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Abstract

We study a novel approach to information design in the stan-
dard traffic model of network congestion games. It captures
the natural condition that the demand is unknown to the users
of the network. A principal (e.g., a mobility service) com-
mits to a signaling strategy, observes the realized demand and
sends a (public) signal to agents (i.e., users of the network).
Based on the induced belief about the demand, the users then
form an equilibrium. We consider the algorithmic goal of the
principal: Compute a signaling scheme that minimizes the
expected total cost of the induced equilibrium. We concentrate
on single-commodity networks and affine cost functions, for
which we obtain the following results. First, we devise a fully
polynomial-time approximation scheme (FPTAS) for the case
that the demand can only take two values. It relies on several
structural properties of the cost of the induced equilibrium as
a function of the updated belief about the distribution of de-
mands. We show that this function is piecewise linear for any
number of demands, and monotonic for two demands. Second,
we give a complete characterization of the graph structures
for which it is optimal to fully reveal the information about
the realized demand. This signaling scheme turns out to be
optimal for all cost functions and probability distributions
over demands if and only if the graph is series-parallel. Third,
we propose an algorithm that computes the optimal signaling
scheme for any number of demands whose time complex-
ity is polynomial in the number of supports that occur in a
Wardrop equilibrium for some demand. Finally, we conduct
a computational study that tests this algorithm on real-world
instances.

Introduction
Traffic and congestion are key factors contributing to climate
change and air pollution. On the other hand, personal and
commercial traffic are fundamental for economic develop-
ment and the modern way of life. This makes sound traffic
planning and improvement an indispensable prerequisite for
urban areas around the globe. A popular and successful model
for traffic planning are non-atomic congestion games. The
road network is represented by a graph G = (V,E) where
each edge e has a cost function ce that models the time needed
to traverse the edge and depends on the total flow on that edge.
In the single-commodity setting, a continuum of players with
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travel demand d > 0 strives to route from a designated source
vertex s ∈ V (e.g., a residential living area) to a designated
destination vertex t ∈ V (e.g., a city center). Each infinites-
imally small player aims to minimize their private cost by
choosing a least-cost path from s to t. A so-called Wardrop
equilibrium is reached when no player has the incentive to
deviate from their chosen path since all other paths have ei-
ther the same or even higher cost. It is a well-known fact
that a Wardrop equilibrium does not necessarily minimize
the overall travel time, and there is a substantial literature
that quantifies the loss in efficiency due to selfish behavior
(Dubey 1986; Roughgarden and Tardos 2002; Roughgarden
2003; Roughgarden and Tardos 2004; Correa, Schulz, and
Moses 2004, 2008; Dumrauf and Gairing 2006).

In order to achieve better equilibria, interventions through
network design (Marcotte 1986; Bhaskar, Ligett, and Schul-
man 2014; Gairing, Harks, and Klimm 2017; Roughgarden
2006) or mechanism design techniques such as tolls (Harks
et al. 2015; Fleischer, Jain, and Mahdian 2004; Hoefer, Ol-
brich, and Skopalik 2008; Larsson and Patriksson 1999;
Hearn and Ramana 1998; Bergendorff, Hearn, and Ramana
1997) have been studied extensively. These approaches, how-
ever, usually come with a high cost, e.g., for building or
remodeling road segments or for setting up a toll collection
system for highways. This paper, therefore, focuses on im-
proving the emerging equilibrium by information design.

A significant source of uncertainty in traffic networks con-
cerns the demand, i.e., information about the total amount
of traffic. Total traffic is highly fluctuating, even during a
single day. From a game-theoretic perspective, this implies
that the total volume of players in the routing game is not
fixed and not common knowledge. Such games with popu-
lation uncertainty were first studied in a systematic way by
Myerson (1998), who considered games with atomic players
and multiple player types. Cominetti et al. (2022) draw a con-
nection between the Poisson games of Myerson and atomic
congestion games where players participate independently at
random. Here we adapt the approach to non-atomic games.
The total volume of players in the game is drawn from a
probability distribution known to all players. Each player
observes whether they participate in the game or not, e.g.,
whether to drive to work in the morning (i.e., has type active)
or not (type inactive, e.g., due to illness or car malfunction).
When a player is inactive and does not participate, they re-
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Figure 1: A simple non-atomic congestion game. Left: In-
stance with two s-t-paths. Right: The cost of the Wardrop
equilibrium (black) and of the full information signaling
scheme (red) depending on the probability µ = P[d = 1]. As
indicated by the colored lines underneath, the upper path is
used for all µ ∈ [0,1] while the lower path is only used for
µ ∈ [1/2,1].

ceive a private cost of 0. Otherwise, an active player then
fixes a strategy, i.e., an s-t-path in the network, and receives
as private cost the cost of the chosen path. This leads to a
Bayesian game in the sense of Harsanyi (1967).

