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An embedding of a graph in a book, called book embedding, consists of a linear ordering of 
its vertices along the spine of the book and an assignment of its edges to the pages of the 
book, so that no two edges on the same page cross. The book thickness of a graph is the 
minimum number of pages over all its book embeddings. For planar graphs, a fundamental 
result is due to Yannakakis, who proposed an algorithm to compute embeddings of planar 
graphs in books with four pages. Our main contribution is a technique that generalizes this 
result to a much wider family of nonplanar graphs, namely to k-map graphs. In fact, our 
technique can deal with any nonplanar graph having a biconnected skeleton of crossing-
free edges whose faces have bounded degree. We prove that this family of graphs has book 
thickness bounded in k, and as a corollary, we obtain the first constant upper bound for 
the book thickness of optimal 2-planar graphs.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Book embeddings of graphs form a well-known topic in topological graph theory that has been a fruitful subject of 
intense research over the years, with seminal results dating back to the 70s [44]. In a book embedding of a graph G , the 
vertices of G are restricted to a line, called the spine of the book, and the edges of G are assigned to different half-planes 
delimited by the spine, called pages of the book. From a combinatorial point of view, computing a book embedding of a 
graph corresponds to finding a linear ordering of its vertices and a partition of its edges, such that no two edges in the same 
part cross; see Fig. 1. The book thickness (also known as stack number or page number) of a graph is the minimum number 
of pages required by any of its book embeddings, while the book thickness of a family of graphs G is the maximum book 
thickness of any graph G that belongs to G .

✩ An extended abstract of the research presented in this paper appear in the Proc. of the 36th International Symposium on Computational Geometry 
(SoCG 2020) [5].
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Fig. 1. Graph K6 and a book embedding of it with the minimum of three pages.

Book embeddings were originally motivated by the design of VLSI circuits [21,48], but they also find applications, among 
others, in sorting permutations [45,49], compact graph encodings [35,41], graph drawing [11,12,52], and computational 
origami [1]; for a more complete list, we point the reader to [27]. Unfortunately, determining the book thickness of a graph 
turns out to be an NP-complete problem even for maximal planar graphs [51]. This negative result has motivated a large 
body of research devoted to the study of upper bounds on the book thickness of meaningful graph families.

In this direction, there is a very rich literature concerning planar graphs. The most notable result is due to Yannakakis, 
who back in 1986 exploited a peeling-into-levels technique (a flavor of it is given in Section 3) to prove that the book 
thickness of any planar graph is at most 4 [53,54], improving uppon a series of previous results [17,32,34]. Recently, Yan-
nakakis [55] and Bekos et al. [8] independently proved that 4 pages are sometimes necessary.

Concerning subfamilies of planar graphs, Bernhart and Kainen [10] showed that the book thickness of a graph G is 1 if 
and only if G is outerplanar, while its book thickness is at most 2 if and only if G is subhamiltonian, that is, G is a subgraph 
of a Hamiltonian planar graph. In particular, several subfamilies of planar graphs are known to be subhamiltonian, e.g., 4-
connected planar graphs [43], planar graphs without separating triangles [36], Halin graphs [22], series-parallel graphs [46], 
bipartite planar graphs [24], planar graphs of maximum degree 4 [7], triconnected planar graphs of maximum degree 5 [33], 
and maximal planar graphs of maximum degree 6 [29]. In this plethora of results, we should also mention that planar 3-
trees have book thickness 3 [32] and that general (i.e., not necessarily triconnected) planar graphs of maximum degree 5
have book thickness at most 3 [31].

In contrast to the planar case, there exist far fewer results for non-planar graphs. Bernhart and Kainen first observed that 
the book thickness of a graph can be linear in the number of its vertices; for instance, the book thickness of the complete 
graph Kn is �n/2� [10]. Improved bounds are usually obtained by meta-theorems exploiting standard parameters of the 
graph. In particular, Malitz proved that if a graph has m edges, then its book thickness is O (

√
m) [39], while if its genus 

is g , then its book thickness is O (
√

g) [38]. Also, Ganley and Heath [30] showed that if a graph has treewidth w , then its 
book thickness is at most w + 1. This result was reproved by Dujmovic and Wood [28], who also showed that this bound 
is tight for w ≥ 3. It is also known that all graphs belonging to a minor-closed family have bounded book thickness [13], 
while the other direction is not necessarily true. As a matter of fact, the family of 1-planar graphs is not closed under taking 
minors [42], but it has bounded book thickness [3,4]. We recall that a graph is h-planar (with h ≥ 0), if it can be drawn in 
the plane such that each edge is crossed at most h times; the reader is referred, e.g., to [25,37] for recent surveys.

Notably, the approaches presented in [3,4] form the first non-trivial extensions of the above mentioned peeling-into-
levels technique by Yannakakis [53,54] to graphs that are not planar. Both approaches exploit an important property of 
3-connected 1-planar graphs, namely, they can be augmented and drawn so that all pairs of crossing edges are “caged” in 
the interior of degree-4 faces of a planar skeleton, which is defined as the graph consisting of all vertices and of all crossing-
free edges of the drawing [47]. A similar property also holds for the optimal 2-planar graphs. Namely, each graph in this 
family admits a drawing whose planar skeleton is simple, biconnected, and has only degree 5 faces, each containing five 
crossing edges [9]. The book thickness of these graphs, however, has not been studied yet; the best-known upper bound of 
O (log n) is derived from the corresponding one for general h-planar graphs [26].

k-map graphs. Besides h-planar graphs, another well-known generalization of planarity are the map graphs, introduced by 
Chen, Grigni, and Papadimitriou [18]. Roughly speaking, a k-map graph is one whose vertices are in correspondence with a 
set of regions in the sphere (possibly not covering its entire surface) and whose edges correspond to boundary intersections 
between pair of regions such that at most k regions meet at the same point (see Section 4 for a formal definition). As 
map graphs find applications in graph drawing, circuit board design and topological inference problems [20], they have 
been extensively studied in the literature, in particular in terms of characterization and recognition [14,15,18,19,40,50]. For 
instance, it is known that planar graphs are the 2-map graphs, and that the 4-map graphs are exactly those 1-planar graphs 
that have a 1-planar drawing � such that each pair of crossing edges is caged in a face of the planar skeleton of � [15].

Our contribution. We present a technique that further generalizes the result by Yannakakis to k-map graphs. Our main 
result can be summarized as follows and represents the first nontrivial upper bound for the book thickness of k-map 
graphs.
2
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Theorem 1. The book thickness of a k-map graph is at most 6k + 7.

In fact, the presented technique can deal with a larger family of non-planar graphs, called partial k-framed graphs A 
graph is k-framed, if it admits a drawing having a simple biconnected planar skeleton, whose faces have degree at most 
k ≥ 3, and whose crossing edges are in the interiors of these faces. A partial k-framed graph is a subgraph of a k-framed
graph. Clearly, the book thickness of partial k-framed graphs is lower bounded by �k/2�, as they may contain cliques of size 
k [10]. We prove an upper bound on the book thickness of partial k-framed graphs that depends linearly only on k (but not 
on n).

Theorem 2. The book thickness of a partial k-framed graph is at most 6� k
2 � + 7.

Since we can show that every k-map graph is a partial 2k-framed graph (Theorem 34), Theorem 1 follows immediately from 
Theorem 2. On the other hand, one can easily show that every partial k-framed graph is a subgraph of a k-map graph.

We also remark that k-framed graphs have been recently studied in the context of the graph product structure the-
ory. Namely, Bekos et al. [6] proved that these graphs are subgraphs of the strong product of a path, of a planar graph of 
treewidth at most 3, and of a clique of size O (k), which implies the existence of improved bounds on the queue num-
ber, non-repetitive chromatic number, and p-centered chromatic number of these graphs. Therefore, Theorem 2 can be 
considered as a result of independent interest.

Concerning h-planarity, note that the partial 3-framed graphs are exactly the (simple) planar graphs. Also, it is known 
that 3-connected 1-planar graphs are partial 4-framed [2], while general 1-planar graphs can be augmented to 8-framed. 
In fact, every two crossing edges can be caged inside a cycle of length (at most) 8 passing through the endpoints of such 
crossing edges; the faces of the resulting planar skeleton that do not contain any crossing edge can be triangulated. Hence, 
Theorem 2 implies constant upper bounds for the book thickness of these families of graphs. Since optimal 2-planar graphs 
are 5-framed, the next corollary guarantees the first constant upper bound on the book thickness of this family.

Corollary 3. The book thickness of an optimal 2-planar graph is at most 25.

More in general, each partial k-framed graph is h-planar for h = ( k−2
2 )2, and hence for this family of h-planar graphs we 

prove that the book thickness is O (
√

h), while the best-known upper bound for general h-planar graphs is O (h log n) [26].
After submitting the paper we became aware of a manuscript by Brandenburg [16], in which a better bound for the book 

thickness of k-map graphs is shown, namely 6� k
2 � + 5. This result also implies a better bound of 17 for the book thickness 

of optimal 2-planar graphs.

Paper organization. In Section 2, we give basic definitions and notation. Section 3 is devoted to the proof of Theorem 2: 
We start by recalling the peeling-into-level decomposition, and we proceed with an inductive proof based on the resulting 
leveling of the graph. The base case is described in Section 3.1 and corresponds to graphs consisting of two levels only, while 
the inductive case is described in Section 3.2 and deals with general (i.e., multi-level) graphs. The proof of Theorem 34 is 
given in Section 4. Finally, Section 5 contains conclusions and open problems that stem from our research.

2. Preliminaries

Drawings and planar embeddings. A graph is simple, if it contains neither self-loops nor parallel edges. A drawing of a graph 
G is a mapping of the vertices of G to distinct points of the plane, and of the edges of G to Jordan arcs connecting their 
corresponding endpoints. A drawing is planar, if no two edges intersect, except possibly at a common endpoint. A graph 
is planar, if it admits a planar drawing. A planar drawing partitions the plane into topologically connected regions, called 
faces. The infinite region is called the unbounded face; any other face is a bounded face. The degree of a face is the number 
of occurrences of its edges encountered in a clockwise traversal of its boundary (counted with multiplicity). Note that if G
is biconnected, then each of its faces is bounded by a simple cycle. A planar embedding of a planar graph is an equivalence 
class of topologically-equivalent (i.e., isotopic) planar drawings. A planar graph with a given planar embedding is a plane 
graph.

k-framed graphs. Let � be a drawing of a graph G . The planar skeleton σ(G) of G in � is the plane subgraph of G induced 
by the crossing-free edges of G in � (where the embedding of σ(G) is the one induced by �). The edges of σ(G) are called 
crossing-free, while the edges that belong to G but not to σ(G) are crossing edges. A k-framed drawing of a graph is one such 
that its crossing-free edges determine a planar skeleton, which is simple, biconnected, spans all the vertices, and has faces 
of degree at most k ≥ 3. A graph is k-framed, if it admits a k-framed drawing; refer to Fig. 2. A partial k-framed graph is a 
subgraph of a k-framed graph. Clearly, if a k-framed graph has book thickness at most b, then the book thickness of any 
of its subgraphs is at most b. Thus, in the remainder of the paper, we will only consider k-framed graphs. Further, w.l.o.g., 
we will also assume that each pair of vertices that belongs to a face f of σ(G) is connected either by a crossing-free edge 
(on the boundary of f ) or by a crossing edge (drawn inside f ). In other words, the vertices on the boundary of f induce 
a clique of size at most k. Under this assumption, graph G may contain parallel crossing edges connecting the same pair of 
vertices, but drawn in the interior of different faces of σ(G); see, e.g., the dashed edges of Fig. 2.
3
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Fig. 2. A drawing of a 6-framed graph, whose crossing-free (crossing) edges are black (gray).

Fig. 3. The peeling-into-levels decomposition of an 8-framed graph without its crossing edges. The vertices and level-edges of level L0 (L1; L2, resp.) are 
blue (orange; green, resp.) and induce σ0(G) (σ1(G); σ2(G), resp.). Chords are drawn dashed; binding edges are drawn gray. The blue (orange; green, resp.) 
faces are the intra-level faces of σ1(G) (σ2(G); σ3(G), resp.). Graph σ0(G) (σ1(G); σ2(G), resp.) without the dashed chords forms C0(G) (C1(G); C2(G), 
resp.). The striped blue face is an intra-level face of σ1(G), whose boundary exists exclusively of L0-level edges. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

Book embeddings. A book embedding of a graph G consists of a linear ordering ≺ of the vertices of G along a line, called 
the spine of the book, and an assignment of the edges of G to different half-planes delimited by the spine, called pages of 
the book, such that no two edges of the same page cross, that is, no two edges (u, v) and (w, z) of the same page with 
u ≺ v and v ≺ w are such that u ≺ w ≺ v ≺ z. We further say that (u, v) and (w, z) of the same page with u ≺ v and v ≺ w
nest, if u ≺ w ≺ z ≺ v . The book thickness of G is the minimum integer k, such that G has a book embedding on k pages.

3. Proof of Theorem 1

Our approach adopts some ideas from the seminal work by Yannakakis on book embeddings of planar graphs. In partic-
ular, we refer to the algorithm which embeds any (internally-triangulated) plane graph in a book with five pages [54], not 
four. The main challenges of our generalization are posed by the crossing edges and by the fact that we cannot augment 
the input graph so that its underlying planar skeleton is internally-triangulated. In the following, we explain the basic ideas 
of Yannakakis’ algorithm and recall basic definitions and properties from [54], which we generalize and exploit to introduce 
new ones.

