b}_i \in \Lambda \), \(z_i \in \mathbb{Z} \), and let \(j \in \{1, \ldots, n\} \). Then it holds:

\[
\{\mathbf{b}_1, \ldots, \mathbf{b}_{j-1}, \mathbf{c}\} \text{ is primitive } \iff \gcd(z_j, \ldots, z_n) = 1.
\]

Proof. In order to show that a primitive set of vectors \(\{\mathbf{b}_1, \ldots, \mathbf{b}_k\} \) can be supplemented to a basis we first supplement it to a set \(\{\mathbf{b}_1, \ldots, \mathbf{b}_k, \mathbf{s}_{k+1}, \ldots, \mathbf{s}_n\} \) of linearly independent lattice vectors. Since the first \(k \) vectors of this set satisfy \(2.7.1 \) the inductive proof of of Lemma \(2.7 \) finds basis containing \(\{\mathbf{b}_1, \ldots, \mathbf{b}_k\} \). If \(\mathbf{b}_1, \ldots, \mathbf{b}_n \) is a basis of \(\Lambda \), then any \(\mathbf{b} \in \Lambda \) has an unique and integral representation as linear combination of \(\{\mathbf{b}_1, \ldots, \mathbf{b}_k\} \cap \Lambda \). Hence any subset of a basis is primitive.

For ii) assume first that \(\gcd(z_j, \ldots, z_n) \neq 1 \). If the gcd is \(\infty \), i.e., all \(z_i = 0 \), \(i = j, \ldots, n \), then \(\{\mathbf{b}_1, \ldots, \mathbf{b}_{j-1}, \mathbf{c}\} \) are linearly dependent. So let \(\gcd(z_j, \ldots, z_n) = m \geq 2 \) and let \(\mathbf{a} = \sum_{i=j}^n z_i \mathbf{b}_i = \mathbf{c} - \sum_{i=1}^{j-1} z_i \mathbf{b}_i \). Then

\[
\frac{1}{m} \mathbf{a} = \sum_{i=j}^n \frac{z_i}{m} \mathbf{b}_i = \frac{1}{m} \mathbf{c} - \sum_{i=1}^{j-1} \frac{z_i}{m} \mathbf{b}_i.
\]

The first identity shows that \(\frac{1}{m} \mathbf{a} \in \Lambda \) and the second says that \(\frac{1}{m} \mathbf{a} \) does not have an integral representation by the the linearly independent vectors \(\{\mathbf{b}_1, \ldots, \mathbf{b}_{j-1}, \mathbf{c}\} \). Hence these vectors are not primitive. For the reverse direction let \(\mathbf{a} \in \text{lin} \{\mathbf{b}_1, \ldots, \mathbf{b}_{j-1}, \mathbf{c}\} \cap \Lambda \), i.e., \(\mathbf{a} = \sum_{i=1}^{j-1} \mu_i \mathbf{b}_i + \mu_j \mathbf{c} \) for
2. Basic facts about Lattices

some \(\mu_i \in \mathbb{R} \) and \(a = \sum_{i=1}^{j-1} z_i b_i \) with \(z_i \in \mathbb{Z} \). We have to show \(\mu_i \in \mathbb{Z}, 1 \leq i \leq j \). Substituting \(c = \sum_{i=1}^{n} z_i b_i \) yields

\[
\sum_{i=1}^{j-1} (\mu_i + \mu_j z_i) b_i + \sum_{i=j}^{n} \mu_j z_i b_i = \sum_{i=1}^{n} z_i b_i. \tag{2.10.1}
\]

Hence \(\mu_j z_i = z_i, i = j, \ldots, n \), and since \(\gcd(z_j, \ldots, z_n) = 1 \) we conclude \(\mu_j \in \mathbb{Z} \). Comparing the first \((j-1)\) scalars in (2.10.1) then also shows \(\mu_i \in \mathbb{Z}, 1 \leq i \leq j - 1 \).

Lemma 2.7 applied to a lattice \(\Lambda \), in particular, shows that for any set of \(n \) linearly independent vectors \(a_1, \ldots, a_n \in \Lambda \) we can find a basis \(b_1, \ldots, b_n \) such that

\[
a_k = \sum_{i=1}^{k} z_{i,k} b_i \text{ for some integral scalars } z_{i,k} \text{ and } 1 \leq k \leq n,
\]

or in matrix notation \(A = BZ \), where \(Z \in \mathbb{Z}^{n \times n} \) is an upper triangular matrix. Via some "integral Yoga" on the basis vectors \(b_i \) one can achieve the following unique representation of this type which is the theory of matrices and is also known as the Hermite Normalform.

2.11 Theorem [Hermite Normalform]. Let \(A = (a_1, \ldots, a_n) \) be linearly independent lattice vectors of a lattice \(\Lambda \in \mathbb{L}^n \). Then there exists a basis \(b_1, \ldots, b_n \) of \(\Lambda \) and an upper triangular matrix \(Z \in \mathbb{Z}^{n \times n} \) such that

\[
A = BZ \text{ and for } 1 \leq k \leq n
\]

\[
0 \leq z_{i,k} < z_{k,k}, 1 \leq i \leq k - 1. \tag{2.11.1}
\]

In words, \(Z \) is a non-negative upper triangular integral matrix and for each column of \(Z \) the unique maximal element is the diagonal element. Moreover, for given \(A \) such a basis \(B \) is uniquely determined.

Proof. First we show the existence: As mentioned above, on account of Lemma 2.7 there exists a basis \(b_1, \ldots, b_n \) of \(\Lambda \) such that

\[
a_k = \sum_{i=1}^{k} z_{i,k} b_i, \quad z_{i,k} \in \mathbb{Z}, 1 \leq k \leq n.
\]

In the following we modify successively this basis in order to find a basis satisfying (2.11.1). If \(\tilde{z}_{i,1} < 0 \), we replace \(b_1 \) by \(-b_1 \) and (2.11.1) is fulfilled for \(k = 1 \). Let us assume that (2.11.1) holds for \(1 \leq i \leq l < n \), say. Obviously, for arbitrary scalars \(\tilde{z}_{l+1,l+1} \in \{-1,1\}, \tilde{z}_{i,l+1} \in \mathbb{Z}, 1 \leq i \leq l \), the vectors

\[
b_1, \ldots, b_l, \left(\sum_{i=1}^{l+1} \tilde{z}_{i,l+1} b_i \right), b_{l+2}, \ldots, b_n \tag{2.11.2}
\]
form a basis of Λ. Substituting b_{l+1} by $\left(\sum_{i=1}^{l+1} z_{i,l+1} b_i\right)$ yields for a_{l+1}

$$a_{l+1} = \sum_{i=1}^{l+1} z_{i,l+1} b_i$$

$$= \sum_{i=1}^{l} z_{i,l+1} b_i + z_{l+1,l+1} \left(\sum_{i=1}^{l+1} z_{i,l+1} b_i - \sum_{i=1}^{l} z_{i,l+1} b_i\right)$$

$$= \sum_{i=1}^{l} (z_{i,l+1} - z_{l+1,l+1} \tilde{z}_{l+1,l+1} z_{i,l+1}) b_i$$

$$+ z_{l+1,l+1} \tilde{z}_{l+1,l+1} \left(\sum_{i=1}^{l+1} z_{i,l+1} b_i\right).$$

Now we choose the sign $\tilde{z}_{l+1,l+1}$ such that $z_{l+1,l+1} \tilde{z}_{l+1,l+1} > 0$ and then we choose $\tilde{z}_{i,l+1}$ such that

$$\tilde{z}_{i,l+1} - z_{l+1,l+1} \tilde{z}_{l+1,l+1} z_{i,l+1} < \tilde{z}_{l+1,l+1} \tilde{z}_{l+1,l+1}, \quad 1 \leq i \leq l.$$
2. Basic facts about Lattices

Z is usually called the Hermite Normalform of A. In particular, we see that the columns of Z and A generate the same lattice (cf. Lemma (2.4)), and sometimes, it is preferable to work with a basis in triangular form.