Due to technical reasons, in our analysis we treat a slightly
less intuitive model variant. In this version, players decide
on a route before they know whether they are active or not.
An inactive player simply discards the route choice made
earlier. The two model variants lead to equivalent outcomes
in terms of equilibria and cost; see the full version of the
paper (Griesbach et al. 2023b, Appendix A). The latter variant
allows to avoid a uniform scaling factor in all computations.
Hence, despite being less intuitive, we use it throughout the
paper for simplicity. For illustration, we start by discussing a
simple example.
Example 1. Consider the simple game in Fig. 1 with two
parallel edges and cost functions x and 5/6, respectively.
We normalize the highest demand to the size of the pop-
ulation and assume that the demands are 1 and 1/2, each
with a probability of 1/2. For a fixed player, let A be the
event that this player is active. If the player chooses the
upper edge, their expected cost is given by the flow x1 on
the upper edge when they are active, and 0 otherwise, i.e.,
Pr[A] ⋅ E[x1 ∣ A] + P[¬A] ⋅ 0. Either all players are active
or half of the players are active, and both cases have prob-
ability 1/2. Hence, the expected cost amounts to the sum
of P[A ∣ d = 1/2] ⋅ P[d = 1/2] ⋅ E[x1 ∣ A ∧ (d = 1/2)]
and P[A ∣ d = 1] ⋅ P[d = 1] ⋅ E[x1 ∣ A ∧ (d = 1)]. When
a fraction a of the players are active, we assume each in-
finitesimal player is active independently with probability
a, i.e., P[A ∧ (d = a)] = a, for every a ∈ [0,1]. Recall
that players choose their strategy before the demand is re-
alized. Suppose a fraction of x∗1 players chooses the upper
edge. Then the expected cost of a player choosing the up-
per edge is 1

2
⋅ 1

2
⋅ x
∗

1

2
+ 1 ⋅ 1

2
⋅ x∗1 = 5

8
⋅ x∗1 . A similar calcula-

tion shows that the expected cost when choosing the lower
edge is (1

2
⋅ 1

2
+ 1

2
⋅ 1) ⋅ 5

6
= 5

8
. We conclude that in the unique

Wardrop equilibrium x∗1 = 1, i.e., all players choose the upper

edge. This leads to a total expected cost of 5
8
= 0.625.

Now suppose a traffic service provider like TomTom, Ap-
ple, or Google discloses a public signal whether the traffic
is low (i.e., d = 1/2) or high (i.e., d = 1). We call this set-
ting full information, since the information about the state of
the world is fully disclosed. Now every player updates their
belief about the demand and conditions their route choice
on this information. In both cases, a corresponding Wardrop
equilibrium emerges. For demand 1/2 we get x∗1 = 1

2
and

x∗2 = 0; for demand 1, x∗1 = 5
6

and x∗2 = 1
6

. The total expected
cost with full information is 1

2
⋅ 1

2
⋅ 1

2
+ 1

2
⋅ 1 ⋅ 5

6
= 13

24
≈ 0.542.

Hence, full information improves the total expected cost over
the case with no signal.

Similarly, consider the no-signal case and the cost of an
equilibrium as a function of any prior µ = P[d = 1] ∈ [0,1]
(see the black function in Fig. 1). Inspecting the cost when
the provider gives full information (the red function), we see
that full information improves the cost over no signal, for any
prior µ ∈ [0,1]. ∎

In this paper, we study how to optimally reveal information
about the realized demand in order to induce Wardrop equi-
libria with low total expected cost. We focus on the case of
public signals where the information provided is the same for
all players. More specifically, we assume that a benevolent
traffic service provider has a finite set of public and abstract
signals Σ at its disposal. Formally, a signal σ ∈ Σ has no
a-priori intrinsic meaning. In practice, however, signals may
already be biased towards certain information, e.g., that traf-
fic volume is “moderate”, “relatively high”, or “gridlocked”.
Before seeing the realized demand, the service provider com-
mits to a signaling scheme that is public knowledge of all
players. It fixes the probabilities of emitting the signals for
each realization of the demand. Subsequently, the realization
of the demand is observed by the service provider (e.g., due to
traffic measurements or cell phone data) and signals are sent
according to the predefined signaling scheme. Upon receiving
a signal, the players update their beliefs about the realization
of the demand and react by playing a corresponding Wardrop
equilibrium. How can the service provider optimize the pub-
lic signaling scheme in order to minimize the total expected
cost of the induced Wardrop equilibrium?

Contribution. After introducing a formal description of
the problem, we derive useful structural properties of equi-
libria and their cost functions. More precisely, we show that
the cost function of the unique Wardrop equilibrium flow
is piecewise linear in the belief of the realized state for any
finite number of states (Lemma 1). We further show that for
two different demands, the cost function is monotonically
non-decreasing in the probability that the higher demand is
realized (Lemma 2 and Corollary 3). Building upon these
properties, we then provide a fully polynomial-time approx-
imation scheme (FPTAS) for optimal signaling with two
different states (Theorem 1).

There exist network structures, in which always revealing
the realized state is an optimal signaling scheme, no matter
which prior belief the players have (c.f. Example 1 above).
We call such a signaling scheme full information revelation.
We show that if the underlying graph is a series-parallel
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graph, full information revelation is an optimal signaling
scheme. We even prove that this characterization is tight –
whenever the underlying graph is not series-parallel, there
exist some cost functions for the edges and demands such
that full information revelation is not optimal (Theorem 2).