Our technique is based on the so-called peeling-into-levels decomposition. Let G be an n-vertex k-framed graph with a 
k-framed drawing �. We classify the vertices of G as follows: (i) vertices on the unbounded face of σ(G) are at level 0, 
and (ii) vertices that are on the unbounded face of the subgraph of σ(G) obtained by deleting all vertices of levels ≤ i − 1
are at level i (0 < i < n); see, e.g., Fig. 3. Denote by σi(G) the subgraph of σ(G) induced by the vertices of Li . Observe that 
σi(G) is outerplane, but not necessarily connected. Next, we consider σi(G) and delete any edge that is not incident to the 
unbounded face. The resulting spanning subgraph of σi(G) is denoted by Ci(G). By definition, each connected component 
of Ci(G) is a cactus. Also, the only edges that belong to σi(G) but not to Ci(G) are the chords of σi(G). Finally, we denote 
by Gi the subgraph of G induced by the vertices of L0 ∪ . . . ∪ Li containing neither chords of σi(G) nor the crossing edges 
that are in the interior of the unbounded face of σ(G).

Consider an edge e that belongs to σ(G). If the endpoints of e are assigned to the same level, e is a level edge; otherwise, 
e connects vertices of consecutive levels and is called a binding edge; see Fig. 3. By the definition of the level-partition, there 
4
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is no edge e ∈ E , that connects two vertices of levels i and j, such that |i − j| > 1. Another consequence of the level-partition 
is that any vertex of level i + 1 lies in the interior of a cycle of level i. Next, we give a characterization for bounded faces 
of σ(G). A bounded face of σ(G) is an intra-level face of σi(G) if it is incident to at least one vertex of Li−1 but to no 
vertex of Li−2. We denote by Fi the set of all the intra-level faces of σi(G). By definition, the unbounded face of σi(G) is 
not an intra-level face. Also, each intra-level face of σi(G) has either at least one binding edge between Li−1 and Li on its 
boundary, or it consists exclusively of edges of level Li−1.

Overview. We give an short overview of how our algorithm embeds a k-framed graph G with a given k-framed drawing 
� on 6 ·

⌈
k
2

⌉
+ 7. In a high level description, we will inductively compute a book embedding of Gi+1, assuming that we 

have already computed a book embedding of Gi . For this inductive strategy to work, the computed book embeddings satisfy 
particular invariants, which we define subsequently. We first focus on the base case, in which G consists of only two levels 
L0 and L1 under some additional assumptions (see Section 3.1). Afterwards, we consider the inductive case, in which G
consists of more than two levels (see Section 3.2).

3.1. Base case: two-level instances

A two-level instance is a k-framed graph G consisting of two levels L0 and L1, such that there is no crossing edge in the 
unbounded face of σ0(G), and either L1 = ∅ or σ1(G) = C1(G), i.e., σ1(G) is chord-less; refer to Fig. 4 for an illustration of 
a two-level instance. Since σ(G) is biconnected, C0(G) is a simple cycle. Let u0, u1, . . . , us−1 with s ≥ 3 be the vertices of 
L0 in the order that they appear in a clockwise traversal of C0(G) starting from u0. An edge (ui, u j) of σ0(G) is short if 
i − j = ±1; otherwise it is long. By definition, (u0, us−1) is long. In the following, we will refer to the intra-level faces of 
σ1(G) simply as intra-level faces, and we will further denote F1 as F . Consider now the graph C1(G). Each of its connected 
components is a cactus; thus, its biconnected components, called blocks, are either single edges or simple cycles (that are 
chordless, as σ1(G) = C1(G)). A connected component of C1(G) may degenerate into a single vertex, and this vertex itself is 
a degenerate block. A block that consists of more than one vertex is called non-degenerate.

We equip F with a linear ordering λ(F) as follows. For i = 0, . . . , s − 1, the intra-level faces incident to vertex ui are 
appended to λ(F) as they appear in counterclockwise order around ui starting from the one incident to (ui−1, ui) and 
ending at the one incident to (ui, ui+1) (indices taken modulo s), unless already present. For a pair of intra-level faces f
and f ′ , we write f ≺λ f ′ if f precedes f ′ in λ(F); similarly, we write f �λ f ′ if f = f ′ or f ≺λ f ′ .

Let C1, . . ., Cγ be the connected components of C1(G) and let C ∈ {C1, . . ., Cγ }. In general, several intra-level faces in 
F may contain vertices of C on their boundary. Let fC be the first face in the ordering λ(F) that contains a vertex of C . 
Consider now a counterclockwise traversal of the boundary of fC starting from the vertex of L0 with the smallest subscript 
that belongs to fC . We refer to the vertex, say vC , of C that is encountered first in this traversal as the first vertex of C . 
Observe that, by definition, vC is incident to a binding edge that is on the boundary of fC . We will further assume that vC
forms a degenerate block rC of C . The leader of a block B of C , denoted by �(B), is the first vertex of B that is encountered 
in any path of C from vC to B; note that �(B) is uniquely defined.

Consider a vertex v of C . If v belongs to only one block of C , then v is assigned to that block. Otherwise v is assigned 
to the block B of C such that v belongs to B and the graph-theoretic distance in C between �(B) and vC is the smallest. 
It follows that vC is assigned to the degenerate block rC , and that for any non-degenerate block B the leader �(B) is not 
assigned to B . We denote by B(v) the block of C that a vertex v is assigned to. Let B be a block of C . Assume first that 
B is non-degenerate. We refer to the first face in the ordering λ(F) containing an edge of B as the face that discovers B . 
Assume now that B is degenerate, i.e., it consists of a single vertex v . We refer to the first face in the ordering λ(F) that 
has v on its boundary as the face that discovers B . In both cases, we denote by d(B) the face in F that discovers block B .

We extend the notion of discovery to the vertices of G . To this end, let v be a vertex of G (which can be incident to 
several intra-level faces in F ). We distinguish whether v belongs to L0 or L1. In the former case, face f of F discovers
vertex v if f is the first intra-level face in the ordering λ(F) that contains v on its boundary. In the latter case, face f in F
discovers vertex v if f is the face that discovers the block vertex v is assigned to. In both cases we denote by d(v) the face 
in F that discovers vertex v . This yields d(v) = d(B(v)) for any v ∈ L1. The dominator dom(B) of block B is the vertex of 
L0 with the smallest subscript that is on the boundary of d(B). Several blocks of C can be discovered by the same face, and 
by definition, these blocks have the same dominator. Analogously, we define the dominator dom( f ) of an intra-level face f
as the vertex of L0 with the smallest subscript that is on the boundary of f . This yields dom(B) = dom(d(B)).

Property 4. The face d(B) that discovers block B is the first face in λ(F) that has a vertex assigned to block B on its boundary.

Proof. If B is a degenerate block, the property follows by definition. Otherwise, B contains at least one edge on its boundary. 
The face d(B) is the first intra-level face in λ(F) that contains an edge (v, w) of B on its boundary. Since only the leader 
�(B) of B is not assigned to block B and since (v, w) is a boundary edge of B , at least one of v and w is assigned to B . 
The property follows from the fact that at most one of the endpoints of (v, w) is not assigned to B . �

Consider now two blocks B and B ′ of C1(G). Note that B and B ′ do not necessarily belong to the same connected 
component of C1(G). We say that B precedes B ′ if (i) d(B) ≺λ d(B ′), or (ii) d(B) = d(B ′) and in a counterclockwise traversal 
5
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Fig. 4. Illustration of the graph σ1(G) of a two-level instance G: the vertices of L0 are denoted by u0, . . . , u20; the vertices of L1 are the remaining ones; 
C1(G) consists of three connected components C1, C2 and C3, whose first vertices are denoted by vC1 , vC2 and vC3 , resp.; the vertices assigned to each 
block have the same color as the block; C1 contains two blocks B2 and B21 that are simple edges; the two level edges (u5, u6) and (u5, u8) are short 
and long, resp.; edge (u1, vC1 ) is a binding edge; the intra-level faces of F are all numbered from f0 to f18 according to λ(F); the intra-level face that 
discovers B6 is the face f5 tilled gray; f1, f9 and f12 discover the degenerate blocks.

of d(B) starting from dom(d(B)) block B is encountered before block B ′ . We denote this relationship between B and B ′ by 
B ≺ B ′ . Since λ(F) is a well-defined ordering, it follows that the relationship “precedes” is also defining a total ordering of 
the blocks of C1(G). In the following, we introduce a useful property of λ(F).

Property 5. Let v be a vertex of G and let f v ∈F be an intra-level face that contains v on its boundary. Then, d(v) �λ f v holds.

Proof. If v belongs to L0, then the property follows by definition. Otherwise, v belongs to L1, and d(v) is the intra-level 
face that discovers the block B(v), that is, d(v) = d(B(v)). If B(v) is degenerate, then d(v) is the first intra-level face in 
λ(F) that has v on its boundary. Hence, d(v) �λ f v . Otherwise, by Property 4, d(B(v)) is the first intra-level face in λ(F)

that contains a vertex assigned to block B on its boundary. Since d(v) = d(B(v)) and since v is assigned to block B , it 
follows that d(v) �λ f v . �

Next, we introduce the notion of a prime vertex with respect to an intra-level face. We say that a vertex v of L0
belonging to the boundary of an intra-level face f is prime with respect to f if no vertex of L1 and no long level edge is 
encountered in the clockwise traversal of f from dom( f ) to v . By definition, dom( f ) is prime with respect to f . We say 
that a vertex v is f -prime if either v is prime with respect to face f or v belongs to L1. By definition, any vertex of L1
is g-prime with respect to any intra-level face g . Let u j be a vertex on L0 that is not d(u j)-prime with j ∈ {1, . . . , s − 1}. 
Let f

u j

0 , . . . , f u j
t be the faces that have u j on their boundary in a counterclockwise traversal of u j starting from (u j−1, u j)

and ending at (u j, u j+1) (indices taken modulo s). Let d be the smallest index such that f
u j

d = d(u j). We say that face 
f

u j

l is before (after) d(u j) around u j if l < d (l > d, respectively). Furthermore, the faces f
u j

0 , . . . , f u j

d−1 that have u j as their 
dominator are called small. See Fig. 6 for an illustration of a small face.

3.1.1. Linear ordering
The linear ordering of the vertices, denoted by ρ , is computed as follows. First, the vertices of L0 are embedded in the 

order u0, u1, . . . , us−1. The remaining vertices of G (i.e., the vertices of L1) are embedded along the spine based on the 
blocks that they have been assigned to and according to the following rules:

R.1 For j = 0, . . . , s − 1, let B j
0, . . . , B

j
t−1 be the blocks with u j as dominator such that the faces that discover them are not 

small (are small, resp.), and B j
i ≺ B j

i+1 for i = 0, 1, . . . , t − 2. The vertices assigned to these blocks are placed right after 
(before, resp.) u j in ρ .

R.2 The vertices assigned to B j
i are right before those assigned to B j

i+1, for each i = 0, . . . , t − 2.

R.3 The vertices assigned to the same block B j
i are in the order they appear in a counterclockwise traversal of the boundary 

of B j starting from the leader of B j , for i = 0, . . . , t − 1.
i i

6
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Fig. 5. Illustration for the proof of Property 9.

For a pair of distinct vertices v and w , we write v ≺ρ w if v precedes w in ρ . By Rule R.1, the vertices of L1 that are 
discovered by f and the f -prime vertices of L0 are right next to each other in ρ . The next property is consequence of 
Rules R.1–R.3.

Property 6. The vertices assigned to a block B of L1 appear consecutively in ρ .

The order of the blocks together with Rules R.1 and R.2 yields the following property.

Property 7. Let v and w be two vertices of L1 assigned to two distinct blocks B(v) and B(w), respectively. Then, v ≺ρ w if and only 
if B(v) precedes B(w).

The next properties will be useful in Section 3.2.

Property 8. Let C1 and C2 be two connected components of C1(G) rooted at their first vertices, and let B1 and B2 be two non-
degenerate blocks of C1 and C2 , respectively. If there exists a vertex v assigned to B2 between �(B1) and the vertices assigned to B1 in 
ρ , then all vertices assigned to B2 appear in ρ between �(B1) and the vertices assigned to B1 .

Proof. Let B ′
1 be the block that �(B1) is assigned to. Then B ′

1 is a block of C1 and B ′
1 �= B1. Let w be a vertex assigned to 

block B1. Then we have �(B1) ≺ρ v ≺ρ w with �(B1) assigned to B ′
1, v assigned to B2, and w assigned to B1. By Property 6, 

all vertices assigned to the same block are consecutive in ρ , and the claim follows. �
Property 9. Let C be a connected component of C1(G) rooted at its first vertex, and let B be a non-degenerate block of C with two 
children B1 and B2 . If �(B1) �ρ �(B2) and B2 ≺ B1 , then all vertices assigned to descendant blocks of B2 (including B2) precede in ρ
all vertices assigned to descendant blocks of B1 (including B1).

Proof. First, observe that for a block B and any descendant block B ′ of B , we have the order B ≺ B ′ . Therefore, any vertex 
assigned to B precedes any vertex assigned to B ′ in ρ . Hence, let B ′

2 be a descendant of B2. It remains to show that 
if B1 and B2 are children of the same block, �(B1) �ρ �(B2), and B2 ≺ B1, then v ≺ρ w for any vertex v assigned to 
B ′

2 and any vertex w assigned to B1. Since σ(G) is planar and biconnected, we get d(B ′
2) ≺λ d(B1); see Fig. 5. Hence, 

dom(d(B ′
2)) �ρ dom(d(B1)) holds. Now the claim follows by Rules R.1 and R.2. �

Property 10. Let C be a connected component of C1(G), and let B1 and B2 be two distinct non-degenerate blocks of C. If there is a 
vertex v assigned to a block B1 between �(B2) and the remaining vertices of B2 such that �(B1) ≺ρ �(B2), then �(B2) is assigned to 
B1 .