2.12 Definition [Sublattice, Index of a sublattice]. Let $\Lambda \in \mathcal{L}^n$ and let $a_1, \ldots, a_n \in \Lambda$ be linearly independent. The lattice

$$\Lambda_0 = \{ z_1 a_1 + \cdots + z_n a_n : z_i \in \mathbb{Z} \}$$

is called a sublattice with basis $A = (a_1, \ldots, a_n)$. The number of cosets of the subgroup Λ_0 in Λ is called the index of Λ_0 in Λ, and it is denoted by $|\Lambda : \Lambda_0|$.

Of course, the index is a positive integer and the next lemma states that it can easily be determined, either by counting lattice points or by the ratio of the determinants of the involved lattices.

2.13 Lemma. Let $\Lambda_0 \subseteq \Lambda \in \mathcal{L}^n$ be a sublattice of Λ. Then

i) $|\Lambda : \Lambda_0| = |(P_A \cap \Lambda)|$ for any basis A of Λ_0.

ii) $|\Lambda : \Lambda_0| = \frac{\det \Lambda_0}{\det \Lambda}$.

Proof. By the definition of cosets, for i) we have to show that Λ is the disjoint union of the cosets $c + \Lambda_0$, $c \in P_A \cap \Lambda$, i.e.,

$$\Lambda = \bigcup_{c \in P_A \cap \Lambda} (c + \Lambda_0).$$

Let $b \in \Lambda$, then $[b]_A \in P_A \cap \Lambda$ and so $(b - [b]_A) \in P_A \cap \Lambda$. Thus

$$b = (b - [b]_A) + [b]_A \in (P_A \cap \Lambda) + \Lambda_0,$$

and it remains to show that the cosets are different. Let $b_1, b_2 \in P_A \cap \Lambda$ such that $(b_1 + \Lambda_0) \cap (b_2 + \Lambda_0) \neq \emptyset$. Then $b_1 - b_2 \in (P_A - P_A) \cap \Lambda_0 = \{0\}$ (cf. (2.5.2)) and i) is shown.

For ii) we firstly observe that

$$m P_A = \bigcup_{0 \leq m_i < m} (m_1 a_1 + \cdots + m_n a_n + P_A),$$

where $m_i, m \in \mathbb{N}$. Since for every $b \in \Lambda$ we have $|(b + P_A) \cap \Lambda| = |(P_A \cap \Lambda)|$ we get with i)

$$\#(m P_A \cap \Lambda) = m^n \#(P_A \cap \Lambda) = m^n |\Lambda : \Lambda_0|.$$

Finally, since P_A is measureable we may write (cf. Proposition 1.3)

$$\det \Lambda_0 = \text{vol}(P_A) = \lim_{m \to \infty} \# \left(P_A \cap \frac{1}{m} \Lambda \right) \frac{\det \Lambda}{m^n} = \det \Lambda \lim_{m \to \infty} \frac{\#(m P_A \cap \Lambda)}{m^n} = \det \Lambda \; |\Lambda : \Lambda_0|.$$
A simple and useful application of the last lemma is the fact that the determinant of an integral matrix is equal to the number of lattice points contained in the associated halfopen parallelepiped and, by definition, it is also equal to the volume of this parallelepiped.

2.14 Corollary. Let $A = (a_1, \ldots, a_n) \in \text{GL}(n, \mathbb{Z})$, and let $P_A = A[0, 1]^n$ be the half open parallelepiped generated by the columns of A. Then $|\det A| = \#(P_A \cap \mathbb{Z}^n) = \text{vol}(P_A)$.

Proof. We just apply Lemma 2.13 i), ii) with $\Lambda = \mathbb{Z}^n$ and Λ_0 being the lattice generated by A. □

In some cases we are interested in subsets \mathbb{Z}^n fulfilling certain (homogeneous) linear congruences, for instance, \{\(z \in \mathbb{Z}^n: z_1 + \cdots + z_n \equiv 0 \pmod{2}\}\}. The next application of Theorem 2.8 shows that those sets are lattices.

2.15 Corollary. Let $u_1, \ldots, u_m \in \mathbb{Z}^n$ and let $k_i \in \mathbb{N}_{\geq 1}$, $1 \leq i \leq m$. The set

$$\Lambda = \{z \in \mathbb{Z}^n: \langle u_i, z \rangle \equiv 0 \pmod{k_i}, 1 \leq i \leq m\}$$

is a sublattice of \mathbb{Z}^n with $\det \Lambda \leq k_1 k_2 \cdots k_m$.

Proof. By definition Λ is a discrete subgroup of \mathbb{R}^n, actually of \mathbb{Z}^n. Since the n linearly independent vectors $(k_1 \cdots k_m) e_i$, $1 \leq i \leq n$, belong to Λ, Theorem 2.8 shows that Λ is a lattice. Since Λ is a sublattice of \mathbb{Z}^n we may consider the different cosets of Λ w.r.t. \mathbb{Z}^n. Two points $z_1, z_2 \in \mathbb{Z}^n$ belong to different cosets if and only if $(z_1 - z_2) \notin \Lambda$, i.e., there exists an i such that $\langle u_i, z_1 - z_2 \rangle \not\equiv 0 \pmod{k_i}$.

In other words, for some u_i the numbers $\langle u_i, z_1 \rangle$ and $\langle u_i, z_2 \rangle$ belong to different residue classes mod k_i. For each u_i there are at most k_i different residue classes and thus the number of different cosets is bounded by the product $k_1 \cdots k_m$. Hence we get by Lemma (2.13)

$$\det \Lambda = |\mathbb{Z}^n: \Lambda| \det \mathbb{Z}^n \leq k_1 k_2 \cdots k_m.$$

□

Given linearly independent vectors $A = (a_1, \ldots, a_n)$ of a lattice $\Lambda \in \mathcal{L}^n$ we can easily decide when these vectors form a basis of Λ. Namely by Lemma 2.13 we know that

$$A \text{ is basis of } \Lambda \iff |\Lambda : A\mathbb{Z}^n| = 1 \iff \Lambda \cap P_A = \{0\}.$$ \hfill (2.15.1)

So we just have to check if the parallelepiped P_A contains a non-trivial lattice point of Λ. In the planar case we even have
2.6 Proposition. Let $\Lambda \in \mathcal{L}^2$ and let $a_1, a_2 \in \Lambda$ be linearly independent. Then

$$a_1, a_2 \text{ is basis of } \Lambda \iff \text{conv}\{0, a_1, a_2\} \cap \Lambda = \{0, a_1, a_2\}.$$

Proof. The main and only observation is that in the plane each parallelogram P can be dissected into two triangles which are reflections of each other with respect to the midpoint of the main diagonal. With $A = (a_1, a_2)$ this becomes for the halfopen parallelogram P_A

$$P_A = \text{conv}\{0, a_1, a_2\} \setminus \{a_1, a_2\} \cup ((a_1 + a_2) - \text{int conv}\{0, a_1, a_2\}).$$

