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This course is an introduction to the geometry of smooth
curves and surfaces in Euclidean space (usuallyR3). The lo-
cal shape of a curve or surface is described in terms of its
curvatures. Many of the big theorems in the subject – such
as the Gauss–Bonnet theorem, a highlight at the end of the
semester – deal with integrals of curvature. Some of these in-
tegrals are topological constants, unchanged under deforma-
tion of the original curve or surface.

Usually not as level sets (likex2 + y2 = 1) as in algebraic
geometry, but parametrized (like (cost, sint)).

Of course, byEuclidean space[DE: euklidischer Raum] we
mean the vector spaceRn 3 x = (x1, . . . , xn) with the stan-
dard scalar product[DE: Skalarprodukt] (also called anin-
ner product) 〈a,b〉 = a · b =

∑
aibi and its associated norm

|a| =
√
〈a,a〉).

A. CURVES

Given any intervalI ⊂ R, a continuous mapα : I → Rn is
called a(parametrized) curve[DE: parametrisierte Kurve] in
Rn. We writeα(t) =

(
α1(t), . . . , αn(t)

)
.

We sayα is Ck if it has continuous derivatives of order up
to k. Here of courseC0 means nothing more than continu-
ous, whileC1 is a minimum degree of smoothness insufficient
for many of our purposes. Indeed, for this course, rather than
tracking which results require, say,C2 or C3 smoothness, we
will use smooth[DE: glatt] to meanC∞ and will typically as-
sume that all of our curves are smooth.

Examples (parametrized onI = R):

• α(t) = (acost,asint,bt) is a helix inR3;

• α(t) = (t2, t3) is a smooth parametrization of a plane
curve with a cusp;

• α(t) = (sint, sin 2t) is a figure-8 curve inR2;

• α(t) = (t, t2, . . . , tn) is called themoment curvein Rn.

Definesimple[DE: einfache] andclosed[DE: geschlossene]
curves (andsimple closed[DE: einfach geschlossene] curves).

A smooth (or even justC1) curveα has avelocity vector
[DE: Geschwindigkeitsvektor] α̇(t) ∈ Rn at each point. The

fundamental thm of calculus says
∫ b

a
α̇(t) dt = α(b) − α(a).

The speed[DE: Bahngeschwindigkeit] of α is |α̇(t)|. We say
α is regular [DE: regulär] if the speed is positive (never van-
ishes). Then the speed is a (smooth) positive function oft.
(The cusped curve above is not regular att = 0; the others are
regular.)

The length[DE: Länge] of α is len(α) =
∫

I
|α̇(t)|dt. We see∫ b

a
|α̇(t)|dt ≥

∣∣∣∣∫ b

a
α̇(t) dt

∣∣∣∣ = ∣∣∣α(b) − α(a)
∣∣∣.

That is, a straight line is the shortest path. (To avoid using
vector version of integral inequality, take scalar product with
α(b) − α(a).)

The length of an arbitrary curve can be defined (Jordan) as
total variation:

len(α) = TV(α) = sup
t0<···<tn∈I

n∑
i=1

∣∣∣α(ti) − α(ti−1)
∣∣∣.

This is the supremal length of inscribed polygons. (One can
show this length is finite over finite intervals if and only ifα
has a Lipschitz reparametrization (e.g., by arclength). Lips-
chitz curves have velocity defined a.e., and our integral for-
mulas for length work fine.)

If J is another interval andϕ : J → I is an orientation-
preserving homeomorphism, i.e., a strictly increasing surjec-
tion, thenα◦ϕ : J→ Rn is a parametrized curve with the same
image (trace) asα, called areparametrizationof α. (Note: re-
verse curve ¯α : − J→ Rn, ᾱ(t) := α(−t) has the same trace in
reverse order – orientation reversing reparam.)

For studying continuous curves, it’s sometimes helpful to
allow reparam’s that stop for a while (monotonic but not
strictly) – or that remove such a constant interval.

We instead focus on regular smooth curvesα. Then if
ϕ : J → I is a diffeomorphism (smooth with nonvanishing
derivative, soϕ−1 is also smooth) thenα ◦ ϕ is again smooth
and regular. We are interested in properties invariant under
such smooth reparametrization. This is an equivalence rela-
tion. An unparametrized (smooth) curvecan be defined as an
equivalence class. We study these, but implicitly.

For a fixedt0 ∈ I we define the arclength functions(t) :=∫ t

t0
|α̇(t)|dt. Heres mapsI to an intervalJ of length len(α). If

α is a regular smooth curve, thens(t) is smooth, with positive
derivativeṡ= |α̇| > 0 equal to the speed. Thus it has a smooth
inverse functionϕ : J → I . We sayβ = α ