Exercise Sheet 1
(Topological manifolds)
due 30.10.2014

Exercise 1 5 points
Let X be a topological space and $x \in X$. A *neighborhood of x* is a subset V of X that contains an open set U containing x, i.e. $x \in U \subset V$. Let $n \geq 0$. Show that the following statements are equivalent:

i) There is a neighborhood of x which is homeomorphic to \mathbb{R}^n.

ii) There is a neighborhood of x which is homeomorphic to an open subset of \mathbb{R}^n.

Exercise 2 5 points
Let M and N be topological manifolds of dimension m and n, resp. Show that their Cartesian product $M \times N$ is a manifold of dimension $m + n$.

Exercise 3 5 points
Set $X := \mathbb{R}^{n+1} \setminus \{0\}$. The *real projective space* \mathbb{P}^n is then defined as the quotient space of X with respect to the following equivalence relation:

$$x \sim y :\iff x = \lambda y, \quad \lambda \in \mathbb{R}. $$

The *canonical projection* $\pi : X \to \mathbb{P}^n$, maps the elements of X to its equivalence classes: $\pi(x) := [x]$. With the *quotient topology*, i.e. the topology defined by

$$U \subset \mathbb{P}^n \text{ open} :\iff \pi^{-1}(U) \subset X \text{ open},$$

it becomes a topological manifold of dimension n. Show that \mathbb{P}^n is compact.

Hint: Show that the restriction of the canonical projection π to S^n is surjective.