Hence $P_A \cap \Lambda = \{0\}$ if and only if $\text{conv}\{0, a_1, a_2\} \cap \Lambda = \{0, a_1, a_2\}$ and with (2.15.1) we are done. □

As one can guess from the arguments in the proof of Proposition 2.16 an analogous statement does not exist in dimension ≥ 3. For instance, for $n \geq 3$ and $m \in \mathbb{N}$ let $b(m) = (1, \ldots, 1, m)^T \in \mathbb{R}^n$ and let

$$T_n(m) = \text{conv}\{0, e_1, \ldots, e_{n-1}, b(m)\}.$$

Then the only integral points of the simplices $T_n(m)$ are the vertices, i.e., $T_n(m) \cap \mathbb{Z}^n = \{0, e_1, \ldots, e_{n-1}, b(m)\}$, but $e_1, \ldots, e_{n-1}, b(m)$ do not build a basis of \mathbb{Z}^n for $m \geq 2$. These simplices are called Reeve simplices and will also play a role later on.

Next we want to extend the definition of lattices to k-dimensional structures, more precisely, to k-dimensional linear subspaces.

2.17 Definition [Lattice planes, k-dimensional (sub)lattices]. Let $\Lambda \in \mathcal{L}^n$.

i) A linear subspace $L \subseteq \mathbb{R}^n$ is called a lattice plane of Λ if $\dim(L \cap \Lambda) = \dim L$. The set of all k-dimensional lattice planes L of Λ, i.e., $\dim L = k$, is denoted by $\mathcal{L}(k, \Lambda)$.

ii) For $L \in \mathcal{L}(k, \Lambda)$, the set $\Lambda_k = L \cap \Lambda$ is called a (k-dimensional) (sub)lattice of Λ.

We note that Theorem 2.8 applied to the Euclidean space $L_k \in \mathcal{L}(k, \Lambda)$, shows that Λ_k is indeed a (k-dimensional) lattice. Thus there exists a basis b_1, \ldots, b_k of Λ_k, which can also be seen directly from (2.7.1). As in the full dimensional case, the determinant of such a k-dimensional lattice Λ_k, denoted by $\det \Lambda_k$, is the k-dimensional volume of a fundamental cell $\{\rho_1 b_1 + \cdots + \rho_k b_k : \rho_i \in [0, 1]\}$ which can be calculated as

$$\det \Lambda_k = \sqrt{\det ((b_1, \ldots, b_k)(b_1, \ldots, b_k))}. \quad (2.17.1)$$
2.18 Theorem [Smith Normalform]. Let \(\Lambda_0 \subseteq \Lambda \in \mathbb{L}^n \) be a sublattice of \(\Lambda \). Then there exists a basis \(A = (a_1, \ldots, a_n) \) of \(\Lambda_0 \) and a basis \(B = (b_1, \ldots, b_n) \) of \(\Lambda \) such that \(a_i = z_i b_i \) with \(z_i \in \mathbb{Z} \), \(1 \leq i \leq n \), i.e., \(A = B Z \) and \(Z \) is a diagonal matrix.

Proof. We use induction on the dimension \(n \), and the case \(n = 1 \) is obvious. So let \(n > 1 \). First we show the assertion under the assumption that

there exists a \(b_1 \in \Lambda_0 \) which is primitive w.r.t. \(\Lambda \). \hspace{1cm} (2.18.1)

Then we can find a basis \(b_1, \ldots, b_n \) of \(\Lambda \) (cf. Lemma \(2.10 \) i)) and let \(L = \text{lin} \{b_2, \ldots, b_n\} \). Then \(\Lambda = \mathbb{Z} b_1 + (L \cap \Lambda) \) and since \(\Lambda_0 \subseteq \Lambda \) and \(b_1 \in \Lambda_0 \) we also have \(\Lambda_0 = \mathbb{Z} b_1 + (L \cap \Lambda_0) \). Applying our inductive argument to the \((n - 1)\)-dimensional sublattice \(L \cap \Lambda_0 \) of \(L \cap \Lambda \) gives the assertion.

Next we will scale our lattice \(\Lambda_0 \) such that (2.18.1) holds. To this end we consider for any \(a \in \Lambda_0 \) the unique \(\alpha_a \in \mathbb{N} \) such that \(\frac{1}{\alpha_a} a \in \Lambda \) is primitive. Let \(\tilde{a} \in \Lambda_0 \) having minimal factor \(\tilde{\alpha} = \alpha_{\tilde{a}} \), say, and let \(\tilde{a} = \tilde{\alpha} \tilde{b} \), with \(\tilde{b} \in \Lambda \) primitive. In the following we will show

\[\tilde{\alpha} \mid \alpha_a \text{ for every } a \in \Lambda_0. \] \hspace{1cm} (2.18.2)

Let \(a \in \Lambda_0 \) and we may assume that \(a \) is linearly independent of \(\tilde{a} \). Hence \(\Lambda'_0 = (\tilde{a}, a) \mathbb{Z}^2 \) is a 2-dimensional sublattice of \(\Lambda' = \text{lin} \{\tilde{a}, a\} \cap \Lambda = (\tilde{b}, b) \mathbb{Z}^2 \) for a suitable \(b \in \Lambda \) (cf. Lemma \(2.10 \) i)). Hence we may write

\[a = \alpha_a (z_1 b_1 + z_2 b) \]

with \(\gcd(z_1, z_2) = 1 \), and it is enough to show that \(\tilde{\alpha} \mid (\alpha_a z_1) \) and \(\tilde{\alpha} \mid (\alpha_a z_2) \).

To this end let \(\gamma \in \mathbb{Z} \) such that \(0 \leq (\alpha_a z_1 - \tilde{\alpha} \gamma) < \tilde{\alpha} \). Then

\[c = a - \gamma \tilde{a} = (\alpha_a z_1 - \tilde{\alpha} \gamma) \tilde{b} + \alpha_a z_2 b = \alpha_c (s_1 \tilde{b} + s_2 b) \]

for suitable relatively prime integers \(s_1, s_2 \). By the choice of \(\gamma \) and \(\tilde{\alpha} \) we have \(0 \leq \alpha_c s_1 < \tilde{\alpha} \leq \alpha_c \), and thus \(s_1 = 0 \). Hence \(\alpha_a z_1 - \tilde{\alpha} \gamma = 0 \) and so

\[\tilde{\alpha} \mid (\alpha_a z_1). \] \hspace{1cm} (2.18.3)

Moreover we have \(c = \alpha_a z_2 b \) and so \(\tilde{a} + c = \tilde{\alpha} \tilde{b} + \alpha_a z_2 b \in \Lambda_0 \setminus \{0\} \). Hence \(\alpha_{\tilde{\alpha} + \epsilon} \tilde{\alpha} \) and by the minimality of \(\tilde{\alpha} \) we get \(\alpha_{\tilde{\alpha} + \epsilon} = \tilde{\alpha} \) and thus

\[\tilde{\alpha} \mid (\alpha_a z_2). \] \hspace{1cm} (2.18.4)

(2.18.3) and (2.18.4) imply (2.18.2), which shows that \(\Lambda_0 = \frac{1}{\tilde{\alpha}} \Lambda_0 \) is a sublattice of \(\Lambda \). Since \(\tilde{b} \in \Lambda_0 \) is primitive w.r.t. \(\Lambda \) (2.18.1) is satisfied. Hence \(\Lambda_0, \Lambda \), and thus \(\Lambda_0, \Lambda \), have bases with the desired property. \(\square \)
2.19 Definition [Polar lattice]. Let \(\Lambda \in \mathcal{L}^n \) with basis \(b_1, \ldots, b_n \). Let \(b_i^* \in \mathbb{R}^n \), \(1 \leq i \leq n \) be given by

\[
\langle b_j, b_i^* \rangle = \delta_{ij} = \begin{cases}
0, & i \neq j \\
1, & i = j,
\end{cases}, \quad 1 \leq j \leq n.
\]

The lattice \(\Lambda^* \) with basis \(b_1^*, \ldots, b_n^* \) is called the polar lattice of \(\Lambda \).