Proof. Assume for a contradiction that �(B2) is assigned to a different block, say B ′
2. Let also B ′

1 be the block that �(B1)

is assigned to. By Property 7, we obtain the order of the blocks: B ′
1 � B ′

2 ≺ B1 ≺ B2. We distinguish two cases based 
on whether (a) B ′

1 ≺ B ′
2 or (b) B ′

1 = B ′
2 holds. First, consider Case (a), that is B ′

1 ≺ B ′
2. Since B1 is a child of B ′

1 and 
B1 ≺ B ′

2 ≺ B1, it follows that either B ′
2 is also a child of B ′

1 which precedes B1 in the ordering of the blocks, or it is a 
descendant of another child of B ′

1 which precedes B1 in the ordering of the blocks. In both cases, it follows by Property 9
that B2 ≺ B1; a contradiction. Consider now Case (b). Since �(B1) ≺ρ �(B2), and both vertices are assigned to the same 
block, it follows that B2 ≺ B1; a contradiction. �
7
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Fig. 6. An illustration of the different types of dominator edges. Crossing edges are drawn dashed. The red edge (x, v) is a primary dominator edge. The 
green edges (y, w) and (z, u) are secondary dominator edges. The orange edge (z, w) is a tertiary dominator edge. The blue face is a small face with 
dominator z.

Fig. 7. Illustration for the proof of Lemma 14.

Property 11. Let v be a d(v)-prime vertex of L0. Then v is f -prime for any intra-level face f that has v on its boundary. Also, 
v = dom( f ), except possibly for f = d(v).

Proof. Let f be an intra-level face that is different from d(v) such that f has v on its boundary. By planarity, vertex v is 
the dominator of face f . Thus, v is f -prime. �
Property 12. Let w be a d(w)-prime vertex. For any vertex v with v ≺ρ w, d(v) �λ d(w).

Proof. Since w is d(w)-prime, w precedes any vertex discovered by a face f with d(w) ≺λ f . Assuming to the contrary 
that d(w) ≺λ d(v), we get w ≺ρ v; a contradiction. �
By contraposition the following corollary is a direct consequence of Property 12.

Corollary 13. Let v be a d(v)-prime vertex. For any vertex w, d(v) ≺λ d(w) implies v ≺ρ w.

3.1.2. Edge-to-page assignment
With the linear ordering ρ at hand, we now describe how to perform the edge-to-page assignment which concludes the 

construction of our book embedding. We start with some particular types of edges defined as follows. A binding edge (v, w)

of G with v ∈ L0 and w ∈ L1 is a primary dominator edge if v is the dominator of the intra-level face d(w) that discovers w . 
Note that edge (v, w) belongs to a face f v w with d(w) �λ f v w whose dominator is vertex v . Also, v ≺ρ w unless d(w) is a 
small face. A binding edge (v, w) of G with v ∈ L0 and w ∈ L1 is a secondary dominator edge if (i) (v, w) is not a primary 
dominator edge, and (ii) v and w are on the boundary of a face f v w such that v is the dominator of f v w . Finally, a binding 
edge (v, w) of G with v ∈ L0 and w ∈ L1 is a tertiary dominator edge if (i) (v, w) is not a primary or secondary dominator 
edge, (ii) v is not d(v)-prime, and (iii) v and w are on the boundary of a face f v w such that f v,w is before d(v) around v . 
Note that, if (v, w) is a secondary or tertiary dominator edge, w ≺ρ v holds. See Fig. 6 for an illustration of the different 
types of dominator edges. In the following lemma, we prove that all primary dominator edges of G can be assigned to a 
single page. We note that the proof is reminiscent of a corresponding one by Yannakakis [54] for similarly-defined backward 
edges.

Lemma 14. Let (v, w) and (v ′, w ′) be two primary dominator edges of G. Then, (v, w) and (v ′, w ′) do not cross in ρ .

Proof. We may assume without loss of generality that v, v ′ ∈ L0, w, w ′ ∈ L1, v ≺ρ v ′ , and that v, w, v ′ and w ′ are four 
distinct vertices of G (Fig. 7). By the definition of primary dominator edges we have v = dom(d(w)) and v ′ = dom(d(w ′)). 
Assume first that v ′ ≺ρ w ′ . If edges (v, w) and (v ′, w ′) cross in ρ , v ≺ρ v ′ ≺ρ w ≺ρ w ′ must hold. By definition of the 
primary dominator edge, the vertex w belongs to a block B(w) dominated by v . By Rule R.1, there is no vertex of L0
8
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Fig. 8. Illustration for the proof of Lemma 15.

between v and the vertices assigned to B(w) in ρ . Hence, v ′ cannot appear between v and w in ρ . Thus, w ′ ≺ρ v ′ must 
hold. Since v ′ is the dominator of d(w ′), it follows from Rule R.1, that there is no vertex of L0 between w ′ and v ′ . Therefore, 
the only way for (v, w) and (v ′, w ′) to cross in ρ is if v ≺ w ′ ≺ w ≺ v ′ . Again, by Rule R.1, w ′ should belong to a block 
discovered by v and not v ′ . �
Next, we prove that all secondary dominator edges can also be assigned to a single page.

Lemma 15. Let (v, w) and (v ′, w ′) be two secondary dominator edges of G. Then, (v, w) and (v ′, w ′) do not cross in ρ .

Proof. We may assume without loss of generality that v, v ′ ∈ L0, w, w ′ ∈ L1, v ′ ≺ρ v , and that v, w, v ′ and w ′ are four 
distinct vertices of G . Let f v w ( f v ′ w ′ ) be a face that has vertices v and w (v ′ and w ′) on its boundary. By the definition 
of secondary dominator edges, we have v = dom( f v w) and v ′ = dom( f v ′ w ′ ). Another immediate consequence of the edges 
being secondary dominator edges is that w ≺ρ v and w ′ ≺ρ v ′ . It also follows that f v ′ w ′ ≺λ f v w since v ′ ≺ρ v . If v ′ ≺ρ w , 
then we have w ′ ≺ρ v ′ ≺ρ w ≺ρ v , so the edges do not cross. Thus, assume w ≺ρ v ′ . Then, we have w ′ ≺ρ v ′ ≺ρ v and 
w ≺ρ v ′ , and it remains to show that w ≺ρ w ′ .

Since (v, w) and (v ′, w ′) are not primary dominator edges, we have d(w) ≺λ f v w and d(w ′) ≺λ f v ′ w ′ . Note that if 
d(w) ≺λ d(w ′), the claim follows from Corollary 13. Thus, we proceed by considering the two subcases, d(w ′) ≺λ d(w) and 
d(w) = d(w ′). In the former case, since w ≺ρ v ′ and since v ′ is the dominator of f v ′ w ′ , we obtain the order: d(w ′) ≺λ

d(w) �λ f v ′ w ′ ≺λ f v w . No matter if d(w) ≺λ f v ′ w ′ or d(w) = f v ′ w ′ holds, in both cases the planarity of σ(G) is violated, 
as illustrated in Figs. 8a and 8b. Consider now the latter case, in which d(w ′) = d(w). Since w belongs to L1, vertex w
belongs to the boundary of block B(w) discovered by d(w ′) = d(w). Similarly, vertex w ′ belongs to the boundary of block 
B(w ′) discovered by d(w ′) = d(w). For the two blocks B(w ′) and B(w), either B(w) �= B(w ′) or B(w) = B(w ′) holds. 
Assume first that B(w) �= B(w ′). Since B(w ′) and B(w) are discovered by the same face, and since f w ′ ≺λ f w , it follows 
that B(w) precedes B(w ′) in the counterclockwise traversal of d(w ′) = d(w). Otherwise the faces f w ′ and f w would violate 
the planarity of σ(G), as illustrated in Fig. 8c. Thus, by Property 7, we obtain w ≺ρ w ′ . To complete the proof, it remains 
to consider the case in which B(w ′) = B(w). Similar to the case above, by Rule R.3, in the counterclockwise traversal of 
B(w ′) = B(w) starting from its leader, vertex w precedes w ′ since otherwise the faces f w ′ and f w violate the planarity of 
σ(G), as illustrated in Fig. 8d. �
Finally, we prove that also all tertiary dominator edges can be assigned to a single page. For this, we need the following 
property of tertiary dominator edges.

Property 16. Let (v, w) be a tertiary dominator edge of G with v ∈ L0 and w ∈ L1 . Then v is not the dominator of d(w) and d(w) is 
not a small face.

Proof. If v is the dominator of d(w), the edge (v, w) is a primary dominator edge and not tertiary. Assume now, that d(w)

is a small face. Then, for every intra-level face f w that contains w on its boundary, dom(d(w)) is the only L0-vertex on the 
boundary of f w . Hence v = dom(d(w)), which is not possible. �
9
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Fig. 9. Illustration for the proof of Lemma 17.

Lemma 17. Let (v, w) and (v ′, w ′) be two tertiary dominator edges of G. Then, (v, w) and (v ′, w ′) do not cross in ρ .

Proof. We may assume without loss of generality that v, v ′ ∈ L0, w, w ′ ∈ L1, v ≺ρ v ′ , and that v, w, v ′ and w ′ are four 
distinct vertices of G . Let f v w ( f v ′ w ′ ) be a face that has vertices v and w (v ′ and w ′) on its boundary. By the definition of 
tertiary dominator edges, f v w is before d(v) around v and f v ′ w ′ is before d(v ′) around v ′ . Another immediate consequence 
of the edges being tertiary dominator edges is that w ≺ρ v and w ′ ≺ρ v ′ . To prove the claim, it remains to show that either 
v ≺ρ w ′ or w ′ ≺ρ w . We proceed by assuming that w ′ ≺ρ v and show that in this case w ′ ≺ρ w holds.

With (v, w) and (v ′, w ′) being tertiary dominator edges, it follows from Property 16 that d(w) and d(w ′) are not small 
and that v �= dom(d(w)) and v ′ �= dom(d(w ′)). By Corollary 13, the claim holds if d(w ′) ≺λ d(w). Hence, we assume that 
d(w) �λ d(w ′) and distinguish two cases on whether d(w) ≺λ d(w ′) or d(w) = d(w ′) holds. For the former case, note that 
for f v w to be before d(v) around v , d(v) �λ d(w) must hold. The same argument holds for v ′ and w ′ . In total, we have 
dom( f v w) ≺ρ v and dom( f v ′ w ′ ) ≺ρ v ′ by the definition of tertiary edges. As shown in Fig. 9a, it follows then by planarity 
of σ(G) that d(v) �λ d(w), which yields d(v) ≺λ d(w ′). Further, in order for vertex w ′ to be on the boundary of f v ′ w ′ , 
it follows by planarity that v �ρ dom(d(w ′)) and in case this holds with equality, d(w ′) is after d(v) around v . Hence, it 
follows from Rule R.1 that v ≺ρ w ′ , which is a contradiction to our initial assumption.

Hence, we focus on the case in which d(w) = d(w ′) holds. Observe that in this case d(w) = d(w ′) = d(v) holds, as 
otherwise the planarity of σ(G) is violated, as shown in Fig. 9b. Thus, we assume d(w) = d(w ′) = d(v), as shown in Fig. 9c. 
By the planarity of σ(G), the vertices w and w ′ must belong to different blocks B(w) and B(w ′). With similar arguments 
as in the proof of Lemma 15, it follows that B(w ′) precedes B(w) and thus, w ′ ≺ρ w follows from Rule R.2, as desired. This 
finishes the proof. �
In the following, we describe properties that will be useful in the egde-to-page assignment of the non-dominator edges.

Lemma 18. Let v and w be two vertices of G, such that v ≺ρ w. Also, let f v and f w be two intra-level faces containing v and w on 
their boundaries, respectively, such that f v ≺λ f w . If the following conditions hold, then f v �λ d(w).

(i) v is d(v)-prime,
(ii) w is d(w)-prime,

(iii) v and w are not the dominators of f v and f w , respectively,

Proof. First, observe that by Property 12, we have d(v) �λ d(w). We proceed by considering three cases based on whether 
v and w belong to L0 or to L1 as follows: (a) v belongs to L0, (b) v belongs to L1 and w belongs to L0, and (c) v and w
belong to L1.

– We start with Case (a), in which v belongs to L0. Since v is d(v)-prime, it follows by Property 11 that v is also 
f v -prime. However, since v is not the dominator of f v , it follows that d(v) = f v . Now, the claim f v �λ d(w) is an 
immediate consequence of d(v) �λ d(w).
10
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Fig. 10. Illustration for the proof of Lemma 18.

– Consider now Case (b), in which v belongs to L1 and w belongs to L0. Analogously to Case (a), it follows by Property 11
that w is also f w -prime. However, since w is not the dominator of f w , it follows that d(w) = f w . Now, the claim 
f v �λ d(w) is an immediate consequence of the assumption f v ≺λ f w .

– To complete the proof of the lemma, we consider Case (c), in which v and w belong to L1. Assume to the contrary 
that d(w) ≺λ f v . This implies d(v) �λ d(w) ≺λ f v ≺λ f w . We consider the two subcases, namely, d(v) ≺λ d(w) and 
d(v) = d(w). In the former case, since v belongs to L1, vertex v belongs to the boundary of block B(v) discovered by 
d(v). Similarly, vertex w belongs to the boundary of block B(w) discovered by d(w). Hence, we have B(v) �= B(w), 
as d(v) ≺λ d(w); see Fig. 10a. The order f v ≺λ f w violates the planarity of σ(G); a contradiction. We now consider 
the case, in which d(v) = d(w). Since v belongs to L1, vertex v belongs to the boundary of block B(v) discovered by 
d(v) = d(w). Similarly, vertex w belongs to the boundary of block B(w) discovered by d(v) = d(w). For the two blocks 
B(v) and B(w) either B(v) �= B(w) or B(v) = B(w) holds. First, assume that B(v) �= B(w); see Fig. 10b. B(v) and B(w)

are discovered by the same face, and v ≺ρ w . By Rule R.2 it follows that B(v) precedes B(w) in the counterclockwise 
traversal of d(v) = d(w). With f v ≺λ f w , the planarity of σ(G) is violated; a contradiction. Next, assume B(v) = B(w). 
Since v ≺ρ w , by Rule R.3, in the counterclockwise traversal of B(v) = B(w) starting from its leader, vertex v precedes 
w; see Fig. 10c. The order f v ≺λ f w violates the planarity of σ(G); a contradiction.