In Theorem 3, we provide an LP-based algorithm that
computes the optimal signaling scheme that induces Wardrop
equilibria only using a distinct set of different supports . The
algorithm works for any number of states and runs in time
polynomial in the number of states, the number of edges, and
the number of given supports. In general, however, there exist
networks for which, over all beliefs, the number of different
supports used in a Wardrop equilibrium is exponential in the
input size, even when there are only two different demands.
We conduct a computational study exhibiting that the number
of different supports used in a Wardrop equilibrium is small
on real-life instances. Therefore, our LP-based algorithm can
be implemented in reasonable time in practice. Also, we see
that the optimality of full information revelation is ubiquitous
in these instances, even though they are not series-parallel.

Related Work. The question how non-atomic network con-
gestion games behave when the demand changes has been
studied thoroughly. Youn, Gastner, and Jeong (2008) and
O’Hare, Connors, and Watling (2016) examined empirically
how the price of anarchy, i.e., the ratio of the total travel
time of a Wardrop equilibrium and the total travel time of
a system optimum, changes as a function of the demand.
The functional dependence of the price of anarchy as a func-
tion of the demand has been studied analytically by Colini-
Baldeschi, Cominetti, and Scarsini (2019); Colini-Baldeschi
et al. (2020); Cominetti, Dose, and Scarsini (2019), and Wu
et al. (2021). Wu et al. (2022) studied a similar question for
atomic congestion games. Wang, Doan, and Chen (2014) ob-
tained bounds on the price of anarchy of Wardrop equilibria
with stochastic demands depending on parameters of the dis-
tribution. Correa, Hoeksma, and Schröder (2019) studied a
similar model with the difference that the players perform a
Bayesian update of the distributions after observing whether
their commodity travels and find that the price of anarchy
transfers from the deterministic model; this refines earlier
results of Roughgarden (2015) on the price of anarchy of
Bayes-Nash equilibria. More generally, the sensitivity of
Wardrop equilibria to changes in the demand was studied
by (Hall 1978; Josefsson and Patriksson 2007; Fisk 1979;
Englert, Franke, and Olbrich 2010; Patriksson 2004; Takalloo
and Kwon 2020; Klimm and Warode 2022; Ukkusuri and
Waller 2010).

Games with a random number of atomic players were
introduced by Myerson (1998). He showed that when the
distribution of the number of players follows a Poisson dis-
tribution, beliefs about the number of players of an internal
player and an external observer coincide. Such Poisson games
were further studied by Myerson (2000). Gairing, Monien,
and Tiemann (2008) studied atomic congestion games where
the weight of a player is their private information and pro-
vide bounds on the price of anarchy. Cominetti et al. (2022)
studied Bernoulli congestion games, i.e., atomic congestion
games where each player participates with an independent

probability. They showed that the resource loads converge
to a Wardrop equilibrium in the limit when the participation
probability vanishes. Cominetti et al. (2019) obtained bounds
on the price of anarchy of Bernoulli congestion games with
affine costs. Similar models where players participate only
with a certain probability were studied in (Angelidakis, Fo-
takis, and Lianeas 2013; Meir et al. 2012). Ashlagi, Monderer,
and Tennenholtz (2006) studied (non-Bayesian) congestion
games with unknown number of players. For non-atomic con-
gestion games, the robustness of of social welfare in the face
of uncertain demand and risk-averse agents was examined by
Meir and Parkes (2018); Nikolova and Stier-Moses (2015).

The potential of information design for non-atomic con-
gestion games was illustrated through examples by Das, Ka-
menica, and Mirka (2017). Nachbar and Xu (2021) further
explored different signaling regimes and study connections
with the price of anarchy. Massicot and Langbort (2019) fully
characterized the optimal policy for networks consisting of
two edges with affine cost where the cost of one edge does
not depend on the state. Vasserman, Feldman, and Hassidim
(2015) considered a setting with parallel edges with affine
costs where the cost functions are permuted and bounded
the improvements that can be obtained from private signals.
Bhaskar et al. (2016) considered games with affine costs
where the offset depends on the state and showed that the
problem of computing an optimal signaling scheme cannot
be approximated by a factor of (4/3 − ε) for ε > 0, unless
P = NP. For the same setting, Griesbach et al. (2022) proved
that revealing the realized state is always an optimal signal-
ing scheme if and only if the underlying network is a series-
parallel graph. They also provided LP-based techniques to
compute the optimal signaling schemes. In particular, they
can compute optimal signals for parallel links with a con-
stant number of states and commodities. Acemoglu et al.
(2018) considered the setting in which players have different
knowledge about the available edges in a road network and
give a strict characterization of the graph class for which a
player cannot obtain higher private cost by gaining additional
information. Wu, Amin, and Ozdaglar (2021) characterize
the Bayesian Wardrop equilibria that arise when populations
of drivers receive multiple signals from heterogeneous in-
formation systems. Zhou, Nguyen, and Xu (2022) showed
how to compute the optimal public and private signal in an
atomic congestion game with constant number of parallel
edges. Alon, Meir, and Tennenholtz (2013) demonstrated
that information design may improve the social welfare in
atomic congestion games. Castiglioni et al. (2021) studied
information design for atomic congestion games in the re-
laxed setting of ex ante persuasion where the players are only
persuaded to follow the signaling scheme before receiving the
signal. They showed that an optimal signal can be computed
with LP-based techniques for symmetric players, and show
that the problem is NP-hard for asymmetric players. The
provision of information in a dynamic model where players
have preferences over arrival times was explored by Arnott,
de Palma, and Lindsey (1991). Mareček, Shorten, and Yu
(2016) considered a dynamic discrete-time model of con-
gestion where a central authority provides a signal for each
resource at each time step based on past observations.
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Preliminaries
Signaling. We consider a signaling problem in the con-
text of network congestion games. There is a finite set
Θ = {θ1, . . . , θl} of l states of nature, along with a prior dis-
tribution µ∗, where µ∗θ ≥ 0 is the probability that state θ ∈ Θ
is realized. We denote by ∆(Θ) the space of all distributions
over Θ. There is a sufficiently large, finite set of (public)
signals Σ which can be used by a benevolent principal to
influence the information of all players in a congestion game.
We study the problem of computing a good signaling scheme,
given by a distribution over Σ for each state θ ∈ Θ. More
formally, a signaling scheme is a matrix ϕ = (ϕθ,σ)θ∈Θ,σ∈Σ
such that ϕθ,σ ≥ 0 for all θ ∈ Θ, σ ∈ Σ, and ∑σ∈Σ ϕθ,σ = µ∗θ
for each θ ∈ Θ. The value of ϕθ,σ is the combined probability
that state θ is realized and the sender sends signal σ. We
define ϕσ = ∑θ∈Θ ϕθ,σ as the total probability that signal σ
gets sent. A signal σ ∈ Σ gets issued by scheme ϕ if ϕσ > 0.