2.20 Remark.

i) If \(B = (b_1, \ldots, b_n) \) is a basis of \(\Lambda \) then \((b_1^*, \ldots, b_n^*) = B^{-\top} \). In particular, the definition of the polar lattice is independent of the basis \(B \) of \(\Lambda \).

ii) \(\det \Lambda^* = \det(\Lambda)^{-1} \).

2.21 Proposition. Let \(\Lambda \subset \mathbb{R}^n \) be a lattice. Then

\[
\Lambda^* = \{ y \in \mathbb{R}^n : \langle b, y \rangle \in \mathbb{Z} \text{ for all } b \in \Lambda \}.
\]

Proof. Let \(B \) be a basis of \(\Lambda \) and let \(y = B^{-\top}x \in \mathbb{R}^n \) with \(x \in \mathbb{R}^n \). Then

\[
y \in \Lambda^* \iff x \in \mathbb{Z}^n \iff x^\top z \in \mathbb{Z} \text{ for all } z \in \mathbb{Z}^n \\iff (B^{-\top}x)^\top Bz \in \mathbb{Z} \text{ for all } z \in \mathbb{Z}^n \iff (y)^\top Bz \in \mathbb{Z} \text{ for all } z \in \mathbb{Z}^n.
\]

\(\square \)

2.22 Lemma. Let \(L \in \mathcal{L}(k, \Lambda) \) and let \(L^\perp \) be the \((n-k)\)-dimensional orthogonal complement of \(L \). Then

i) the orthogonal projection of \(\Lambda \) onto \(L^\perp \), denoted by \(\Lambda \mid L^\perp \), is an \((n-k)\)-dimensional lattice with

\[
\det(\Lambda \mid L^\perp) \cdot \det(L \cap \Lambda) = \det \Lambda.
\] (2.22.1)

ii) \(L^\perp \in \mathcal{L}(n-k, \Lambda^*) \) and it holds \((L^\perp \cap \Lambda^*) = (\Lambda \mid L^\perp)^\perp \) (w.r.t. the space \(L^\perp \)). In particular we have

\[
\det(L \cap \Lambda) = \det \Lambda \cdot \det(L^\perp \cap \Lambda^*).
\] (2.22.2)

Proof. Let \(b_1, \ldots, b_n \) be a basis of \(\Lambda \) such that \(b_1, \ldots, b_k \) is a basis of \(L \cap \Lambda \) (cf. Lemma (2.10) i)). Furthermore let \(\overline{b}_k+1, \ldots, \overline{b}_n \) be the orthogonal projection of \(b_k+1, \ldots, b_n \) onto \(L^\perp \), i.e., \(\overline{b}_i = b_i \mid L^\perp, i = k+1, \ldots, n \). Then for every \(b = \sum_{i=1}^n z_i b_i \in \Lambda \) we have

\[
b \mid L^\perp = \sum_{i=1}^n z_i (b_i \mid L^\perp) = \sum_{i=k+1}^n z_i \overline{b}_i.
\]
This shows that $\Lambda|L^\perp$ is an $(n-k)$-dimensional lattice with basis $\overline{b}_{k+1}, \ldots, \overline{b}_n$. Now let $B_k = (b_1, \ldots, b_k)$ and $\overline{B}_{n-k} = (\overline{b}_{k+1}, \ldots, \overline{b}_n)$. Then we can write

$$\det \Lambda = |\det (b_1, \ldots, b_n)| = |\det (B_k, \overline{B}_{n-k})| = \sqrt{\det ((B_k, \overline{B}_{n-k})^\top (B_k, \overline{B}_{n-k}))}$$

$$= \left[\det \begin{pmatrix} (B_k)^\top B_k & 0 \\ 0 & (\overline{B}_{n-k})^\top \overline{B}_{n-k} \end{pmatrix} \right]^{1/2}$$

$$= \sqrt{\det((B_k)^\top B_k)} \cdot \sqrt{\det((\overline{B}_{n-k})^\top \overline{B}_{n-k})} = \det(L \cap \Lambda) \cdot \det(\Lambda|L^\perp).$$

Next let b_1^*, \ldots, b_n^* be the associated basis of Λ^*, i.e., $\langle b_j, b_i^* \rangle = \delta_{ij}$. This immediately implies that $b_{k+1}^*, \ldots, b_n^* \in L^\perp \cap \Lambda^*$ and since

$$\langle b_{k+i}^*, \overline{b}_{k+j} \rangle = \langle b_{k+i}^*, b_{k+j} \rangle = \delta_{ij}$$

we see that $L^\perp \cap \Lambda^*$ is an $(n-k)$-dimensional lattice, which is polar to $\Lambda|L^\perp$. Thus we have $\det(L^\perp \cap \Lambda^*) = \det(\Lambda|L^\perp)^{-1}$ and from (2.22.1) we get (2.22.2). □
Minkowski’s successive minima

In this chapter we start to study the interaction of convex bodies with lattices, and the beginning we address the problem to bound the volume of a 0-symmetric convex body K in terms of functionals related to the lattices points of K.

The first lemma, although it is more or less just an observation on so volume of so-called packing and covering sets, is of particular interest.

3.1 Lemma. Let $X \subset \mathbb{R}^n$ be a bounded Jordan-measurable set and $\Lambda \in \mathcal{L}^n$.

i) If $(b_1 + X) \cap (b_2 + X) = \emptyset$, for all $b_1, b_2 \in \Lambda$, $b_1 \neq b_2$, then $\operatorname{vol}(X) \leq \det \Lambda$.

ii) If $\Lambda + X = \mathbb{R}^n$ then $\operatorname{vol}(\Lambda) \geq \det \Lambda$.

Proof. Let P be the fundamental cell of Λ. Since $\Lambda + P$ is a tiling of \mathbb{R}^n (cf. Proposition 2.6) and the volume is a translation invariant functional we may write

$$\operatorname{vol}(X) = \operatorname{vol}((\Lambda + P) \cap X) = \sum_{b \in \Lambda} \operatorname{vol}((b + P) \cap X) = \sum_{b \in \Lambda} \operatorname{vol}(P \cap (X - b)).$$

In the first case i) we have that two different translates $P \cap (X - b_1)$, $P \cap (X - b_2)$, $b_1 \neq b_2$, do not overlap and thus

$$\sum_{b \in \Lambda} \operatorname{vol}(P \cap (X - b)) = \operatorname{vol}(\cup_{b \in \Lambda}(P \cap (X - b))) \leq \operatorname{vol}(P) = \det \Lambda.$$

In the second case ii), where $\Lambda + X = \mathbb{R}^n$ we find

$$\sum_{b \in \Lambda} \operatorname{vol}(P \cap (X - b)) \geq \operatorname{vol}(\cup_{b \in \Lambda}(P \cap (X - b))) = \operatorname{vol}(P) = \det \Lambda.$$

\square
3.2 Corollary. Let \(X \subset \mathbb{R}^n \) with \(\text{vol}(X) > \det \Lambda \) and let \(\Lambda \in \mathcal{L}^n \). Then \((X - X) \cap \Lambda \setminus \{0\} \neq \emptyset \).

Proof. By Lemma 3.1 i) there exist \(b_1, b_2 \in \Lambda \), \(b_1 \neq b_2 \), and \(x \in \mathbb{R}^n \) such that \(x \in (b_1 + X) \cap (b_2 + X) \). Thus \(x - b_1, x - b_2 \in X \) and so \(b_2 - b_1 = (x - b_1) - (x - b_2) \in (X - X) \cap \Lambda \setminus \{0\} \).

Another way to state the conclusion of the corollary above is to say that there exists a \(t \in \mathbb{R}^n \) such that \(\#((t + X) \cap \Lambda) \geq 2 \).

3.3 Theorem [Minkowski]. Let \(K \in \mathcal{K}_n \), \(\Lambda \in \mathcal{L}^n \), and let \(\text{vol}(K) \geq 2^n \det \Lambda \). Then \(K \cap \Lambda \setminus \{0\} \neq \emptyset \), i.e., a \(0 \)-symmetric convex body of volume at least \(2^n \det \Lambda \) contains a non-trivial lattice point.

Proof. First we assume \(\text{vol}(K) > 2^n \det \Lambda \). Then \(\text{vol}(\frac{1}{2}K) > \det \Lambda \) and by Corollary 3.2 there exists \(b \in \Lambda \setminus \{0\} \) with \(b \in \frac{1}{2}K - \frac{1}{2}K = K \).

Now let \(\text{vol}(K) = 2^n \det \Lambda \). Since \(K \) compact and \(\Lambda \) discrete there exists a \(\lambda > 1 \) with \(\lambda K \cap \Lambda = K \cap \Lambda \). However \(\text{vol}(\lambda K) > 2^n \) and thus the conclusion follows from the first case.

The cube \([-1,1]^n\) shows that the statement in Minkowski’s theorem is best possible.

3.4 Corollary [Theorem on linear forms]. Let \(l_1(x), \ldots, l_n(x) \) be \(n \) homogeneous linear forms given by

\[
l_i(x) = a_i_1 x_1 + \cdots + a_i_n x_n, \quad a_{ij} \in \mathbb{R}, \quad 1 \leq i, j \leq n.
\]

Let \(A \in \mathbb{R}^{n \times n} \) be the matrix with entries \(a_{ij} \) and let \(\det A \neq 0 \). For any choice of positive numbers \(\tau_i, 1 \leq i \leq n \), satisfying \(\tau_1 \tau_2 \cdots \tau_n \geq |\det A| \) there exists a \(z \in \mathbb{Z}^n \setminus \{0\} \) with

\[
|l_i(z)| \leq \tau_i, \quad 1 \leq i \leq n.
\]

Proof. Let \(P = \{x \in \mathbb{R}^n : |l_i(x)| \leq \tau_i, \ 1 \leq i \leq n\} \). In order to calculate the volume of that \(0 \)-symmetric parallelepiped we observe that \(P = A^{-1}\{x \in \mathbb{R}^n : |x_i| \leq \tau_i, \ 1 \leq i \leq n\} \). Thus

\[
\text{vol}(P) = 2^n \frac{\tau_1 \cdots \tau_n}{|\det A|} \geq 2^n.
\]

The assertion follows from Theorem 3.3.
3.5 Corollary [Dirichlet, 1842]. Let \(\alpha_1, \ldots, \alpha_n \in \mathbb{R} \) and let \(0 < \epsilon < 1 \). Then there exist \(p_1, \ldots, p_n, q \in \mathbb{Z} \) with \(1 \leq q \leq \epsilon^{-n} \) such that

\[
\left| \alpha_i - \frac{p_i}{q} \right| < \frac{\epsilon}{q}, \quad 1 \leq i \leq n.
\]

Proof. Let \(l_i(x) = \alpha_i x_{n+1} - x_i, 1 \leq i \leq n \), and \(l_{n+1}(x) = x_{n+1} \). By Corollary 3.4 there exists for every \(\tau > 0 \) an integral point \(z = (p_1, \ldots, p_n, q)^\top \in \mathbb{Z}^{n+1} \setminus \{0\} \) (depending on \(\tau \)) satisfying the system of linear forms

\[
|l_i(z)| = |\alpha_i q - p_i| \leq \tau^{-1/n}, \quad 1 \leq i \leq n,
\]

and

\[
|l_{n+1}(z)| = |q| \leq \tau.
\]

Note that the product of the right hand sides as well as the absolute value of the determinant of the system is 1. Now we choose a \(\tau > \epsilon^{-n} \) such that \(\lfloor \tau \rfloor \leq \epsilon^{-n} \) and we get

\[
|l_i(z)| = |\alpha_i q - p_i| < \epsilon, \quad 1 \leq i \leq n,
\]

and

\[
|l_{n+1}(z)| = |q| \leq |\tau| \leq \epsilon^{-n}.
\]

Finally, we observe that \(q \neq 0 \), because otherwise \(p_i = 0 \) for \(i = 1, \ldots, n \) since \(\epsilon < 1 \) and we would get the contradiction \(z = 0 \). Thus we may assume \(q \geq 1 \).

\[\Box\]

3.6 Proposition. Let \(p \) be prime. Then there exist \(a, b \in \mathbb{N} \) with

\[
a^2 + b^2 + 1 \equiv 0 \mod p.
\]

Proof. For \(p = 2 \) the statement is certainly true. So let \(p \) be odd. For \(0 \leq a \leq \frac{1}{2}(p-1) \) the numbers \(a^2 \) belong to pairwise distinct residue classes \(\mod p \), because

\[
a^2 \equiv \bar{a}^2 \mod p \iff (a - \bar{a})(a + \bar{a}) \equiv 0 \mod p.
\]

The same is true if we look at the residue classes of \(-b^2 - 1 \) for \(0 \leq b \leq \frac{1}{2}(p-1) \). Since there are precisely \(p \) different residue classes \(\mod p \) we can find integers \(0 \leq a, b \leq \frac{1}{2}(p-1) \) such that \(a^2 \) and \(-(b^2 + 1) \) belong to the same residue class \(\mod p \) which proves the proposition.

\[\Box\]

3.7 Corollary [Fermat, Lagrange]. Every positive number \(m \in \mathbb{N} \) can be written as the sum of four integer squares, i.e., there exist \(m_1, m_2, m_3, m_4 \in \mathbb{N} \) such that

\[
m = (m_1)^2 + (m_2)^2 + (m_3)^2 + (m_4)^2.
\]
Proof. First we observe that it suffices to prove the theorem for integers \(m \) which are not divisible by a square other than 1. Hence let \(m = p_1 \cdots p_k \) with distinct primes \(p_i, 1 \leq i \leq k \). For each \(p_i \) we choose \(a_i, b_i, 1 \leq i \leq k \), according to Proposition \(3.6 \) such that

\[
(a_i)^2 + (b_i)^2 + 1 \equiv 0 \text{ mod } p_i, \quad 1 \leq i \leq k.
\] (3.7.1)