The above case analysis completes the proof. �
The next lemma reveals a relationship between two faces containing two edges that cross in the linear ordering. In the 
remainder of the paper, we say that an edge (v, w) is non-dominator, if (v, w) is neither primary dominator, nor secondary 
dominator, nor tertiary dominator edge.

Lemma 19. Let v, w, x and z be four vertices of G, such that (v, w) and (x, z) are two non-dominator edges of G, and v ≺ρ x ≺ρ

w ≺ρ z. Let f v w be a face with v and w on its boundary, and let fxz be a face with x and z on its boundary such that f v w and fxz are 
two distinct faces. Moreover, v and w are f v w -prime, whereas x and z are fxz-prime. Then d(x) = f v w or d(w) = fxz holds.

Proof. We first show that v cannot belong to L0. Assume the contrary. Vertex v is not the dominator of f v w , as otherwise 
(v, w) would be a dominator edge. However, with v ≺ρ w , it follows that w also belongs to L0. Since w is f v w -prime, and 
v ≺ρ w , the only way for x to lie between v and w in ρ is when f v w = fxz holds; a contradiction. The same argumentation 
holds for x ≺ρ w ≺ρ z. Hence, we may assume that both v and x belong to L1. By Property 12, we have d(v) �λ d(x). We 
assume to the contrary that d(x) �= f v w and d(w) �= fxz hold.

We consider the two cases (a) f v w ≺λ fxz and (b) fxz ≺λ f v w . First, consider Case (a). We continue by distinguishing 
between two subcases based on whether f v w ≺λ d(x) or d(x) ≺λ f v w . We start with f v w ≺λ d(x). Let u j belong to L0
and be the f v w -prime vertex with the highest index. Then every f v w -prime vertex, except for possibly u j , precedes any 
d(x)-prime vertex that is discovered by d(x). Since w is f v w -prime and x belongs to L1, it follows that w ≺ρ x if w �= u j ; 
a contradiction. However, if w = u j , then the only way for x ≺ρ w to hold is when w is not d(w)-prime and d(x) is a 
small face with w as its dominator. But then it follows by planarity and x ≺ρ z, that also fxz is a small face with w as 
its dominator. This yields z ≺ρ w , a contradiction. Hence, we may focus on the case d(x) ≺λ f v w . Our plan is to apply 
Lemma 18 on vertices v and x for which we know that v ≺ρ x and f v w ≺λ fxz . Since v and x belong to L1, Conditions i 
11
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Fig. 11. Illustrations for the proof of Lemma 19.

Fig. 12. The conflict graph of the example illustrated in Fig. 4.

and ii of Lemma 18 are satisfied. Furthermore, with v, x belonging to L1, Condition iii of Lemma 18 holds as well. Hence, 
by Lemma 18, we obtain f v w �λ d(x). This contradicts the original assumption d(x) ≺λ f v w .

Next, consider Case (b), in which fxz ≺λ f v w . By Property 5, we have d(x) �λ fxz which together with d(v) �λ d(x)
implies d(v) �λ d(x) �λ fxz ≺λ f v w . By assumption, d(w) �= fxz . We continue by considering two subcases based on whether 
fxz ≺λ d(w) or d(w) ≺λ fxz . First, assume fxz ≺λ d(w). By Property 5, it follows that d(z) �λ fxz . The latter two inequalities 
imply d(z) ≺λ d(w). We claim that z is d(z)-prime. Assume for contradiction that z is not d(z)-prime. In particular, z
belongs to L0 and fxz �= d(z), since this would contradict z being fxz-prime. Since fxz has z on its boundary, fxz either 
comes before or after d(z) around z. If fxz comes before d(z) around z, the edge (x, z) is a dominator edge, contradicting 
the original assumption. Hence, we may assume that fxz comes after d(z) around z. However, since (x, z) is not a dominator 
edge, we have z �= dom( fxz). By planarity, it follows that dom( fxz) �ρ dom(d(z)) but more importantly, fxz ≺λ d(z), which 
is a contradiction to Property 5. Thus, our claim is true and we may assume that z is d(z)-prime. Now, it follows from 
Corollary 13 and d(z) ≺λ d(w), that z ≺ρ w which contradicts our assumption w ≺ρ z. Hence, in the following we consider 
the case d(w) ≺λ fxz . We distinguish two subcases based on whether w belongs to L0 or to L1. First, consider the case, 
in which w belongs to L0. If w is d(w)-prime, d(w) = f v w follows by Property 11 since w is not the dominator of f v w . 
Therefore, we have d(w) ≺λ fxz ≺λ f v w = d(w); a contradiction. Thus, we may assume that w is not d(w)-prime which 
yields d(w) ≺λ fxz ≺λ f v w . If f v w comes before d(w) around w , it follows from d(z) �λ fxz ≺λ f v w and z being d(z)-prime 
that z ≺ρ w; a contradiction. Hence, we may assume that f v w comes after d(w) around w . However, with d(w) ≺λ f v w , w
must be the dominator of f v w , contradicting the assumption that (v, w) is a non-dominator edge. To complete the proof of 
the lemma, it remains to consider the case, in which w belongs to L1. Observe that d(v) �λ d(x) �λ d(w) by Property 12. 
This yields d(v) �λ d(x) �λ d(w) ≺λ fxz ≺λ f v w . As illustrated in Fig. 11a, f v w violates the planarity of σ(G). Note, that the 
same violation of planarity occurs, when some of the three discovering faces are the same, since the order of the blocks (or 
the order of the vertices within the blocks) remains the same due to Rule R.3. �
Observe that in Lemma 19 the edges (v, w) and (x, z) form two non-dominator edges that cannot be assigned to the same 
page. Lemma 19 translates this conflict into a relationship between the two faces f v w and fxz containing these edges. In 
the following, we model these conflicts as edges of an auxiliary graph which we call the conflict graph and denote by C(G); 
see also Fig. 12 for an illustration.
12
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Fig. 13. Illustration for the proof of Lemma 20.

Definition 1. The conflict graph C(G) of G is an undirected graph whose vertices are the faces of F . There exists an edge ( f , g) with 
f �= g in C(G) if and only if there exists a vertex w of level L1 on the boundary of g such that f = d(w).

With this definition, we are can restate Lemma 19 as follows.

Lemma 20. Let (v, w) and (x, z) be two non-dominator edges of G belonging to two distinct faces f v w and fxz such that v and w are 
f v w -prime, x and z are fxz-prime, v ≺ρ w, and x ≺ρ z. If (v, w) and (x, z) cross in ρ , then there is an edge ( f v w , fxz) in C(G).

Proof. Without loss of generality, we may assume v ≺ρ x ≺ρ w ≺ρ z. As in the proof of Lemma 19, we first show that v
and x belong to L1. Furthermore, by Lemma 19, we have that f v w = d(x) or fxz = d(w) holds. Since x belongs to L1, it 
follows that there is an edge ( f v w , fxz) in C(G) if f v w = d(x) holds. Thus, consider fxz = d(w). If w belongs to L1, it follows 
that there is an edge ( f v w , fxz) in C(G). Hence, assume that w is on L0. Recall that f v w �= fxz holds, vertex w is f v w -prime, 
and we have w �= dom( f v w), since (v, w) is not a dominator edge. We split the proof into the two cases (a) f v w ≺λ fxz and 
(b) fxz ≺λ f v w . In Case (a), we get d(w) �λ f v w ≺λ fxz = d(w) by Property 5; a contradiction. In Case (b), we observe that 
if w is d(w)-prime, we have d(w) = fxz ≺λ f v w and thus, w = dom( f v w) by Property 11; a contradiction. Hence, we may 
assume that w is not d(w)-prime. However, since w is f v w -prime and w �= dom( f v w), there is at least one vertex on L0
right before w in a clockwise traversal of L0 that is also on the boundary of f v w . This is illustrated in Fig. 13. Now, recall 
that by Property 12 and since v and x belong to L1, we have d(v) �λ d(x). Together with Property 5, we conclude that 
d(v) �λ d(x) �λ fxz . In fact, d(v) = d(x) = fxz has to hold; otherwise not both d(v) and f v w could bound the block B(v)

without violating the planarity of σ(G). Since d(v) = fxz and since v belongs to L1, the edge ( f v w , fxz) exists in C(G). �
In the following lemma, we prove an important property of the conflict graph.

Lemma 21. Graph C(G) is 1-page book embeddable.

Proof. We order the vertices of C(G) according to λ(F). Suppose for contradiction that two edges ( f , g) and ( f ′, g′) of 
C(G) cross in λ(F) such that, without loss of generality, f ≺λ f ′ ≺λ g ≺λ g′ . By definition of C(G), there is either a vertex 
v of level L1 on the boundary of f such that g = d(v), or there is a vertex w of level L1 on the boundary of g such 
that f = d(w). In the first case, by Property 5, we have d(v) �λ f , which contradicts g = d(v) �λ f ≺λ g . Now consider 
the second case. We argue analogously for the edge ( f ′, g′). Hence, there exist two vertices w and w ′ of level L1 on the 
boundaries of g and g′ , respectively, such that f = d(w) and f ′ = d(w ′) hold. This yields d(w) ≺λ d(w ′) ≺λ g ≺λ g′ . Since 
w and w ′ belong to L1, they are d(w)- and d(w ′)-prime, respectively. By Corollary 13 and since w �= w ′ , we have w ≺ρ w ′ . 
Now we apply Lemma 18 on w and w ′ with f v = g and f w = g′ , and obtain g �λ d(w), a contradiction to the fact that 
d(w) ≺λ g . �
Since C(G) is 1-page book embeddable, it is outerplanar [10]. Hence, the following corollary becomes a direct implication 
of Lemma 21.

Corollary 22. Graph C(G) admits a vertex coloring with three colors.

We are now ready to describe how to assign the edges of G to the pages of the book embedding. First, we embed all 
primary edges in a single page p0, all secondary edges in a single page p1, and all tertiary edges in a single page p2. By 
Lemmata 14, 15 and 17, this assignment is valid. Next, we assign the remaining edges of G to a total of 3 ·

⌈
k
2

⌉
pages. 

To ease the description, we partition these pages into three sets R1, B1, and G1, each containing 
⌈

k
2

⌉
pages as follows: 

R1 = {r1
1, . . . , r1

�k/2�}, B1 = {b1
1, . . . , b

1
�k/2�}, and G1 = {g1

1, . . . , g1
�k/2�}. The actual assignment is done by processing the intra-

level faces of F according to the ordering λ(F). Assume that we have processed a certain number of faces in this order 
and that we have assigned all the non-dominator edges of G that are induced by the vertices of these faces in the pages 
13
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Fig. 14. Illustrations for the proofs of (a) Property 24, and (b) Property 25.

mentioned above. Let f be the next face to process. By Corollary 22, face f has a color out of three available ones, say red, 
blue, and green. Now, observe that the vertices of f induce at most a k-clique Q f in G . Also, observe that some of the 
edges on the boundary of f may have been already assigned to a page. We assign the remaining non-dominator edges of 
Q f to the pages of one of the sets R1, B1, and G1 according to the color of f . Since Q f is at most a k-clique, 

⌈
k
2

⌉
pages 

are sufficient regardless of the underlying linear order [10].
The remainder of this section is devoted in proving that the (non-dominator) edges assigned to the pages in R1, B1, and 

G1 do not cross, and thus that the computed book embedding is valid. Consider two non-dominator edges (v, w) and (x, z), 
and let f v w and fxz be the faces of F responsible for assigning (v, w) and (x, z) to one of the pages of R1 ∪ B1 ∪ G1. If v
and w are f v w -prime, and if x and z are fxz-prime, then by Lemma 20, we know that (v, w) and (x, z) do not cross. Hence, 
we may assume that the edges (v, w) and (x, z) are incident to vertices that are not prime with respect to the face that 
belongs to that edge. In this direction, we need a few auxiliary lemmata.

Property 23. Let v and w be two vertices with v ≺ρ w on the boundary of a face f v w . If w is f v w -prime, then v is also f v w -prime. 
If v is not f v w -prime, then w is not f v w -prime.

Proof. Both claims follow from the fact that all vertices that are f v w -prime precede those that are not f v w -prime. Since 
v ≺ρ w , the property follows. �
Property 24. Let v and w be two vertices of G. If the following conditions hold, then d(v) = f v w .

(i) v and w belong to L0 ,
(ii) v and w are on the boundary of a face f v w , and

(iii) dom( f v w) ≺ρ v ≺ρ w.

Proof. Condition i and Property 5 imply that d(v) �λ f v w . To prove the property, assume to the contrary d(v) ≺λ f v w . 
Since, by Condition iii, dom( f v w) precedes v , vertex v cannot be prime with respect to face d(v) that discovers v . However, 
it follows that v is the last vertex on L0 in the ordering ρ that is on the boundary of f v w ; see Fig. 14a. This contradicts the 
existence of vertex w , which is also on L0 (by Condition i), on the boundary of f v w and follows v in the ordering ρ (by 
Condition iii). �
Property 25. Let v, w and x be three vertices of G. If the following conditions hold, then f v w �λ d(x).

(i) v and w belong to L0 ,
(ii) v and w are on the boundary of a face f v w , and

(iii) dom( f v w) ≺ρ v ≺ρ x ≺ρ w.

Proof. Assume to the contrary that d(x) ≺λ f v w , therefore dom(d(x)) �ρ dom( f v w). Hence, by Condition iii, we obtain 
dom(d(x)) �ρ dom( f v w) ≺ρ v ≺ρ x ≺ρ w . Recall that x is placed between v and w (by Condition iii), both v and w belong 
to L0 (by Condition i) and on the boundary of f v w (Condition ii), and neither v nor w is the dominator of f v w (by 
Condition iii). It follows that either x also belongs to L0, or x is discovered by a face d(x) with v �ρ dom(d(x)). The latter 
case contradicts the fact that dom(d(x)) ≺ρ v . In the former case, it follows that the faces d(x) and f v w violate planarity of 
σ(G); refer to Fig. 14b for an illustration. Since both cases have been led to a contradiction, the proof follows. �

Property 26. Let v and x be two vertices of G. If the following conditions hold, then dom( f v) �ρ dom( fx) �ρ x ≺ρ v.