The scenario proceeds as follows. First, the principal com-
mits to a signaling scheme ϕ and communicates this to all
players. Hence, the prior µ∗ and the signaling scheme ϕ are
public knowledge. Then the state of nature is realized. The
principal sees the realized state θ and sends a public signal σ
chosen according to ϕ. All agents receive the signal, update
their beliefs about the state of nature θ and the resulting costs
in the congestion game, and then choose equilibrium strate-
gies as a result of (unilaterally) minimizing their individual
expected cost. The goal of the principal is to choose ϕ to
minimize the total expected cost of the resulting equilibrium.

Network Congestion Games. We now describe the net-
work congestion game, the (individual) expected cost of the
agents, and the total expected cost. There is a directed graph
G = (V,E) with a designated source s ∈ V and destina-
tion t ∈ V . For every edge e ∈ E there is a cost function
ce ∶ R≥0 → R≥0 that is convex and non-decreasing. In this
paper, we focus on affine costs, i.e., all functions ce are of
the form ce(x) = aex + be, where ae ∈ R>0 and be ∈ R≥0 for
every e ∈ E. We concentrate on single-commodity games,
in which all players want to route from s to t. The player
population consists of a continuum of infinitesimally small
players of total volume d > 0, the available demand. For
simplicity, we normalize to d = 1. The actual demand,
however, is uncertain and depends on the realized state of
nature. Formally, each state θ ∈ Θ is associated with a
realization dθ ≤ d of actual demand. We assume w.l.o.g.
0 < dθ1 < dθ2 < ⋅ ⋅ ⋅ < dθl = d = 1. Intuitively, in state θ, each
infinitesimal player participates in the game independently
with probability dθ/d = dθ.

The set of feasible strategies P ⊆ 2E for each player is
the set of directed s-t-paths in G. A strategy distribution or
path flow is a distribution of the players on the paths P ∈ P .
Such a path flow is represented by a vector x = (xP )P ∈P
satisfying the three properties (1) ∑P ∈P xP = 1, (2) xP ≥ 0
for all P ∈ P , and (3) xP = 0 for all P ∉ P . Let X denote the
set of those vectors. Every path flow x ∈ X induces a load xe
on every edge e ∈ E given by xe = ∑P ∈P ∶e∈P xP .

Upon receiving the public signal σ (and knowing ϕ),
all players perform a Bayes update of µ∗ to a conditional
distribution µσ ∈ ∆(Θ). The conditional probability of

θ ∈ Θ when receiving a signal σ with ϕσ > 0 is given by
µθ,σ = ϕθ,σ/ϕσ. Indeed, every signaling scheme ϕ can be
seen as a convex decomposition of µ∗ into distributions µσ,
i.e., for every θ ∈ Θ, µ∗θ = ∑σ ϕθ,σ = ∑σ ϕσµθ,σ. After
this update, the players choose a path flow x ∈ X . The next
definitions apply for every distribution µ ∈ ∆(Θ). Given µ,
suppose a player chooses a path including edge e. In state θ,
the player is present in the system with probability dθ, other-
wise the private cost of this player is 0. Conditioned on the
presence of this (infinitesimal) player, the expected cost that
player will experience on e is ce(dθxe). Hence, the expected
cost of an edge e ∈ E is ce(xe ∣ µ) = ∑θ∈Θ µθdθce (dθxe).
The (individual) expected cost of a player on path P ∈ P is
given by cP (x ∣ µ) = ∑e∈P ce(xe ∣ µ). A path flow x ∈ X is
a Wardrop equilibrium if no player has an incentive to change
their chosen strategy. Formally, given µ, no player shall im-
prove their expected cost by deviating to another strategy, i.e.,
cP (x ∣ µ) ≤ cQ(x ∣ µ) for all P,Q ∈ P with xP > 0.

The next result extends a characterization for non-atomic
games with a single state, cf. (Beckmann, McGuire, and Win-
sten 1956). It directly carries over to the scenario considered
in this paper as follows.
Proposition 1. Given any distribution µ ∈∆(Θ), a strategy
distribution x ∈ X is a Wardrop equilibrium if and only if
x ∈ arg min{∑e∈E ∫

ye
0 ce(t ∣ µ)dt ∶ y ∈ X}.

All cost functions ce are convex, so their convex combi-
nations ce(x ∣ µ) are convex as well. As such, the Wardrop
equilibrium is unique, since the optimization problem in
Proposition 1 is strictly convex and has a unique solution.
We use x∗(µ) to denote the unique Wardrop equilibrium
for a distribution µ ∈ ∆(Θ). The total cost of a path flow
x for µ ∈ ∆(Θ) is given by C(x ∣ µ) = ∑P ∈P xP cP (x ∣
µ) = ∑e∈E xece(xe ∣ µ). For the Wardrop equilibrium for
µ ∈ ∆(Θ), we use the short notation C(µ) = C(x∗(µ) ∣ µ).
The goal of the principal is to choose ϕ in order to minimize
the total expected cost of the Wardrop equilibrium for the
conditional distributions µσ resulting from all signals σ, i.e.,
C(ϕ) = ∑σ∈Σ ϕσC(µσ). We refer to the full version (Gries-
bach et al. 2023b, Appendix B) for a more detailed example
illustrating the problem and its concepts.

Structural Properties
We exhibit useful structural properties of the signaling sce-
nario outlined above. We concentrate on a single probability
distribution µ over states of nature, i.e., µθ is the probability
of state θ (i.e., that demand dθ in the network is realized).
Given µ, the expected cost of edge e ∈ E is

ce(xe ∣ µ) = ∑
θ∈Θ

µθdθce(dθxe)

= ae ∑
θ∈Θ

µθd
2
θxe + be ∑

θ∈Θ
µθdθ.

(1)

We first show that the cost of the unique Wardrop equilibrium
with respect to ce(⋅ ∣ µ) is piecewise linear in µ ∈ ∆(Θ).
Let x be a flow. For v ∈ V , let ψv be the length of a shortest
path with respect to ce(xe ∣ µ) from s to v. We call an edge
e = (v,w) active in x if ψw − ψv = ce(xe ∣ µ). Clearly, for
every flow x, the set of active edges is connected and such
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that every vertex v is reached by a path of active edges from
s. Let A = {A ⊆ E ∣ G = (V,A) is connected and contains
an (s, v)-path for all v ∈ V } be the set containing all sets of
edges with that property, and let A(x) be the set of active
edges for a flow x. In the following, we call a set A ∈ A a
support. The proof of piecewise linearity is deferred to the
full version.
Lemma 1. For a single-commodity network congestion
game, the unique Wardrop equilibrium flow and the cost of
the unique Wardrop equilibrium are piecewise linear in µ. In
particular, for everyA ∈ A, there is a possibly empty polytope
PA ⊆ ∆(Θ) such that PA = {µ ∈ ∆(Θ) ∣ A(x∗(µ)) = A},
and x∗ and C are affine on PA.

Next, we study conditions in which the cost C(µ) is mono-
tone in µ. Due to space limitations, we defer the proof of the
next lemma and its corollary to the full version.

Lemma 2. Let µ(1), µ(2) ∈ ∆(Θ) be such that we have
∑θ∈Θ µ

(1)
θ d2

θ / ∑θ∈Θ µ
(1)
θ dθ < ∑θ∈Θ µ

(2)
θ d2

θ / ∑θ∈Θ µ
(2)
θ dθ

and ∑θ∈Θ µ
(1)
θ dθ < ∑θ∈Θ µ

(2)
θ dθ. Then C(µ(1)) ≤ C(µ(2)).

Corollary 3. If ∣Θ∣ = 2, C(µ) is non-decreasing in µθ2 .
The proof of Lemma 1 has striking similarities to the

proof of the same result for the model with (known de-
mand and) affine costs and uncertain offsets in (Griesbach
et al. 2022, Lemma 1). We have not been able to derive
a direct reduction between the two scenarios and discuss
why it seems non-obvious to establish. First, Lemma 2 and
Corollary 3 do not hold for signaling with uncertain off-
sets. In more detail, reinspecting the proof of Lemma 2, we
can reinterpret our model using deterministic demand d = 1
and affine costs with uncertain slopes and offsets ce(xe ∣
µ) = ∑θ∈Θ µθ (aed2

θxe + bedθ) = ∑θ∈Θ µθ (ae,θxe + be,θ) .
This scenario has been studied in, e.g., (Bhaskar et al. 2016;
Das, Kamenica, and Mirka 2017). The reinterpretation per
se does not appear to be very useful – games with uncer-
tain affine costs are not very well-understood and in gen-
eral do not admit, e.g., the linearity properties of Lemma 1
(in contrast to the case when only offsets are uncertain,
c.f. (Griesbach et al. 2022)). For a normalized version of the
costs cne (xe ∣ µ) = (∑θ∈Θ µθdθce(dθxe))/(∑θ∈Θ µθd2

θ) =
aexe + be(∑θ∈Θ µθdθ)/(∑θ∈Θ µθd2

θ), a fixed µ yields the
same scaling factor throughout for every edge cost. As such,
every Wardrop equilibrium w.r.t. costs ce(⋅ ∣ µ) is also a
Wardrop equilibrium w.r.t. costs cne (⋅ ∣ µ) and vice versa. The
normalized costs cne indeed might seem like a reduction to
an instance of affine costs with uncertain offsets. However,
defining state-specific constants bne,θ independent of µ such
that ∑θ∈Θ µθ bne,θ = be(∑θ∈Θ µθdθ) / (∑θ∈Θ µθd2

θ) for every
µ ∈∆(Θ) can be impossible. This reduction would be non-
linear and, as such, substantially change the cost structure of
signaling schemes.

FPTAS for Two States
The main result of this section is the following.
Theorem 1. For a single-commodity network G with un-
known demands, affine costs, and two states, there is an
FPTAS for optimal signaling.

C(µθ2)

0

C(1)

C(0)
µθ2

1µ∗θ2

Figure 2: Illustration for the proof sketch of Theorem 1.

For a formal proof, see the full version; in the following we
sketch the main arguments. With Lemma 1 and Corollary 3,
the cost function C(µ) is piecewise-linear and monotone, see
Fig. 2 where the orange line shows the cost function induced
by the optimal signaling scheme. The algorithm computes
polynomially many sample points for C with exponentially
decreasing step size towards the prior as indicated by the
ticks on the abscissa. The algorithm uses an LP to compute
the best signaling scheme restricted to the sampling points
and the alternative of revealing no information at all. Using
Cramer’s rule and Hadamard’s theorem, it can be shown that
a polynomial number of sample points suffice, implying that
the algorithm runs in polynomial time. The approximation
ratio of (1 + ε) for any ε > 0 is obtained by proving that
for any potential optimal conditional belief, there exists a
sampling point within an ε-distance (red area) that has smaller
cost. The cost function induced by these signals guarantees a
(1 + ε)-approximation and is shown in blue in Fig. 2.

Full Information Revelation
As our main result in this section, we show that for a single-
commodity network congestion game an optimal signaling
scheme always reveals the true state of nature if and only if
the underlying network is a series-parallel graph.

Formally, a graphG = (V,E) with two designated vertices
s, t ∈ V is a series-parallel graph if either it consists only of
a single edge E = {{s, t}}, or it is obtained by a parallel
or serial composition of two series-parallel graphs. For two
series-parallel graphsG1 = (V1,E1) andG2 = (V2,E2)with
designated vertices s1, t1 ∈ V1 and s2, t2 ∈ V2 the parallel
composition is the graphG = (V,E) created from the disjoint
union of graphs G1 and G2 by merging the vertices s1 and s2

into a new vertex s, and merging t1 and t2 into a new vertex t.
The serial composition of G1 and G2 is the graph created
from the disjoint union of graphs G1 and G2 by merging the
vertices t1 and s2, and renaming s1 to s and t2 to t. We treat
series-parallel graphs as directed graphs by directing every
edge in the orientation as it appears in any path from s to t.
This is well-defined since in a series-parallel graph, there is a
global order on the vertices such that every path only visits
vertices in increasing order.
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The proofs of this section are very similar to the ones
in (Griesbach et al. 2022). Due to space limitations, we defer
them to the full version. Broadly speaking, we first recall from
Lemma 1 that the cost of the unique Wardrop equilibrium
C is a piecewise linear function on ∆(Θ). The result then
follows from showing that C is concave in ∆(Θ) for all cost
functions and probability distributions over demands if and
only if the underlying network is series-parallel.

The general idea of the proof of the concavity of C on
∆(Θ) is as follows. In Lemma 1, we have shown that C is
affine on PA for all A ∈ A. Let x∗A ∶ ∆(Θ) → RE be an
affine function such that x∗(µ) = x∗A(µ) for all µ ∈ PA. For
x to be a Wardrop equilibrium flow, it must satisfy a system
of equations and inequalities. For µ ∈ PA, x∗A is the unique
solution x for the system of equations. While x∗(µ) = x∗A(µ)
for all µ ∈ PA, the vector x∗A(µ) with µ ∈ ∆(Θ) /PA will
not be a Wardrop equilibrium or not even a feasible flow at
all depending on which of the inequalities is violated.

Next, we show that the pointwise minimum
minA∈ACA(µ) of all Wardrop equilibria costs always
corresponds to a support that is feasible. More specifically,
we show in Lemma 4 that when for some µ ∈∆(Θ), there is
a support A ∈ A with µ ∉ PA, then there is another support
A′ ∈ A with either lower cost or the same cost but fewer
edges. As a consequence, Lemma 5 shows that a Wardrop
equilibrium is given by the flows x∗ that correspond to the
pointwise minimum minA∈ACA(µ), where ties are broken
in favor of smaller supports. Finally, our main result is
Theorem 2.
Lemma 4. For a single-commodity network congestion game
on a series-parallel graph, let A ∈ A and µ ∈ ∆(Θ) /PA.
Then, there is another support A′ ∈ A with CA′(µ) < CA(µ)
or CA′(µ) = CA(µ) and ∣A′∣ < ∣A∣.
Lemma 5. We have C(µ) =minA∈ACA(µ)∀µ ∈∆(Θ).
Theorem 2. For a single-commodity network G with un-
known demands and affine costs, full information revelation
is always an optimal signaling scheme if and only if G is
series-parallel.

Computing Optimal Schemes
We consider the computation of optimal signaling schemes.
Towards this end, we first investigate the unique Wardrop
equilibria for a fixed set of active edges. We again use the
term support for a set of active edges. Our approach is gener-
ally similar to (Griesbach et al. 2022), but there are notable
differences in the analysis to establish the result. Suppose we
are given a set of k distinct supports, which we denote by
A1, . . . ,Ak. Consider the set of signaling schemes ϕ with the
following properties: ϕ sends k signals (where for simplicity
we assume σ ∈ [k] = {1, . . . , k}), and each signal σ ∈ [k]
shall result in a Wardrop equilibrium xσ with support Aσ.
The main result in this section shows that we can efficiently
optimize over this set of signaling schemes. The proof is
deferred to the full version.
Theorem 3. Given k distinct support vectors (Aσ)σ∈[k], we
can compute the best signaling scheme that induces Wardrop
equilibria with supports (Aσ)σ∈[k] in time polynomial in ∣Θ∣,
∣E∣ and k.

Network ∣V ∣ ∣E∣ ∣Z ∣ dθ2

Sioux Falls (SF) 24 76 24 360,600
Eastern Massachusetts (EM) 74 258 74 65,576
Berlin-Friedrichshain (BF) 224 523 23 11,205
Berlin-Pr.-Berg-Center (BP) 352 749 38 16,660
Berlin-Tiergarten (BT) 361 766 26 10,755
Berlin-Mitte-Center (BM) 398 871 36 11,482

Table 1: Network instances in the computational studies.

This reduces optimizing the signaling scheme to an opti-
mal choice of supports. Suppose for some optimal signaling
scheme ϕ∗ we know (a superset of) all supports Aσ used in
the Wardrop equilibrium resulting from each signal σ ∈ Σ
issued in ϕ∗. We inspect the conditions of optimal schemes
ϕ∗ a bit more closely. Indeed, we need to consider at most
k ≤ ∣Θ∣ signals, and each signal σ can be assumed to have a
distinct support vector Aσ . The proof of the following propo-
sition is deferred to the full version.
Proposition 2. There is an optimal signaling scheme ϕ∗
such that at most ∣Θ∣ signals get issued in ϕ∗, and there is
no pair of signals σ ≠ σ′ that both get issued in ϕ∗ and
Aσ ⊆ Aσ′ . In particular, every signal σ that gets issued in ϕ∗
has a distinct support vector Aσ .

For a given support A and two states, we can optimize effi-
ciently to find the largest and smallest value of µθ2 such that
the distribution has a Wardrop equilibrium with support A.
Similar to (Griesbach et al. 2022, Proposition 3), this property
can be used to compute all supports of Wardrop equilibria
for all µ ∈ Θ(∆).
Proposition 3. The set of all supports of Wardrop equilibria
for all µ ∈ Θ(∆) in games with two states can be computed
in output-polynomial time.

When the distributions in ∆(Θ) generate at most a poly-
nomial number of different supports in the resulting Wardrop
equilibrium, we can compute these supports and, hence, even
an optimal signaling scheme in polynomial time. However,
there also exist games, in which an exponential number of
supports can arise. The instances are nested Braess graphs
and emerge as a straightforward adaptation of the construc-
tions in (Klimm and Warode 2022; Griesbach et al. 2022).
Corollary 6. For every number n ∈ N, there is a single-
commodity game with two states,O(n) vertices,O(n) edges,
and O(n) source-target paths, in which 2Θ(n) different sup-
ports arise in the Wardrop equilibria for all µ ∈∆(Θ).

Computational Studies
In the face of Corollary 6, the goal of our study was to investi-
gate i) if instances of our model on realistic networks generate
a small number of different supports in the Wardrop equi-
librium, and ii) by how much public signaling can improve
the total cost in these networks. We considered non-atomic
network congestion games with affine costs and uncertain
demand on real-world networks for a single commodity and
two possible states of nature Θ = {θ1, θ2}. Table 1 shows
the six different networks we examined. The network data

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9727



was obtained from the Transportation Networks for Research
Core Team (2022). The data set includes a model for each net-
work, i.e., it specifies nodes V and links E which correspond
to crossings and roads in the real world, respectively. It also
defines a partition of the nodes into zones Z. The size of the
networks ranges from smaller ones (SF, EM) to larger ones
(BF, BP, BT, BM). The first two are frequently considered in
the traffic assignment literature; the latter were used, e.g., by
Jahn et al. (2005).

In addition, the data set provides experimental data on
traffic-related properties for each link e ∈ E, such as the
capacity Ce and the free-flow travel time te (i.e., the time
needed to traverse the link in the absence of congestion),
and on representative demands between pairs of zones.
Originally, the data set is designed for computational stud-
ies on the traffic assignment problem with multiple com-
modities and link cost functions cBPR

e (x) as defined in the
congestion model of the Bureau of Public Roads (1964),
cBPR
e (x) = te(1 + η(x/Ce)β). Here, β = 4 and η are dimen-

sionless parameters (η = 0.15 for SF and EM, η = 1 else). For
our model, we defined the coefficients in the cost function
ce(x) = aex + be as ae = ηte/Ce and be = te. These cost
functions correspond to a linear variant of cBPR

e (for β = 1).
We set the demand in our single-commodity scenario dθ2
equal to the total demand that is routed through the network
for the multi-commodity scenario in the original data (see
Table 1). The alternative demand dθ1 was defined relative to
dθ2 , i.e., dθ1 = ρ ⋅ dθ2 for some ρ ∈ [0,1]. In the following,
we show results for ρ = 0.2. We performed 40 simulations for
each network with varying (s, t)-pairs. For each simulation,
the (s, t)-pair was drawn uniformly at random from the set
of zones such that s /= t and no pair was chosen more than
once. Thus, each simulation is given one network and one
(s, t)-pair. We call such a tuple an instance.

The sets of all supports of C(µθ2) over µθ2 ∈ [0,1] were
computed by implementing the approach underlying Proposi-
tion 3, i.e., by recursively computing the support of the emerg-
ing Wardrop equilibrium at a mean value for µθ2 (initially
µθ2 = 1/2), and then optimize twice: once with the objective
of maximizing µθ2 and once with the objective of minimizing
µθ2 . We used the built-in solver of the SciPy package (v1.8.1).
The flow assignments were computed by an implementation
of the conjugate Frank-Wolfe algorithm (Frank and Wolfe
1956; Daneva and Lindberg 2003) in Python (v3.10.6) based
on the code of Bettini (2022). Experiments were performed
on an Intel Core i5 based computer at 3.47 GHz with 8 GB
RAM operating on Ubuntu 22.04.1 LTS. More information
on used libraries and parameters is provided in the full version
(Griesbach et al. 2023b, Appendix D). All source codes and
data sets are available on GitHub (Griesbach et al. 2023a).

For each network with instances i = 1, . . . , 40, let Ai be
the set of all (distinct) supports of C(µθ2). Table 2 shows av-
eraged results on the properties of Ai. We point out that both
the average (AV) and the maximum (MAX) number of used
supports turn out to be very small compared to the number
of edges in each network, even though the relative difference
between dθ1 and dθ2 is rather large. In fact, these quanti-
ties decrease even more for larger values of ρ (for ρ = 0.8,
the maximum number of used supports ranges from three to

Net. ∣Ai∣ C
AV SD MAX conc. [%] lin. [%]

SF 4.67 2.08 9 80 10
EM 5.15 3.14 12 70 8
BF 5.28 2.76 12 68 10
BP 4.90 1.85 11 88 3
BT 5.10 2.54 11 78 8
BM 5.15 2.38 11 75 3

Table 2: Results for the set of all supports Ai and the concav-
ity and linearity of C(µθ2) for µθ2 ∈ [0,1] averaged over 40
instances for each network instance.

Net. FI is
opt. [%]

C(FI)
C(OPT)

C(NO)
C(OPT)

C(OPT)
C(PSO)

C(WE)
C(PSO)

SF 100 1.0000 1.0064 1.0135 1.0200
EM 100 1.0000 1.0052 1.0101 1.0154
BF 98 1.0000 1.0049 1.0106 1.0156
BP 100 1.0000 1.0042 1.0091 1.0134
BT 100 1.0000 1.0051 1.0117 1.0169
BM 100 1.0000 1.0045 1.0108 1.0154

Table 3: Performance of full information revelation (FI), no-
signaling (NO), and the optimal signaling scheme (OPT) aver-
aged over 40 instances for each network with µ∗θ2 = 0.5. The
cost of the optimal signaling scheme and the Wardrop equi-
librium (WE) are compared to the pointwise social optimum
(PSO) defined as (1 − µ∗θ2)SO(µθ2 = 0) + µ∗θ2SO(µθ2 = 1).

five across all instances). Moreover, the averaged standard
deviation (SD) is small as well. Therefore, these findings
imply that computing the optimal signaling scheme in realis-
tic network instances can be done efficiently by solving our
approach. The share of instances where C(µθ2) is linear is
mainly caused by adjacent sources s and targets t. The share
of concave cost functions reported in Table 2 excludes the
purely linear cost functions.

For the second part of our study, we analyzed the perfor-
mance of full information revelation, no-signaling, and the
optimal signaling scheme, as shown in Table 3. The results
are rounded to four decimal places due to numerical precision.
Recall that the cost of the Wardrop equilibrium corresponds
to the cost of no-signaling. One can see that in most cases full
information revelation is optimal. Moreover, even if it is not
optimal, it only produces marginal extra costs compared to
the optimal signaling scheme (which are not captured within
the numerical precision here).

On another note, the study reveals that using optimal sig-
naling schemes results in slight but consistent improvements
over no-signaling. However, even with optimal information
design there remains a notable gap to the average cost of
a pointwise social optimal flow. As a last remark, Tables 2
and 3 suggest that the optimality criterion of full information
revelation goes beyond the resulting Wardrop equilibrium
being concave, as used for our characterization in Theorem 2,
since all networks are not series-parallel.
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