With this notation we set

\[
\Lambda = \{ z \in \mathbb{Z}^4 : z_1 \equiv (a_1 z_3 + b_1 z_4) \text{ mod } p_i, z_2 \equiv (b_1 z_3 - a_1 z_4) \text{ mod } p_i, 1 \leq i \leq k \}.
\]

By Corollary \(2.15 \) we know that \(\Lambda \subset \mathbb{R}^4 \) is a lattice with \(\det \Lambda \leq (p_1)^2 \cdots (p_k)^2 = m^2 \). Thus we get

\[
\text{vol}(\sqrt{2m} B_4) = (2m)^2 \kappa_4 = (2m)^2 \frac{\pi^2}{2} > 2^4 m^2 \geq 2^4 \det \Lambda.
\]

Hence by Theorem \(3.3 \) there exists a \(z \in \Lambda \) with

\[
0 < (z_1)^2 + (z_2)^2 + (z_3)^2 + (z_4)^2 < 2m.
\]

In order to prove the theorem it suffices to show that \(m \) is a divisor of the sum \((z_1)^2 + (z_2)^2 + (z_3)^2 + (z_4)^2 \). By the choice of \(\Lambda \) we get for \(1 \leq i \leq k \)

\[
(z_1)^2 + (z_2)^2 + (z_3)^2 + (z_4)^2 \\
\equiv ((a_i z_3 + b_i z_4)^2 + (b_i z_3 - a_i z_4)^2 + (z_4)^2) \text{ mod } p_i \\
\equiv ((z_3)^2((a_i)^2 + (b_i)^2) + 1 + (z_4)^2((a_i)^2 + (b_i)^2 + 1)) \text{ mod } p_i \\
\equiv 0 \text{ mod } p_i,
\]

where the last relation is a consequence of (3.7.1). Thus all the distinct \(p_i \) are divisors of \((z_1)^2 + (z_2)^2 + (z_3)^2 + (z_4)^2 \) and so is \(m \). \(\square \)

3.8 Theorem. Let \(k \in \mathbb{N} \) and let \(X \subset \mathbb{R}^n \) be a Jordan measurable set with \(\text{vol}(X) > k \). Then there exist \(x_1, \ldots, x_{k+1} \in X, x_i \neq x_j, 1 \leq i \neq j \leq k + 1 \), such that \(x_i - x_j \in \mathbb{Z}^n \). (In other words: there exists a \(t \in \mathbb{R}^n \) such that \(t + X \) contains at least \(k + 1 \) lattice points of \(\mathbb{Z}^n \)).

Proof. Since we have a Jordan-measurable set we know

\[
k < \text{vol}(X) = \lim_{m \to \infty} \frac{\# (X \cap \frac{1}{m} \mathbb{Z}^n)}{\frac{1}{m^n}}.
\]

Thus there exists an \(m \in \mathbb{N} \) such that \(\# (X \cap \frac{1}{m} \mathbb{Z}^n) > k m^n \). Since there are \(m^n \) cosets of the sublattice \(\mathbb{Z}^n \) with respect to \(\frac{1}{m} \mathbb{Z}^n \) there exist at least \((k + 1) \) different \(b_1, \ldots, b_{k+1} \in X \cap \frac{1}{m} \mathbb{Z}^n \) belonging to the same coset and thus \(b_i - b_j \in \mathbb{Z}^n \). \(\square \)
3.9 Corollary. Let $K \in \mathcal{K}_n^n$, $\Lambda \in \mathcal{L}^n$ and let $\text{vol}(K) \geq k \cdot 2^n \cdot \det \Lambda$. Then

$$\#(K \cap \Lambda) \geq 2k + 1.$$

Proof. Without loss of generality let $\Lambda = \mathbb{Z}^n$ and $\text{vol}(K) > k \cdot 2^n$ (cf. the arguments in Corollary 3.8 and Theorem 3.3). By Theorem 3.8 there exist $(k + 1)$ different points $x_1, \ldots, x_{k+1} \in \frac{1}{2}K$ with $x_i - x_j \in \mathbb{Z}^n$. Let us assume that x_1 is one with maximal Euclidean length among these $(k + 1)$ points and let $z_i = x_{i+1} - x_1$, $1 \leq i \leq k$. Then we have $z_i \neq z_j$, $i \neq j$, and $z_i \in K \cap \mathbb{Z}^n \setminus \{0\}$. Furthermore, by the choice of x_1 all these points satisfy $(x_1, z_i) < 0$ which implies that the $2k$ points $\pm z_i$, $1 \leq i \leq k$, are pairwise distinct. Together with the point 0 this gives the desired lower bound. \[\square\]

3.10 Definition [Successive minima]. Let $K \in \mathcal{K}_n^n$, $\Lambda \in \mathcal{L}^n$. For $1 \leq i \leq n$,

$$\lambda_i(K, \Lambda) = \min \{ \lambda > 0 : \dim(\lambda \cdot K \cap \Lambda) \geq i \}$$

is called the i-th successive minimum (of K w.r.t. Λ).

3.11 Remark.

i) $\lambda_i(K, \Lambda) \geq \lambda_{i-1}(K, \Lambda)$, $2 \leq i \leq n$.

ii) $\lambda_i(K, \Lambda) = \lambda_i(\Lambda A, \Lambda)$, $A \in \text{GL}(n, \mathbb{R})$, i.e., $A \in \mathbb{R}^{n \times n}$ with $\det A \neq 0$.

iii) $\lambda_i(\mu K, \Lambda) = \frac{1}{\mu} \lambda_i(K, \Lambda) = \lambda_i(\frac{1}{\mu} \Lambda)$, $\mu \in \mathbb{R} \setminus 0$.

iv) $\text{int} K \cap \Lambda \setminus \{0\} = \emptyset \iff \lambda_1(K, \Lambda) \geq 1$.

v) $\lambda_1(K, \Lambda) = \min \{ |b|_K : b \in \Lambda \setminus \{0\} \}$.

3.12 Proposition. Let $K \in \mathcal{K}_n^n$, $\Lambda \in \mathcal{L}^n$, and let $a_1, \ldots, a_n \in \Lambda$ be linearly independent such that $a_i \in \lambda_i(K, \Lambda) K$, $1 \leq i \leq n$. Then

$$\text{int} (\lambda_i(K, \Lambda) K) \cap \Lambda \subset \text{lin} \{a_1, \ldots, a_{i-1}\}, 1 \leq i \leq n,$$

where we set $\text{lin} \emptyset = \{0\}$.

Proof. For short we write $\lambda_i = \lambda_i(K, \Lambda)$, and let $k \leq i$ be the minimal index with $\lambda_k = \lambda_i$. Due to the definition of the successive minima, $\text{int} (\lambda_k K) = \text{int} (\lambda_k K)$ contains at most $k - 1$ linearly independent lattice points and due to the choice of k, it contains the lattice points a_i, $1 \leq i \leq k$. \[\square\]

3.13 Theorem [Minkowski’s first theorem on successive minima]. Let $K \in \mathcal{K}_n^n$ and $\Lambda \in \mathcal{L}^n$. Then

$$\lambda_1(K, \Lambda)^n \cdot \text{vol}(K) \leq 2^n \cdot \det \Lambda.$$
3. Minkowski’s successive minima

Proof. By the definition of $\lambda_1(K, \Lambda)$ it is int $(\lambda_1(K, \Lambda) K) \cap \Lambda \setminus \{0\} = \emptyset$ and so by Theorem 3.3 we get $\text{vol} (\lambda_1(K, \Lambda) K) \leq 2^n \det \Lambda$. □

Actually, the last statement is equivalent to Theorem 3.3.

3.14 Theorem [Minkowski’s second theorem on successive minima]. Let $K \in \mathbb{K}_n$ and $\Lambda \in \mathcal{L}_n$. Then

$$\frac{2^n}{n!} \det \Lambda \leq \lambda_1(K, \Lambda) \lambda_2(K, \Lambda) \cdots \lambda_n(K, \Lambda) \text{vol}(K) \leq 2^n \det \Lambda.$$ (3.14.3)

Proof. Without loss of generality let $\Lambda = \mathbb{Z}^n$. For convenience we write $\lambda_i = \lambda_i(K, \mathbb{Z}^n)$, and let $z_1, \ldots, z_n \in \mathbb{Z}^n$ be n linearly independent lattice points with

$$z_i \in \lambda_i K \cap \mathbb{Z}^n, \ 1 \leq i \leq n. \quad (3.14.1)$$

We start with the proof of the upper bound. Let $K_i = \frac{\lambda_i}{\lambda_1} K$. After a suitable unimodular transformation we may assume (cf. e.g., Theorem 2.11) that $z_i \in L_i$, where L_i denotes the i-dimensional coordinate plane $L_i = \{ x \in \mathbb{R}^n : x_{i+1} = \cdots = x_n = 0 \}$. For an integer $q \in \mathbb{N}$ let $M^n_q = \{ z \in \mathbb{Z}^n : |z_i| \leq q \} = q C_n \cap \mathbb{Z}^n$ and for $1 \leq j \leq n - 1$ let $M^n_q = M^n_q \cap L_j$. Since K is a bounded set there exists a positive constant γ, only depending on K, such that

$$\text{vol}(M^n_q + K_n) \leq (2q + 2 \gamma)^n. \quad (3.14.2)$$

By the definition of λ_1 we have $(z + \text{int}(K_1)) \cap (z + \text{int}(K_1)) = \emptyset$ for two different lattice point z, \bar{z}, because otherwise we would get the contradiction $z - z \in \text{int} (K_1) - \text{int} (K_1) = \text{int} (K_1 - K_1) = \text{int} (\lambda_1 K)$. Thus we have

$$\text{vol}(M^n_q + K_1) = (2q + 1)^n \text{vol}(K_1) = (2q + 1)^n \left(\frac{\lambda_1}{2} \right)^n \text{vol}(K). \quad (3.14.3)$$

In the following we will show that for $1 \leq i \leq n - 1$

$$\text{vol}(M^n_q + K_{i+1}) \geq \left(\frac{\lambda_{i+1}}{\lambda_i} \right)^{n-i} \text{vol}(M^n_q + K_i). \quad (3.14.4)$$

To this end we may assume $\lambda_{i+1} > \lambda_i$ and $z, \bar{z} \in \mathbb{Z}^n$ with $(z_{i+1}, \ldots, z_n) \neq (z_{i+1}, \ldots, z_n)$. Then

$$z + \text{int} (K_{i+1}) \cap \bar{z} + \text{int} (K_{i+1}) = \emptyset.$$ Otherwise, in view of Proposition 3.12 we get the contradiction

$$z - \bar{z} \in \text{int} \lambda_{i+1} K \subset \text{lin} \{ z_1, \ldots, z_i \} \subset L_i.$$
Hence, for $z = (0, \ldots, 0, z_{i+1}, \ldots, z_n)^T \neq \bar{z} = (0, \ldots, 0, \bar{z}_{i+1}, \ldots, \bar{z}_n)^T \in \mathbb{Z}^n$ we have $(z + M_q^n + \text{int}(K_{i+1})) \cap (\bar{z} + M_q^n + \text{int}(K_{i+1})) = \emptyset$. Thus

$$\text{vol}(M_q^n + K_{i+1}) = (2q + 1)^{n-i} \text{vol}(M_q^n + K_i),$$

$$\text{vol}(M_q^n + K_i) = (2q + 1)^{n-i} \text{vol}(M_q^n + K_i),$$

and in order to verify (3.14.4) it suffices to show

$$\text{vol}(M_q^n + K_{i+1}) \geq \left(\frac{\lambda_{i+1}}{\lambda_i} \right)^{n-i} \text{vol}(M_q^n + K_i).$$

(3.14.5)

Now let $f_1, f_2 : \mathbb{R}^n \to \mathbb{R}^n$ be the linear maps given by

$$f_1(x) = \left(\frac{\lambda_{i+1}}{\lambda_i} x_1, \ldots, \frac{\lambda_{i+1}}{\lambda_i} x_i, x_{i+1}, \ldots, x_n \right)^T,$$

$$f_2(x) = \left(x_1, \ldots, x_i, \frac{\lambda_{i+1}}{\lambda_i} x_{i+1}, \ldots, \frac{\lambda_{i+1}}{\lambda_i} x_n \right)^T.$$

Since $M_q^n + K_{i+1} = f_2(M_q^n + f_1(K_i))$ we get

$$\text{vol}(M_q^n + K_{i+1}) = \left(\frac{\lambda_{i+1}}{\lambda_i} \right)^{n-i} \text{vol}(M_q^n + f_1(K_i))$$

and for the proof of (3.14.5) we have to show

$$\text{vol}(M_q^n + f_1(K_i)) \geq \text{vol}(M_q^n + K_i).$$

(3.14.6)

To this end let L_i^\perp be the $(n-i)$-dimensional orthogonal complement of L_i. Then it is easy to see that for every $x \in L_i^\perp$ there exists a $t(x) \in L_i$ with $K_i \cap (x + L_i) \subset (f_1(K_i) \cap (x + L_i)) + t(x)$ and so

$$(M_q^n + K_i) \cap (x + L_i) \subset [(M_q^n + f_1(K_i)) \cap (x + L_i)] + t(x).$$

Thus we get

$$\text{vol}(M_q^n + K_i) = \int_{x \in L_i^\perp} \text{vol}_i \left((M_q^n + K_i) \cap (x + L_i)\right) \, d\mathbf{x}$$

$$\leq \int_{x \in L_i^\perp} \text{vol}_i \left((M_q^n + f_1(K_i)) \cap (x + L_i)\right) \, d\mathbf{x}$$

$$= \text{vol}(M_q^n + f_1(K_i)),$$

where $\text{vol}_i(\cdot)$ denotes the i-dimensional volume. This shows (3.14.6) and so we have verified (3.14.4). Finally, it follows from (3.14.2), (3.14.3) and (3.14.4)

$$(2q + 2^n)^n \geq \text{vol}(M_q^n + K^n) \geq \left(\frac{\lambda_n}{\lambda_{n-1}} \right) \text{vol}(M_q^n + K_{n-1}) \geq \cdots$$

$$\geq \left(\frac{\lambda_n}{\lambda_{n-1}} \right) \left(\frac{\lambda_{n-1}}{\lambda_{n-2}} \right)^2 \cdots \left(\frac{\lambda_2}{\lambda_1} \right)^{n-1} \text{vol}(M_q^n + K_1)$$

$$= \lambda_n \cdots \lambda_1 \frac{\text{vol}(K)}{2^n} (2q + 1)^n.$$
and so
\[\lambda_n \cdots \lambda_1 \text{vol}(K) \leq 2^n \left(\frac{2q + 2\gamma}{2q + 1} \right)^n. \]

Since this holds for all \(q \in \mathbb{N} \) the upper bound is proven.

The lower bound follows just by inclusion. To this end we observe that (3.14.1) implies that the cross-polytope \(\text{conv} \{ \pm \frac{1}{\lambda_i} z_i : 1 \leq i \leq n \} \subseteq K \).

Thus
\[\text{vol}(K) \geq \text{vol}\text{conv} \left(\pm \frac{1}{\lambda_i} z_i : 1 \leq i \leq n \right) = \frac{2^n}{n!} \left| \det \left(\frac{1}{\lambda_1} z_1, \ldots, \frac{1}{\lambda_n} z_n \right) \right| \geq \frac{2^n}{n!} \lambda_1 \cdots \lambda_n. \]

\(\square \)

Obviously, both bounds of Minkowski’s second theorem are best possible. For instance, the lower bound is attained by the regular cross-polytope \(C_n^\ast \) and the upper bound by any \(o \)-symmetric box with edges parallel to the coordinate edges.

3.15 Proposition. Let \(K \in \mathcal{K}_n^o \) and \(\Lambda \in \mathcal{L}^n \). Then
\[\#(K \cap \Lambda) \leq \left\lfloor \frac{2^n}{\lambda_1(K, \Lambda) + 1} \right\rfloor^n. \]

In particular: Let \(K \in \mathcal{K}_n^o \) with \(\text{int } K \cap \Lambda = \{0\} \). Then \(\#(K \cap \Lambda) \leq 3^n \).

Proof. Without loss of generality let \(\Lambda = \mathbb{Z}^n \) and we write \(\lambda_1 \) instead of \(\lambda_1(K, \mathbb{Z}^n) \). Let \(k = \lfloor 2/\lambda_1 + 1 \rfloor \). Suppose there exist \(z, \bar{z} \in K \cap \mathbb{Z}^n \) such that \(z \equiv \bar{z} \mod k \). Then
\[\mathbb{Z}^n \ni \frac{1}{k} (z - \bar{z}) = \frac{2}{k} \left(\frac{1}{2} z - \frac{1}{2} \bar{z} \right) \in \frac{2}{k} K \subset \text{int } (\lambda_1 K), \]

since \(2/k < \lambda_1 \). By definition of \(\lambda_1 \) we conclude \(z = \bar{z} \). This shows that for two different lattice points \(z, \bar{z} \in K \) belongs to different cosets \(\lambda_1) \), \(K \) can not exceed \(k^n \).

3.16 Conjecture. Let \(K \in \mathcal{K}_n^o \) and \(\Lambda \in \mathcal{L}^n \). Then
\[\#(K \cap \Lambda) \leq \prod_{i=1}^n \left\lfloor \frac{2}{\lambda_i(K, \Lambda)} + 1 \right\rfloor. \]

3.17 Remark. The upper bounds on the lattice points in Proposition 3.15 and in Conjecture 3.16 imply the corresponding bounds on the volume as
3. Minkowski’s successive minima stated in the Theorems 3.13, 3.14. For instance, for \(\Lambda = \mathbb{Z}^n \) and with \(\lambda_i(K) = \lambda_i(K, \mathbb{Z}^n) \) we (would) get by Conjecture 3.16

\[
\text{vol}(K) = \lim_{m \to \infty} \left(\frac{1}{m} \right)^n \# \left(K \cap \frac{1}{m} \mathbb{Z}^n \right) \\
\leq \lim_{m \to \infty} \left(\frac{1}{m} \right)^n \prod_{i=1}^{n} \left(\frac{2}{\lambda_i(mK)} + 1 \right) \\
= \lim_{m \to \infty} \prod_{i=1}^{n} \left(\frac{2}{\lambda_i(K)} + \frac{1}{m} \right) \\
= \prod_{i=1}^{n} \frac{1}{\lambda_i(K)}.
\]

The second theorem of Minkowski can easily be extended to arbitrary (not necessarily \(o \)-symmetric) convex body, if the successive minima are measured with respect to central symmetral \(cs(K) = \frac{1}{2}(K - K) \) of \(K \) (cf. (1.2)).

3.18 Theorem. Let \(K \in \mathcal{K}^n, \ \Lambda \in \mathcal{L}^n \). Then

\[
\frac{2^n}{n!} \det \Lambda \leq \lambda_1(cs(K), \Lambda) \lambda_2(cs(K), \Lambda) \cdots \lambda_n(cs(K), \Lambda) \text{vol}(K) \leq 2^n \det \Lambda.
\]

Proof. Without loss of generality \(\Lambda = \mathbb{Z}^n \) and for short, we write \(\lambda_i = \lambda_i(cs(K), \mathbb{Z}^n), 1 \leq i \leq n \). We begin with the upper bound. Due to Theorem 3.14 we have

\[
\lambda_1 \cdots \lambda_n \text{vol}(cs(K)) \leq 2^n.
\]

By the Brunn-Minkowski inequality we also know (cf. e.g. (1.3))

\[
\text{vol}(cs(K)) \geq \text{vol}(K),
\]

which shows the upper bound.

For the lower bound let \(z_i \in \lambda_i cs(K), 1 \leq i \leq n \), be linearly independent and let \(u_i, w_i \in \frac{1}{2}K \) such that \(v_i = \frac{1}{\lambda_i} z_i = u_i - w_i, 1 \leq i \leq n \). Let \(C = \text{conv} \{ u_i, w_i : 1 \leq i \leq n \} \subseteq \frac{1}{2}K \). In the following we show

\[
\text{vol}(C) \geq \frac{1}{n!} |\text{det}(v_1, \ldots, v_n)|
\]

which implies the assertion. For the proof we use induction on \(n \). For \(n = 1 \) nothing is to show and so let \(n > 1 \). Let \(L = \{ x \in \mathbb{R}^n : \langle v_1, x \rangle = 0 \} \) and for \(x \in \mathbb{R}^n \) we denote by \(\bar{x} \) its orthogonal projection onto \(L \). Application of the Steiner symmetrization to \(C \) with respect to the hyperplane \(H \) gives a convex body \(C_S \) with \(\text{vol}(C_S) = \text{vol}(C) \), and by definition of this symmetrization
C_S contains the points $\bar{u}_1 + \frac{1}{2}v_1, \bar{u}_1 - \frac{1}{2}v_1, \bar{u}_2, \bar{w}_2, \ldots, \bar{u}_n, \bar{w}_n$. Hence we have

$$\text{vol}(C) = \text{vol}(C_S) \geq \frac{|v_1|}{n} \cdot \text{vol}_{n-1}(\text{conv}\{\bar{u}_2, \bar{w}_2, \ldots, \bar{u}_n, \bar{w}_n\}).$$

Hence, via our inductive approach we get

$$\text{vol}(C) = \text{vol}(C_S) \geq \frac{|v_1|}{n} \cdot \frac{1}{(n-1)!} \text{det}((\bar{u}_2 - \bar{w}_2, \ldots, \bar{u}_n - \bar{w}_n))$$

$$= \frac{|v_1|}{n!} \text{det}((\bar{v}_2, \ldots, \bar{v}_n)) = \frac{1}{n!} |\text{det}(v_1, \ldots, v_n)|.$$

Here $\text{det}(\cdot)$ denotes the determinant in the $(n - 1)$-dimensional setting, i.e., the $(n - 1)$-dimensional volume of the parallelepiped generated by the $n - 1$ vectors. \hfill \Box
Bibliography