(i) v and x belong to L0 ,
(ii) v is on the boundary of a face f v ,
14
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Fig. 15. Illustration for the proof of Property 26.

(iii) x is on the boundary of a face fx,
(iv) f v ≺λ fx, and
(v) dom( fx) ≺ρ v.

Proof. By Condition iv, we obtain dom( f v) �ρ dom( fx). Since x is on the boundary of fx (by Condition iii) and on L0
(by Condition i), it follows that dom( fx) �ρ x. This together with Condition v imply that, in order to prove the property, 
it suffices to show that x ≺ρ v; recall that we have already shown that dom( f v) �ρ dom( fx). Assume to the contrary 
that v ≺ρ x. By Conditions iv and v, it follows that v is not f v -prime. Since v ≺ρ x, this leads to the order dom( f v) �ρ

dom( fx) ≺ρ v ≺ρ x and all of these vertices belong to L0 (by Condition i). Together with Condition iv, this violates the 
planarity of σ(G), as illustrated in Fig. 15. �
Lemma 27. Let x and z be two vertices of G belonging to the boundary of a face fxz such that dom( fxz) ≺ρ x ≺ρ z, and let f be a face 
preceding fxz in λ(F), that is, f ≺λ fxz . Then, for any vertex y of G with x ≺ρ y ≺ρ z, we have that y is not on the boundary of f .

Proof. First, we claim that x is discovered by fxz , that is fxz = d(x). If x belongs to L1, the claim follows from dom( fxz) ≺ρ x. 
Now consider the case in which x belongs to L0. Since x is preceded by dom( fxz) and followed by vertex z, and both 
vertices belong to the boundary of fxz , vertex z must belong to L0 as well. Property 24 concludes the claim. Assume for a 
contradiction that there exists a vertex y with x ≺ρ y ≺ρ z that is on the boundary of f . Note that by assumption x �= y �= z
holds. We distinguish two cases.

– Vertex y belongs to L1: In this case, y is f -prime and assigned to the block B(y). Since y is on the boundary of f , we 
obtain d(B(y)) �λ f ≺ρ fxz = d(x). Hence, it follows by Corollary 13 that y ≺ρ x; a contradiction.

– Vertex y belongs to L0: We first observe that dom( fxz) ≺ρ y holds, as otherwise we have that y �ρ dom( fxz) ≺ρ x ≺ρ z, 
which is a clear contradiction. Vertex z either belongs to L0 or to L1. First, assume that z belongs to L0. By Property 26, 
we obtain dom( f ) �ρ dom( fxz) ≺ρ z ≺ρ y; a contradiction. In the latter case, z is assigned to the block B(z) and with 
dom( fxz) ≺ρ z, we get d(B(z)) = d(z) = fxz . By Rule R.1, z is placed right after dom( fxz) and to the left of the next 
vertex on L0 after dom( fxz). With y belonging to L0, we obtain z ≺ρ y; a contradiction.

Since each of the cases above have been led to a contradiction, the proof of the lemma follows. �
As a next step, we will consider all cases of crossing non-dominator edges that might arise depending on whether the 
endpoints are prime or not. In order to reduce the number of cases we show the two following lemmata.

Lemma 28. Let (v, w) and (x, z) be two non-dominator edges of G belonging to two distinct faces f v w and fxz , respectively, such 
that v ≺ρ w, x ≺ρ z and f v w ≺λ fxz . If (v, w) and (x, z) cross, then either the edge ( f v w , fxz) exists in C(G), or there exists a 
non-dominator edge (x′, z′) in fxz with x′ and z′ being fxz-prime such that (v, w) and (x′, z′) cross.

Proof. Since v ≺ρ w , x ≺ρ z and since (v, w) and (x, z) cross, either (a) v ≺ρ x ≺ρ w ≺ρ z or (b) x ≺ρ v ≺ρ z ≺ρ w holds. 
We proceed by distinguishing different cases depending on whether x and z are fxz-prime or not.

We first claim that at least one of the vertices x and z is fxz-prime. For a contradiction, assume that neither x nor z is 
fxz-prime. In this case, dom( fxz) ≺ρ x ≺ρ z holds. For the partial order of v , w , x and z of Case (a), we apply Property 25
on vertices x, z, and w , and we obtain fxz �λ d(w). By Property 5, we further obtain that d(w) �λ f v w . Hence, fxz �λ

d(w) �λ f v w must hold, which is a contradiction to the fact that f v w ≺λ fxz . For the partial order of Case (b), we obtain a 
contradiction by applying an argument analogous to the one above in which we interchange the roles of w and v .

By the above claim, we may assume that at least one of the vertices x and z is fxz-prime. Note that if x is not fxz-prime, 
then, by Property 23, z is not fxz-prime either. Hence, we can conclude that x is fxz-prime, while z is not fxz-prime. We 
proceed by setting x′ to be x (i.e., x′ := x). Since z is not fxz-prime, z belongs to L0. It follows that dom( fxz) ≺ρ z.

We first rule out the case, in which there exists an fxz-prime vertex z, such that dom( fxz) ≺ρ z ≺ρ z. By Lemma 27, 
there is no vertex between z and z in ρ that belongs to the boundary of f v w . Hence, edges (v, w) and (x, z) cross, since 
(v, w) and (x, z) cross. The proof of the lemma follows by setting z′ to be z.
15
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Fig. 16. Illustrations for the proof of Lemma 28.

To complete the proof of the lemma, we have to focus on the case, in which there exists no fxz-prime vertex as defined 
above. In this case, the dominator of fxz is the only fxz-prime vertex on L0. Since x is fxz-prime and since x is not the 
dominator of face fxz (recall that the edge (x, z) is a non-dominator edge and x ≺ρ z), it follows that x ≺ρ dom( fxz), which 
in particular implies that x belongs to L1. Since x ≺ρ dom( fxz), either the face d(x) that discovers x strictly precedes fxz in 
λ(F) or d(x) is identified with fxz and fxz is small.

We first prove that the latter case does not apply. To see this, assume for a contradiction that fxz is small. Then, dom( fxz)

is the only L0-vertex on the boundary of fxz . Since (x, z) is a non-dominator edge, it follows that dom( fxz) �= z, which is a 
contradiction since z belongs to L0. From the discussion above it follows that d(x) ≺λ fxz . We next argue that d(x) = f v w

holds, which implies that the edge ( f v w , fxz) exist in C(G), since we have already proved that x belongs to L1. Hence, the 
proof of this property also concludes the proof of this lemma.

We assume for a contradiction that d(x) �= f v w holds. We distinguish two cases based on whether f v w ≺λ d(x) or d(x) ≺λ

f v w . First, suppose that f v w ≺λ d(x) and consider the partial order of Case (a). Since x ≺ρ w and f v w ≺λ d(x), it follows that 
vertex w is not f v w -prime. Thus, w belongs to L0 and dom(d(x)) ≺ρ w . By the planarity of σ(G), it follows that z ≺ρ w (see 
Fig. 16a); a contradiction. Consider now the partial order of Case (b). By Property 5, we obtain d(v) �λ f v w ≺λ d(x). Since 
x ≺ρ v , it follows that v belongs to L0 and is not f v w -prime. By Property 23, w is also not f v w -prime; see Fig. 16b for an 
illustration. For v ≺ρ z ≺ρ w to hold, we must have v �ρ dom(d(z)) ≺ρ w and d(z) cannot be small or v ≺ρ dom(d(z)) = w
and d(z)) is small. In both cases x and z cannot both be on the boundary of fxz without violating the planarity of σ(G); a 
contradiction.

Suppose now that d(x) ≺λ f v w and consider first the partial order of Case (a). Since x belongs to L1, it is d(x)-prime. 
We apply Property 12 with v ≺ρ x, and we get d(v) �λ d(x). Hence, the order is d(v) �λ d(x) ≺λ f v w ≺λ fxz . If v belongs 
to L0, vertex v cannot be d(v)-prime, since otherwise v = dom( f v w) follows by Property 11; a contradiction. Since v is not 
the dominator of f v w , it follows that v is the last L0 vertex on the boundary of f v w , and hence, we get that w ≺ρ v , as 
illustrated in Fig. 16c. Thus, we may assume that both v and x belong to L1. Furthermore, d(x) and fxz are both incident 
to B(x) while d(v) and f v w are both incident to B(v). By the planarity of σ(G), we have B(x) = B(v) which we abbreviate 
with B . Thus, d(x) = d(v), which we abbreviate with d. The three faces d, f v w , and fxz are incident to block B and by 
the fact that d ≺λ f v w ≺λ fxz , they appear in this counterclockwise order around B . This violates the planarity of σ(G), as 
illustrated in Fig. 16d.
16
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Fig. 17. Illustrations for the proof of Lemma 29.

Next, consider the partial order of Case (b). We have d(x) ≺λ f v w ≺λ fxz . Recall that z is not fxz-prime and therefore 
an L0-vertex different from dom( fxz); see Fig. 16e. Now vertex w either belongs to L0 or to L1. In the first case we have 
the order dom(d(x)) �ρ dom( f v w) �ρ dom( fxz) ≺ρ z ≺ρ w of vertices on L0. Together with d(x) ≺λ f v w ≺λ fxz , and in 
order for f v w to bound vertex w , the planarity of σ(G) is violated. Assume the second case, that is w belongs to L1. By 
z ≺ρ w , we have z �ρ dom(d(w)) on L0. With Property 5, we obtain dom(d(w)) �ρ dom( f v w). However, then we have 
dom( f v w) �ρ dom( fxz) ≺ρ z �ρ dom(d(w)) �ρ dom( f v w); a contradiction. �
Lemma 29. Let (v, w) and (x, z) be two non-dominator edges of G belonging to two distinct faces f v w and fxz , respectively, such that 
v and w are f v w -prime, x is fxz-prime, and z is not fxz-prime. If (v, w) and (x, z) cross such that v ≺ρ x ≺ρ w ≺ρ z, then the edge 
( f v w , fxz) exists in C(G).

Proof. First, we rule out the case, in which f v w ≺λ fxz . Similar to the proof of Lemma 19, we argue that v cannot belong 
to L0. To see this, assume the contrary. Since v is not the dominator of f v w and since v ≺ρ w , it follows that w also 
belongs to L0. Since w is also f v w -prime and since v ≺ρ w , the only way for x to appear between v and w in ρ , is if 
f v w = fxz , which is a contradiction to the fact that f v w and fxz are distinct. Next, we claim that x belongs to L1 as well. 
Assume the contrary. Since z is not fxz-prime, z also belongs to L0. Since (x, z) is a non-dominator edge, it follows that 
dom( fxz) ≺ρ x ≺ρ z. We apply Lemma 27 to dom( fxz) ≺ρ x ≺ρ w ≺ρ z with f v w ≺λ fxz and obtain that w cannot be on the 
boundary of f v w , which is a contradiction. Thus, we may assume that both v and x belong to L1. By Property 12, it follows 
that d(v) �λ d(x). Observe that if d(x) = f v w , then the edge ( f v w , fxz) exists in C(G), as desired, since we have already 
shown that x belongs to L1.

In order to prove the lemma for the case, in which f v w ≺λ fxz , it suffices to show that the case, in which d(x) �= f v w , 
does not apply. Our proof is by contradiction. First, assume f v w ≺λ d(x). This implies that every vertex that is f v w -prime 
precedes any vertex that is d(x)-prime and that is discovered by d(x). The only exception to this can occur if w = dom(d(x))
and d(x) is small. However, in that case w must also be the dominator of d(z) due to planarity, while d(z) is small as well. 
This would yield z ≺ρ w; a contradiction. Hence, we may assume that every vertex that is f v w -prime precedes any vertex 
that is d(x)-prime and that is discovered by d(x). Since w is f v w -prime and since x belongs to L1, it follows that w ≺ x, 
which is a contradiction. Hence, we may focus on the case, in which d(x) ≺λ f v w . Since d(v) �λ d(x) and since f v w ≺λ fxz , it 
follows that d(v) �λ d(x) ≺λ f v w ≺λ fxz . By Property 5, we obtain d(w) �λ f v w . Our plan is to apply Lemma 18 on vertices 
v and x for which we know that v ≺ρ x and f v w ≺λ fxz . Since v and x belong to L1, Conditions i and ii of Lemma 18 are 
satisfied. Also, since (v, w) and (x, z) are non-dominator edges, Condition iii of Lemma 18 is satisfied. Hence, by Lemma 18, 
we have f v w �λ d(x). This contradicts the previous assumption that d(x) ≺λ f v w .
17
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To complete the proof of the lemma, we now consider the case, in which fxz ≺λ f v w . Our aim is to apply Lemma 18
on x ≺ρ w . For Condition i of Lemma 18 to hold, we prove an even stronger argument, namely that x belongs to L1. 
Assume to the contrary that x is on L0. Since z is not fxz-prime, z also belongs to L0. Since v ≺ρ x ≺ρ w ≺ρ z, and since 
(v, w) and (x, z) are non-dominator edges, we obtain the following order of vertices on L0: dom(d(v)) ≺ρ x ≺ρ w ≺ρ z or 
dom(d(v)) ≺ρ x �ρ dom(d(w)) ≺ρ z, depending on whether w belongs to L0 or to L1. However, in both cases face f v w

violates the planarity of σ(G) as shown in Figs. 17a and 17b. Hence, x belongs to L1 and Condition i of Lemma 18 is 
satisfied. We now claim that v belongs to L1 as well. To prove the claim, assume the contrary. Since v and w are on the 
boundary of the same face and since v ≺ρ w , it follows that w belongs to L0, too. Since (v, w) is a non-dominator edge, 
we get dom( f v w) ≺ρ v ≺ρ w . By applying Lemma 27 on dom( f v w) ≺ρ v ≺ρ x ≺ρ w , we conclude that x cannot be on the 
boundary of fxz , which is a contradiction. Hence, v belong to L1, as desired. Next, we prove Condition ii of Lemma 18, that 
is, w is d(w)-prime. For a contradiction, assume that w is not d(w)-prime, which yields that w belongs to L0. Since, by 
assumption, w is f v w -prime, we get d(w) �= f v w . In particular, by Property 5, we have that d(w) ≺λ f v w . Since v and x
belong to L1, by Properties 5 and 12, it follows that d(v) �λ d(x) �λ fxz . If d(v) = fxz holds, then the edge ( f v w , fxz) exists 
in C(G), since we have already shown that v belongs to L1. Thus, assume d(v) �= fxz which yields d(v) ≺λ fxz . We illustrate 
these relationships in Fig. 17c and observe that in order for d(v) and f v w to be incident to block B(v), the planarity of 
σ(G) is violated. Hence, we may assume that w is d(w)-prime and therefore Condition ii of Lemma 18 is satisfied. Finally, 
Condition iii of Lemma 18 holds trivially by the assumption that we only consider non-dominator edges which ensures 
that neither x nor w is the dominator of fxz or f v w , respectively. Hence, we can apply Lemma 18 on x ≺ρ w yielding 
fxz �λ d(w).

