Exercise Sheet 7

Exercise 1: Möbius geometric pencils of circles. (4 pts)

In the projective model of Möbius geometry, circles in $\hat{\mathbb{R}}^2$ correspond to points outside the sphere

$$S^2 = \{ [x] \in \mathbb{RP}^3 | \langle x, x \rangle_{3,1} = 0 \}.$$

A line $l = P(U)$ in \mathbb{RP}^3 corresponds to a one-parameter family of circles called a pencil of circles.

Show: If the restriction of $\langle \cdot, \cdot \rangle_{3,1}$ to U has signature

1. $(++)$ then all circles in the pencil share two common points;
2. $(+-)$ then any two circles in the pencil are disjoint;
3. $(+0)$ then the circles in the pencil are tangent to each other at a common point.

In these cases, the pencil of circles is called 1.hyperbolic, 2.elliptic, 3.parabolic.

Exercise 2: Euclidean motions in the projective model. (4 pts)

Let $\sigma : \mathbb{R}^2 \to \mathbb{S}^2 \subset \mathbb{R}^3 \subset \mathbb{RP}^3$ be stereographic projection in the north pole, given in homogeneous coordinates of \mathbb{RP}^3 by

$$\sigma : u = (u_1, u_2) \mapsto [2u_1, 2u_2, ||u||^2 - 1, ||u||^2 + 1]^T.$$

By this correspondence, points in \mathbb{R}^2 correspond to points in \mathbb{S}^2 and every Möbius transformation of the plane corresponds to an element of $PO(3, 1)$.

Let $A \in O(2)$, $b \in \mathbb{R}^2$ and consider the Euclidean motion $f_{A,b}(u) = Au + b$.

1. Find $M_{A,b} \in O(3, 1)$ such that $f_{A,b}$ corresponds to $M_{A,b}$ in the projective model. (Verify that $M_{A,b} \in O(3, 1)$.)

2. Show that 1 is an eigenvalue of $M_{A,b}$ to the eigenvector $[0, 0, 1, 1]^T$.

Hint: $\langle Au, b \rangle = \langle u, A^{-1}b \rangle$.
Exercise 3. Orthogonal complement of a line. (4 pts)

Consider the quadric

\[Q = \{ [y] \in \mathbb{R}P^{n+2} | y_1^2 + \ldots + y_n^2 + y_{n+1}^2 - y_{n+2}^2 - y_{n+3}^2 = 0 \}. \]

Let \(l \) be a line contained in \(Q \) and let \(l^\perp \) be the polar \(n \)-plane of \(l \). Show the following:

1. \(Q \) contains projective lines but no \(k \)-planes for \(k > 1 \).
2. \(l^\perp \cap Q = l \).
3. If \([x] \in l^\perp \) and \([x] \notin l \), then \(x \) is spacelike.

Due: Tuesday, 04.06.2019 before the lecture