Recall that if fxz = d(w) holds and w belongs to L1, then the edge ( f v w , fxz) exists in C(G). For a contradiction, we 
may assume that fxz and f v w do not induce an edge in C(G). Thus, either fxz �= d(w) holds or w belongs to L0. However, 
if fxz �= d(w), we obtain d(v) �λ d(x) �λ fxz ≺λ d(w) �λ f v w , and d(v) �= fxz implies d(v) ≺λ fxz ≺λ d(w) �λ f v w . Since 
z is not fxz-prime, it belongs to L0. Since w ≺ρ z, we obtain the order dom(d(w)) ≺ρ z or w ≺ρ z on L0 depending on 
whether w belongs to L0 or to L1. However, Figs. 17d and 17e show that in both cases the planarity of σ(G) is violated. 
Finally, assume fxz = d(w), but w belongs to L0. Since w is f v w -prime, we have that v, x and w are d(v)-, d(x)- and d(w)-
prime, respectively. This yields d(v) �λ d(x) �λ d(w) by Property 12. From fxz ≺λ f v w we obtain d(v) �λ d(x) �λ d(w) =
fxz ≺λ f v w . However, by Property 11, w is the dominator of f v w ; a contradiction to the fact that (v, w) is a non-dominator 
edge. �
The edge-to-page assignment. We embed all primary edges in page p0, all secondary edges in page p1, and all tertiary 
edges in page p2. We next assign the remaining edges of G to three sets R1, B1, and G1, each containing � k

2 � pages. We 
process the intra-level faces of F according to λ(F). Let f be the next face to process. By Corollary 22, face f has a color 
in {r, b, g}. The vertices of f induce at most a k-clique C f in G . We assign the non-dominator edges of C f to the pages of 
one of the sets R1, B1 and G1 depending on whether the color of f is r, b, or g , respectively. This is possible since C f is at 
most a k-clique [10]. In the following, we prove that this assignment is valid, which is the main result of this section.

Theorem 30. The book thickness of a two-level k-framed graph G is at most 3 ·
⌈

k
2

⌉
+ 3.

Proof. Consider two non-dominator edges (v, w) and (x, z), and assume without loss of generality that v ≺ρ w and x ≺ρ z
in ρ . For a contradiction, assume (v, w) and (x, z) have been assigned to the same page p and that either v ≺ρ x ≺ρ w ≺ρ z
or x ≺ρ v ≺ρ z ≺ρ w , i.e., (v, w) and (x, z) cross in the same page. By Lemmata 14, 15 and 17, p /∈ {p0, p1, p2}. Hence, 
p ∈ R1 ∪ B1 ∪ G1. Let f v w and fxz be the two faces of F responsible for assigning (v, w) and (x, z) to one of the pages of 
R1 ∪ B1 ∪ G1. Assume without loss of generality that f v w ≺λ fxz . If v and w are f v w -prime, and x and z are fxz-prime, then 
by Lemma 20, (v, w) and (x, z) cannot cross. Also, by Lemma 28, we may assume that x and z are fxz-prime. On the other 
hand, each of v and w can be f v w -prime or not. In the following, we distinguish cases based on the relative order of x, z, 
v and w and on the types of the vertices v and w .

Assume first that the relative order of the vertices is v ≺ρ x ≺ρ w ≺ρ z. Since x ≺ρ z, since both vertices are on the boundary 
of fxz , and since (x, z) is non-dominator, it follows that if x belongs to L0, then z also belongs to L0, in which case the order 
on L0 is dom( fxz) ≺ρ x ≺ρ w ≺ρ z. However, by Lemma 27, this contradicts the fact that f v w ≺λ fxz . Thus, x necessarily 
belongs to L1. Next, we distinguish cases based on the types of vertices v and w .

– Vertex v is not f v w -prime, which, by Property 23, implies that w is also not f v w -prime. Hence, both v and w belong 
to L0, and as result dom( f v w) ≺ρ v ≺ρ w . Since w ≺ρ z and since z is fxz-prime, it follows that w �ρ dom( fxz). By 
Property 12 and since v and w belong to L0, we get v �ρ dom(d(x)) �ρ w �ρ dom( fxz). If dom(d(x)) = w , then d(x)
has to be small, since otherwise w ≺ρ x. Therefore, regardless of whether dom(d(x)) = w or dom(d(x)) ≺ρ w holds, 
a situation as the one illustrated in Fig. 18a arises; recall that f v w ≺λ fxz . If w = dom( fxz) holds, then fxz has to be 
small, as otherwise the planarity of σ(G) is violated. However, the fact that z ≺ρ w contradicts the fact that fxz is 
small. Hence, w ≺ρ dom( fxz) must hold. In this case, v cannot be on the boundary of the intra-level face fxz without 
violating the planarity of σ(G), which is again a contradiction.
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Fig. 18. Illustrations for the proof of Theorem 30.

– Vertex v is f v w -prime and w is not f v w -prime. First, we show that vertex v belongs to L1. To this end, we assume to the 
contrary that v belongs to L0. Since v belongs to L0 and v is f v w -prime, it follows that v �= dom( f v w). Since w also 
belongs to L0, we have dom( f v w) ≺ρ v ≺ρ w . We apply Properties 23 and 24 which yields d(v) = f v w �λ d(x). Observe 
that since z is fxz-prime, we have w �ρ dom( fxz), as otherwise z ≺ρ w , which is a contradiction. Similarly, if fxz is 
small, it follows again that z ≺ρ w , which is the same contradiction. Hence, fxz cannot small. Hence, fxz follows d(w)

in a counterclockwise traversal of w starting from (u j−1, u j) and ending at (u j, u j+1) with u j = w . Thus, we arise at 
a situation as the one illustrated in Fig. 18b, which shows that x cannot be on the boundary of fxz without violating 
the planarity of σ(G); a contradiction. Thus, v belongs to L1, as desired. Now all conditions of Lemma 18 for vertices 
v and x are satisfied, which implies that f v w �λ d(x). We are now ready to show that the ( f v w , fxz) exist in graph 
C(G), which completes the proof this case, since it also implies that (u, v) and (x, z) have been assigned to different 
pages. Assume for a contradiction that there exists no edge ( f v w , fxz) in oC(G). Since x belongs to L1, it follows that 
f v w �= d(x). In total, we have d(v) �λ f v w ≺λ d(x) �λ fxz . Since x ≺ρ w , we have either that dom(d(x)) ≺ρ w or that 
dom(d(x)) = w and d(x) is small. If d(x) is small, then we arise at a situation as the one illustrated in Fig. 18c. In 
order for w ≺ρ z to hold, either w ≺ρ dom( fxz) or w = dom( fxz) and fxz is not small. However, in both cases face fxz

violates the planarity of σ(G); a contradiction. Thus, we may assume dom(d(x)) ≺ρ w , as illustrated in Fig. 18d. Since 
w ≺ρ z and since z is fxz-prime, we have w �ρ dom( fxz). If equality holds, fxz cannot be small, since otherwise it 
follows that z ≺ρ w . Hence, according to the definition of small faces, fxz follows d(w) in a counterclockwise traversal 
of w starting from (u j−1, u j) and ending at (u j, u j+1) with u j = w . Now, fxz cannot have vertex x on its boundary 
without violating the planarity of σ(G); a contradiction.
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– Vertices v and w are f v w -prime. By Lemma 20, the edge ( f v w , fxz) exists in C(G), which implies that (u, v) and (x, z)
have been assigned to different pages.

Consider now the case, in which the relative order of x, z, u and w is x ≺ρ v ≺ρ z ≺ρ w . We proceed as above by considering 
subcases based on the types of vertices v and w .

– Vertex v is not f v w -prime, which, by Property 23, implies that w is also not f v w -prime. Hence, both v and w belong to 
L0 and since (v, w) is a non-dominator edge, we obtain dom( f v w) ≺ρ v ≺ρ w . Observe that by Property 24, vertex v is 
discovered by f v w . On the other hand, we have f v w �λ d(x) by Property 25. We claim that x belongs to L1. Assume the 
contrary. Since x precedes z and both vertices are on the boundary of fxz , it follows that z also belongs to L0. Therefore, 
all four vertices belong to L0 and their order is x ≺ρ v ≺ρ z ≺ρ w . Since v and w are on the boundary of f v w and x
and z on the boundary of fxz , the two faces f v w and fxz clearly violate the planarity of σ(G). Thus, we may assume 
that x belongs to L1, as we initially claimed. We are now ready to show that the ( f v w , fxz) exist in graph C(G), which 
completes the proof this case. Assume for a contradiction that there exists no edge ( f v w , fxz) in oC(G). Since x belongs 
to L1, we have f v w �= d(x). Therefore, we get d(v) = f v w ≺λ d(x). In order for x ≺ρ v to hold, the dominator of d(x)
either precedes v on L0 or the dominator of d(x) is v and d(x) is small. By applying the same arguments on vertices 
x and z, we can similarly conclude that the dominator of d(z) either precedes w on L0 or the dominator of d(z) is w
and d(z) is small. This gives rise to three subcases to consider.
– d(x) is small and dom(d(x)) = v . Since v ≺ρ z and z is fxz-prime, we have v � dom( fxz). If v = dom( fxz) holds, then 

fxz is not small since otherwise it follows that z ≺ρ v; a contradiction. Thus, fxz is not small. However, Fig. 18e shows 
that in this case the face fxz cannot have x on its boundary without violating the planarity of σ(G).

– d(z) is small and dom(d(z)) = w . Having ruled out the case above, we may further assume that d(x) is not small. Since 
d(x) is not small and since x ≺ρ v , we get dom(d(x)) ≺ρ v . As illustrated in Fig. 18f, face fxz cannot have x and z on 
its boundary without violating the planarity of σ(G); a contradiction.

– Neither d(x) nor d(z) is small. This yields dom(d(x)) ≺ρ v and dom(d(z)) ≺ρ w on L0. We claim that v �ρ dom(d(z)). 
Assume the contrary, that is, dom(d(z)) ≺ρ v . Since v ≺ρ z, vertex z cannot be d(z)-prime and therefore z belongs to 
L0. We obtain the order dom(d(x)) ≺ρ v ≺ρ z ≺ρ w on L0. As shown in Fig. 18g, face f v w violates the planarity of 
σ(G). Thus, we conclude that dom(d(x)) ≺ρ v �ρ dom(d(z)) ≺ρ w . With f v w ≺λ d(x), we get the situation illustrated 
in Fig. 18h, in which face fxz violates the planarity of σ(G).

– Vertex v is f v w -prime but w is not f v w -prime. By Lemma 29, the edge ( f v w , fxz) exists in C(G), which implies that (u, v)

and (x, z) have been assigned to different pages.
– Vertices v and w are f v w -prime. Again, by Lemma 20, the edge ( f v w , fxz) exists in C(G), which implies that (u, v) and 

(x, z) have been assigned to different pages.

From the above case analysis, we can conclude that edges (v, w) and (x, z) cannot be assigned to the same, which concludes 
the proof. �
3.2. Inductive step: multi-level instances

In this section, we consider the general instances, which we call multi-level instances, in which the input k-framed
graph G consists of q ≥ 3 levels L0, L1, . . . , Lq−1. We refer to Fig. 19 for a schematic representation of a multi-level in-
stance. Initially, we assume that the unbounded face of σ(G) contains no crossing edges in its interior; we will eventually 
drop this assumption. Recall that Gi denotes the subgraph of G induced by the vertices of L0 ∪ . . . ∪ Li containing neither 
chords of σi(G) nor the crossing edges that are in the interior of the unbounded face of σ(G). We will further denote by 
Ĝ i the subgraph of Gi that is induced by the vertices of Li−1 ∪ Li . Observe that Ĝ i is not necessarily connected; however, 
its maximal biconnected components, referred to as bicomponents in the following, form two-level instances. To ease the 
description, we refer to the blocks of all bicomponents of Ĝ i simply as the blocks of Ĝ i . In a book embedding of Gi , we 
say that two vertices of the level L j (with j ≤ i) are sequential if there is no other vertex of level L j between them along 
the spine. We say that a set U of vertices of level L j′ is j-delimited, with j′ �= j, if either: (a) there exist two sequential 
vertices of level L j such that all vertices of U appear between them along the spine, or (b) all vertices of U are preceded 
or followed along the spine by all vertices of L j .

A book embedding Ei of Gi is good if it satisfies the following properties1:

P.1 The left-to-right order of the vertices on the boundary of each non-degenerate block B of Ĝ i in Ei complies with the 
order of these vertices in a counterclockwise (clockwise) traversal of the boundary of B , if i is odd (even).

P.2 All vertices of each block B of Ĝ i , except possibly for its leftmost vertex, are consecutive and (i − 1)-delimited.

1 We stress at this point that even though Properties P.7c, P.7d and P.7e might be a bit difficult to be parsed, they formalize the main idea of Yannakakis’ 
algorithm for reusing the same set of pages in a book embedding. Notably, this formalization in the original seminal paper [54] is not present.
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Fig. 19. A multi-level instance G with four levels of vertices, such that the bicomponents of Ĝ2 (which are shaded blue) form two connected components. 
The incoming edge and the two outgoing edges incident to the components are used to indicate the page to which the primary edges and the two sets of 
secondary edges of each bicomponent are assigned to, respectively. The undirected binding edges are used to indicate to which pages the tertiary edges 
are assigned to.

P.3 If between the leftmost vertex �(B) of a block B of Ĝ i and the remaining vertices of B there is a vertex v of Li that 
belongs to a block B ′ of Ĝ i in the same connected component as B , such that the leftmost vertex �(B ′) of B ′ is to the 
left of �(B), then B and B ′ share �(B).

P.4 Let B and B ′ be two blocks of Ĝ i for which P.3 does not apply, and let �(B) and �(B ′) be their leftmost vertices. If 
�(B) precedes �(B ′), then either �(B ′) precedes all remaining vertices of B or all remaining vertices of B ′ precede all 
remaining vertices of B .

P.5 For any j ≤ i − 2, all the vertices of each block of Ĝ i are j-delimited.
P.6 The edges of Gi are assigned to 6�k/2� + 7 pages partitioned as (i) P = {p0, . . . , p6}, and (ii) R j = {r j

1, . . . , r
j
�k/2�}, 

B j = {b j
1, . . . , b

j
�k/2�}, G j = {g j

1, . . . , g
j
�k/2�}, j ∈ {0, 1}.

P.7 The edges of Gi are classified as primary, secondary, tertiary, or non-dominator in such a way that the following hold:
a For ζ ≤ i, the non-dominator edges of Ĝζ are assigned to R j ∪ B j ∪ G j with j = ζ mod 2.
b The edges that are incident to the leftmost vertex of a bicomponent of Ĝ i and that are in its interior are primary.
c Let Bi be a bicomponent of Ĝ i . The primary edges of Ĝ i in the interior of Bi are assigned to a single page p(Bi). The 

secondary edges are assigned to two pages s1(Bi) and s2(Bi) of P different from p(Bi), and the tertiary edges are 
assigned to a single page t(Bi) of P different from p(Bi), s1(Bi), and s2(Bi); refer to Fig. 19.

d Let Bi−1 be a bicomponent of Ĝ i−1. The blocks B1
i−1, . . . , B

μ
i−1 of Bi−1 are the boundaries of several bicomponents of 

Ĝ i . Then, the secondary edges of Ĝ i−1 incident to B j
i−1, with j = 1, . . . , μ, are either all assigned to s1(Bi−1) or to 

s2(Bi−1).
e Let 〈p′

0, . . . , p
′
6〉 be a permutation of P . Assume that the primary edges of Ĝ i−2 that are in the interior of a bicom-

ponent Bi−2 of Ĝ i−2 have been assigned to p′
0 (in accordance with P.7c), while the secondary edges of Ĝ i−2 that 

are in the interior of Bi−2 have been assigned to p′
1 and p′

2 (in accordance to P.7c and P.7d), and the tertiary edges 
of Ĝ i−2 that are in the interior of Bi−2 have been assigned to p′

5. The blocks of Bi−2 are the boundaries of several 
bicomponents B1

i−1, . . . , B
μ
i−1 of Ĝ i−1. Consider now a bicomponent B j

i−1 with 1 ≤ j ≤ μ of Ĝ i−1. Assume w.l.o.g. that 
the secondary edges of Bi−2 incident to B j

i−1 are assigned to p′
1. Then, the primary edges of B j

i−1 (which are incident 
to its blocks, and thus to the bicomponents of Ĝ i ) are assigned to p′

2, while its secondary edges to p′
3 and p′

4. The 
tertiary edges are then assigned to p′

6.

We next argue that the book embeddings computed by the algorithm of Section 3.1 can be easily adjusted to become good.

Lemma 31. Any two-level instance admits a good book embedding.

Proof. To prove the lemma, we show that the book embedding E of a two-level instance G computed by the algorithm 
of Section 3.1 can be slightly modified to satisfy the properties of a good book embedding. We first observe that Proper-
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ties P.5 and P.7e are clearly satisfied, since G consists of only two levels. Regarding the remaining properties, we argue as 
follows. Property P.1 holds by construction. Property P.2 directly follows from Property 6 of Section 3.1.1 and Rule R.1 of 
the constructed linear order. Property P.3 follows from Property 10 of Section 3.1.1. Property P.4 follows from Property 8 of 
Section 3.1.1. Property P.6 follows from the page assignment described in Section 3.1.2; in particular, since G consists of only 
two levels, its primary edges can be assigned to page p0 by Lemma 14, while its non-dominator edges can be assigned to 
pages in R1 ∪ B1 ∪ G1. Hence, Property P.7a holds. Property P.7b holds by the definition of primary edges. Finally, as already 
discussed, the primary edges of G are assigned to a single page p0 of P in E . Further, by Lemma 15 all secondary edges of 
G can be embedded in a single page of P in E . However, in order to satisfy Property P.7d, we reassign the secondary edges 
to two pages of P in E as follows. Assume that each connected component of the blocks of G is rooted at the degenerate 
block corresponding to its first vertex. We assign the secondary edges towards the blocks that are at odd (even) distance 
from such a root block to p1 = f1(B1) (p2 = f2(B1), resp.) of P , where G = B1. By Lemma 17, all tertiary edges can be 
assigned to a single page. �
Finally, the next lemma deals with good book embeddings of multi-level instances.

Lemma 32. Any multi-level instance admits a good book embedding.

Proof. Assume that we have recursively computed a good book embedding Ei of Gi . We next show how to extend Ei to 
a good book embedding Ei+1 of Gi+1. Note that Gi+1 is the union of Gi and Ĝ i+1, which share the vertices of Li and the 
edges of Ci(G).

Consider the set H of bicomponents B1, . . . , Bχ of Ĝ i+1. As already mentioned, each of the bicomponents in H forms a 
two-level instance. Consequently, the vertices delimiting the unbounded faces of B1, . . . , Bχ form blocks B1, . . . , Bχ of Ĝ i , 
which in turn form a set of cacti in σi(G). We assume that each connected component in this set is rooted at one of its 
blocks. This allows as to associate each bicomponent Bi out of the initial ones with a root bicomponent denoted by r(Bi), 
i = 1, . . . , χ . This further allows us to also associate each bicomponent Bi with a parity bit ε(Bi) that expresses whether 
the distance between Bi and r(Bi) is odd or even.

We process the bicomponents of H one by one as follows. Assume now that we have processed the first x − 1 < χ
bicomponents B1, . . . , Bx−1 of H and that we have extended Ei to a good book embedding Ex−1

i of Gi together with 
B1, . . . , Bx−1. Consider the next bicomponent Bx of Ĝ i+1 in H. Observe that the boundary of Bx is a simple cycle consisting 
of vertices of level Li . As a result, the vertices and the edges of this cycle are present in Gi and therefore they have been 
embedded in Ei and thus in Ex−1

i .

In the following, we show how to extend Ex−1
i to a good book embedding Ex

i of Gi together with B1, . . . , Bx . Once all 
blocks in H have been processed, the obtained book embedding Eχ

i is the desired good book embedding Ei+1 of Gi+1. 
The vertices that delimit the unbounded face of Bx form a block Bx of Ĝ i . By Property P.1, their left to right order in Ex−1

i
(say u0, . . . , us−1) complies with the order in which these vertices appear in either a counterclockwise or in a clockwise 
traversal of the boundary of Bx , depending on whether i is odd or even, respectively. We proceed by computing a good 
book embedding Ex of Bx which exists by Lemma 31, such that the left-to-right order of the vertices of Bx is u0, . . . , us−1
in Ex . Note that this can be achieved by flipping Bx , if i is even. Further, note that Ex is good by Lemma 31. We extend 
Ex−1

i to a good book embedding Ex
i in two steps as follows.

In the first step, for j = 0, 1, . . . , s − 2, the vertices of Bx that appear between u j and u j+1 in Ex , if any, are embedded 
right before u j+1 in Ex−1

i in the same left-to-right order as in Ex; also, the vertices of Bx that appear after us−1 in Ex , 
if any, are embedded right after us−1 in Ex−1

i in the same left-to-right order as in Ex . Let Ex
i be the resulting embedding 

(which still does not contain all the edges of Bx). Since Ex is a good book embedding and since we do not change relative 
order of the vertices of Bx in Ex and in Ex

i , Properties P.1 and P.2 hold for Ex
i . Since Property P.2 holds for block Bx in Ex−1

i , 
it follows that there is no vertex of level L j , with j ≤ i − 1, in Ex−1

i between any two vertices of {u1, . . . , us−1}. This and 
the fact that we have placed the remaining vertices of Bx either right before or right after any of u1, . . . , us−1 implies that 
there exists no vertex of level L j , with j ≤ i − 1, between the vertices of Bx along the spine, which proves Property P.5 for 
Ex

i .
In the second step, we assign the internal edges of Bx to the already existing pages of Ex

i to complete the embedding, 
which also implies that Property P.6 will not be deviated. This step will complete the extension of E x−1

i to Ex
i . The as-

signment is done in a straight-forward manner. The primary, secondary, tertiary, and non-dominator edges of Ex that are 
internal in Bx will be classified as primary, secondary, tertiary, and non-dominator, respectively, also in E x

i , which guar-
antees Property P.7. To guarantee that Property P.7a holds for Ex , we proceed as follows. The non-dominators edges of Ex

that are internal in Bx and are assigned to r1
1, . . . , r1

�k/2� , b1
1, . . . , b

1
�k/2� , g1

1, . . . , g1
�k/2� in Ex are assigned to r j

1, . . . , r
j
�k/2� , 

b j
1, . . . , b

j
�k/2� , g j

1, . . . , g
j
�k/2� in Ex

i , respectively, where j = i + 1 mod 2. Hence, Property P.7a holds for Ex , as desired.
We now show that no two edges assigned to any of these pages cross. Assume for a contradiction that there is a crossing 

in page p ∈ R j ∪ B j ∪ G j with j = i + 1 mod 2. Since Ex−1
i is a good book embedding, this crossing must necessarily involve 

an edge e of Bx . Let e′ be the second edge involved in the crossing. We distinguish two cases: (i) e′ belongs to one of 
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B1, . . . , Bx , and (ii) e′ belongs to some previously embedded graph Ĝζ with ζ < i + 1. In Case (i), we first observe that e′
cannot belong to Bx , as otherwise e and e′ would also cross in Ex , contradicting the fact that Ex is a good book embedding 
of Bx . Hence, we may assume that e′ belongs to B j with j < x. Since e ∈ Bx and e′ ∈ B j , by Property P.2, at least one of 
e and e′ must be incident to the leftmost vertex of the blocks Bx and B j that delimit the unbounded faces of Bx and B j , 
respectively, which, by Property P.7b, implies that at least one of them is primary; a contradiction. Consider now Case (ii)
and recall that in this case e′ belongs to some graph Ĝζ with ζ < i + 1. Since e and e′ cross in p, it follows that ζ ≡ i + 1
mod 2. The latter property further implies that ζ ≤ i − 1. In this case, however, Property P.5 implies the endpoints of edge 
e are (i − 1)-delimited, which in turn implies that e and e′ nest, which contradicts our initial assumption. In fact, the same 
argumentation can be used to show, that no two tertiary edges that are assigned to the same page (either p5 or p6) can 
cross.

By Lemma 31, all primary edges of Ex have been assigned to page p0 in Ex , while its secondary edges have been assigned 
to p1 and p2, and the tertiary edges have been assigned to p5; also, recall that no edge of Ex has been assigned to pages 
p3, p4 and p6. To guarantee Property P.7c in Ex

i , the primary edges of Ex that are interior to Bx will be assigned to Ex
i to 

a common page p of P (i.e., not necessarily to p0), while the corresponding secondary edges assigned to p1 and p2 in Ex

will be reassigned to two pages s1 and s2, respectively. Finally, the tertiary edges will be assigned to page t ∈ {p5, p6}.
To determine pages p, s1, s2, and t , we have to take into account Properties P.7d and P.7e that hold for E x−1

i . Assume 
first that i ≥ 3; the case i = 2 is immediate. Then, there is a bicomponent Bi−2 of Ĝ i−2, whose boundary vertices form a 
cycle that, in Gi+1, contains the bicomponent Bx in its interior. Assume w.l.o.g. that the primary edges of Bi−2 are assigned 
to page p′

0 ∈ P , in accordance to P.7c. It follows by P.7e that we may further assume w.l.o.g. that all the primary edges of 
the bicomponents of Ĝ i−1, whose boundaries are blocks of Bi−2, have been assigned to pages p′

1 and p′
2 different from 

p′
0. Assume also, w.l.o.g., that the secondary edges of Bi−2 incident to Bx have been assigned to p′

1. By Property P.7e, this 
implies that the primary (secondary) edges of bicomponent Bx must be assigned to page p′

2 (to p′
3 and p′

4, respectively). 
Note that also of all the previously processed bicomponents of Ĝ i+1 in H make use of these three pages plus the page p′

1. 
Hence, both Properties P.7c and P.7e are satisfied. The choice between the two pages p′

3 and p′
4 is done based on the parity 

bit ε(Bx), so that, all secondary edges of all bicomponents in H having the same parity bit will be assigned to the same 
page in {p′

3, p
′
4}, thus guaranteeing that Property P.7c holds for Ex

i . Finally, assume w.l.o.g., that the tertiary edges of Bi−2

incident to Bx have been assigned to p′
5. By Property P.7e, this implies that the tertiary edges of bicomponent Bx must be 

assigned to page p′
6.

We conclude the proof by showing that no two edges assigned to pages in {p′
2, p′

3, p
′
4, p

′
6} cross in Ex

i . We first focus 
on page p′

2. Clearly, no two edges in p′
2 belonging to Bx can cross, since Ex is a good book embedding. Hence, if there 

is a crossing in p′
2 it must involve an edge e in Bx and an edge e′ of either Gi or of one of the previously embedded 

bicomponents of Ĝ i+1 in H. We first consider the case, in which e′ belongs to Gi . In particular, by Property 5 since all the 
vertices of Bx are (i − 2)-delimited, it follows that e′ is an edge of Ĝ i . By Property P.7e, e′ must be incident to the leftmost 
vertex of Bx . Now, observe that the edges of Bx that are incident to the leftmost vertex of Bx in Ex are by definition primary; 
thus, they are not assigned to p′

2. Since by Property P.2 the remaining vertices of Bx are (i − 1)-delimited, it follows that if 
there exists a crossing in page p2, this should involve a previously embedded bicomponent of Ĝ i+1 in H. As a result, we 
can assume that e′ belongs to B j , with j < x. Let Bx and B j be the blocks that delimit the unbounded faces of Bx and B j , 
respectively. Since e ∈ Bx and e′ ∈ B j , by Property P.4, it follows that Bx and B j belong to the same connected component 
C formed by the blocks of Ĝ i . By Property P.2, at least one of e and e′ must be incident to the leftmost vertex of Bx or B j

in Ex
i , respectively. Since Bx and B j belong to C , by Property P.3, Bx and B j must share a common vertex, which implies 

that Bx and B j have different parity bits, i.e. ε(Bx) �= ε(B j). However, since e is assigned to p′
2, edge e′ is assigned to p′

1, 
contradicting our assumption that e and e′ cross. Hence, we can conclude that there is no two edges assigned to p′

2 that 
cross in Ex

i .
We now focus on the edges of {p′

3, p
′
4}. Assume w.l.o.g. that e is assigned to p′

3. As above, we argue that e′ either belongs 
to Gi (in particular, to Ĝ i ) or to one of the previously embedded bicomponents of Ĝ i+1 in H. The former case is actually 
not possible, since by Property P.7e there is no edge of Ĝ i assigned to p′

3 that is incident to Bx . So, we may focus on the 
latter case, in which e′ belongs to B j , with j < x. As above, we can conclude that Bx and B j should belong to the same 
connected component C formed by the blocks of Ĝ i , and in particular, the corresponding blocks Bx and B j that delimit their 
unbounded faces share a common vertex, which implies that Bx and B j have different parity bits. In this case, however, the 
involved edges e and e′ are assigned to p′

1 and p′
2, and thus they cannot cross in p′

3.
From the discussion above, we can conclude that Ex

i is in fact a good book embedding. However, recall that we initially 
assumed that the unbounded face of σ(G) contains no crossing edges in its interior, to support the recursive strategy. We 
complete the proof by dropping this assumption as follows. We assign these edges to the pages of R0 ∪ B0 ∪G0, which results 
in a good book embedding of G , since the endvertices of the edges already assigned to these pages are 0-delimited. �

Altogether, Lemma 32 in conjunction with Lemma 31 completes the proof of Theorem 2.
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Fig. 20. Illustration for the proof of Lemma 33. (a) A well-formed hole-free 4-map graph G with one h-point with h > 3, denoted by p. (b) The well-formed 
3-map graph G ′ obtained by deleting p. (c) A drawing of the planar skeleton of G ′ .

4. Application of Theorem 2 to map graphs

We begin by formally defining map graphs (refer also to [18]). A map graph G is one that admits a map M, i.e., a 
bijection that puts in correspondence each vertex v of G with a region M(v) of the sphere homeomorphic to a closed disk, 
called nation, in such a way that the following properties hold: (i) the interiors of any two distinct nations are disjoint, and 
(ii) two vertices u and v are adjacent in G if and only if the boundaries of M(u) and M(v) intersect. The points of the 
sphere that are not covered by any nation fall into open connected regions; the closure of each such region is a hole of M. 
A k-map graph (with k > 1) is a graph that admits a map M such that at most k nations intersect in a single point. Also, 
G is well-formed if for every edge (u, v) of G the intersection of M(u) and M(v) is either a single point or a single curve 
segment. Moreover, if M does not contain holes, G is a hole-free k-map.

In order to prove Theorem 1, we first deal with a simpler case. Namely, we prove that well-formed hole-free k-map 
graphs are k-framed, which, by Theorem 2, implies they have book thickness at most 6� k

2 � + 5.

Lemma 33. Every well-formed hole-free k-map graph is k-framed.

Proof. Let M be a well-formed hole-free k-map of a graph G and refer to Fig. 20 for an illustration. A point p of M is 
an h-point, if h > 1 nations intersect in p. Let p be an h-point of M (if any) with 4 ≤ h ≤ k. The operation of deleting the 
h-point p works as follows. Denote by V p = {m0, m1, . . . , mh−1}, the set of h nations that intersect in p. Consider now a 
small open disk D in M centered at p such that any point in D is either p, an interior point of a nation in V p , or a point 
where exactly two nations of V p intersect. We shall indeed assume that, excluding point p and up to a relabeling of the 
nations, the only adjacencies realized in D are those between mi and mi+1, for i = 0, 1, . . . , h − 1 (indices taken modulo h). 
Clearly, for a sufficiently small radius, such disk always exists. Removing the parts of the nations in D from M introduces 
a hole in the map, removes p, and does not introduce any new h′-point with h′ > 3. Let M′ be the well-formed 3-map 
obtained by deleting all h-points of M with h > 3, and let G ′ be the corresponding map graph. We aim at proving that G
admits a k-framed drawing � having G ′ as planar skeleton.

First of all note that G ′ is simple, because M′ is well-formed, and spanning, because we do not destroy any nation. 
Recall that, by definition of well-formed, any two adjacent vertices u and v are such that M′(u) and M′(v) intersect in 
either a single point puv or in a curve segment suv . In the latter case, we denote by puv an arbitrary 2-point of M′ along 
suv .

Let �′ be a drawing of G ′ obtained by representing each vertex u as an interior point pu of M′(u), and each edge (u, v)

as a Jordan arc that starts a pu , traverses M′(u) until puv , and finally traverses M′(v) ending in pv . The circular order 
of the edges around a vertex u is kept the same as the circular order of the corresponding points puv around M′(u); this 
ensures that no two arcs intersect in an interior point of a nation. On the other hand, the only point where two Jordan arcs 
may intersect is a 3-point (if it exists). In such a case it suffices to slightly perturb the curves around such h-point so to 
avoid any crossing. Thus �′ does not contain any crossing. Note that �′ is a spherical drawing, in what follows we consider 
its stereographic projection onto the plane, i.e., we view �′ as a planar drawing. Concerning the size of the largest face of 
G ′ , observe that the maximum degree of a face of G ′ (including the unbounded face) cannot be larger than the greatest 
number of nations that intersect the same hole of M′ , which is at most k by construction.

It remains to prove that: (a) G ′ is biconnected, and (b) all edges of E = G \ G ′ can be drawn entirely inside faces of G ′
and are all crossed.

Concerning (a), if there existed a vertex v whose removal disconnects G ′ , this would imply that the original map M′
contains a hole that intersects M′(v) at least twice and (at least) two nations whose corresponding vertices in G ′ are 
connected only by paths containing v . (Recall that any nation is homeomorphic to a closed disk, i.e., it intersects neither 
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Fig. 21. Illustration for the proof of Theorem 34. (a) A 3-map graph that is not well-formed, in particular m0 and m3 have two distinct adjacencies. (b) 
Removing multiple adjacencies by introducing holes. The resulting graph is a well-formed 3-map graph G with only one h-point with h = 3 that intersects 
two holes. (c) The well-formed 5-map graph G ′ obtained by adding a dummy nation such that no h-point with h > 2 intersects a hole. (d) Deleting h-points 
with h > 3. (e) A drawing of the planar skeleton �′; vertices representing dummy nations are black squares. (f) Augmenting the planar skeleton to make it 
biconnected; the inserted dummy vertices are white squares.

holes nor other nations in its interior.) However, such hole does not exist, because by construction any hole of M′ intersects 
a set of nations m0, m1, . . . , mh−1 whose induced graph contains a cycle.

Concerning (b), recall that any edge (u, v) in E connects two nations that intersect in M and do not intersect anymore 
in M′ . In particular, there exists at least one hole in M′ intersecting M′(u) and M′(v). When constructing �′ from M′ , 
such hole yields a face in �′ having both u and v on its boundary. Thus, we can draw a copy of (u, v) inside each such face. 
This concludes the proof. �
The next theorem extends the proof of Lemma 33 and, together with Theorem 2, implies Theorem 34.

Theorem 34. Every k-map graph is partial 2k-framed.

Proof. Refer to Fig. 21 for an illustration. Let M0 be a k-map of a graph G . We first aim at turning M0 into a nearly well-
formed k-map M of G , i.e., a k-map in which multiple adjacencies occur only in presence of h-points with h > 2 Recall that 
each intersection between two nations is either a single h-point (h ≥ 2) or a curve segment. If any two nations intersect 
at most once, then M = M0. Else, let m and m′ be two nations that intersect r > 1 times, and consider any intersection 
that is a 2-point or a curve segment, excluding from this segment possible h-points with h > 2. We can remove each such 
intersection between m and m′ by locally retracting m (or m′). Such operation introduces a hole (which can possibly merge 
with some other holes) in place of the intersection between m and m′ and does not destroy any other intersection because 
we avoided h-points with h > 2. The resulting k-map M may not be well-formed yet, however it is nearly well-formed.

Under this assumption, the proof of Lemma 33 can be adjusted as follows. Observe that an h-point p in M touches at 
most h holes. For each h-point p in M that touches χ ≤ h holes and with h > 2, we introduce a sufficiently small dummy
nation such that p becomes an (h + χ)-point that does not touch holes anymore (this operation does not introduce new 
h-points with h > 2). After this preliminary operation, we let M∗ be the resulting map and G∗ ⊇ G be the corresponding 
map graph. We remark that G∗ does not contain any new edge connecting two vertices of G . Moreover, M∗ is a 2k-map, 
which is still nearly well-formed. We then apply the procedure in the proof of Lemma 33. Namely, we first delete all h-
points with h > 3, which implies that the resulting map is now well-formed. We then compute a drawing �′ of the planar 
skeleton of the resulting graph G ′ . The proof of Lemma 33 ended by showing how to reinsert the edges in E = G∗ \ G ′
inside their corresponding faces of �′ so to create a 2k-framed drawing � of G . Before applying this last step, we observe 
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that the absence of holes was used in the proof to guarantee that the size of each face of �′ is at most 2k and that G ′ is 
biconnected. We show that, after a suitable augmentation of G ′ , both properties still hold.

A face f of �′ is large if the size of f is greater than 3 and f does not contain crossing edges in the final drawing � of 
G∗ (i.e., f is generated by a disk inserted to eliminate an h-point with h > 2). Let f be a large face; the stellation operation
of f works as follows. We insert a vertex v f inside f and connect it to all vertices on the boundary of f by drawing the 
new edges inside f without creating edge crossings; if a vertex of f is a cut-vertex, we connect it to v f only once. The 
stellation operation removes f and creates new faces of size strictly smaller than the size of f . By repeatedly applying this 
operation until there are no large faces we obtain a planar skeleton G ′′ such that the boundary of each face is a simple 
cycle, which implies that G ′′ is biconnected. Also, the size of a face of G ′′ is at most 3 if it does not contain crossing edges 
in �, and at most 2k otherwise. By finally reintroducing the crossing edges inside the faces of G ′′ of size (at most) 2k, we 
obtain a 2k-framed drawing of a 2k-framed graph, which is a super graph of the input graph G . This proves that every 
k-map graph is partial 2k-framed. �

We conclude this section by giving the following simple result, which implies that the book thickness of k-framed graphs 
(and hence of partial k-framed graphs) is bounded by the book thickness of k-map graphs.

Theorem 35. Every k-framed graph is a k-map graph, under the assumption that each face of the planar skeleton induces a clique of 
size k.

Proof. Consider a k-framed drawing � of a k-framed graph G . Let �′ be the planar skeleton of �. As already said, we 
shall assume that each face of �′ induces a clique of size k in �. We replace each vertex v of � with a sufficiently thin 
star-shaped nation that includes each curve representing an each edge (u, v) up to the midpoint of such curve. Since �′ is 
planar, this operation transforms �′ into a 2-map M′ . Observe that a face of size h ≤ k in �′ corresponds to a hole in M′ . 
Thus, the crossing edges of � can be easily reintroduced by creating an h-point inside each such hole. �
5. Conclusions and open problems

Our research generalizes a fundamental result by Yannakakis in the area of book embeddings. To achieve O (k) pages 
for k-map graphs and, more in general, for partial k-framed graphs, we exploit the special structure of these graphs which 
allows us to model the conflicts of the crossing edges by means of a graph with bounded chromatic number (thus keeping 
the unavoidable relationship with k low).

Even though our result only applies to a subclass of h-planar graphs, it provides useful insights towards a positive answer 
to the intriguing question of determining whether the book thickness of (general) h-planar graphs is bounded by a function 
of h only.

Another natural question that stems from our research is whether k-map graphs are partial k-framed, and in particular, 
whether Theorem 34 can be improved.

A third direction for extending our result is to drop the biconnectivity requirement of partial k-framed graphs.
We conclude by mentioning that the time complexity of our algorithm is O (k2n), assuming that a k-framed drawing of 

the considered graph is also provided. It is of interest to investigate whether (partial) k-framed graphs can be recognized 
in polynomial time. The question remains valid even for the class of optimal 2-planar graphs, which exhibit a quite regular 
structure. In relation to this question, Brandenburg [15] provided a corresponding linear-time recognition algorithm for the 
class of optimal 1-planar graphs, while Da Lozzo et al. [23] showed that the related question of determining whether a graph 
admits a planar embedding whose faces have all degree at most k is polynomial-time solvable for k ≤ 4 and NP-complete 
for k ≥ 5.
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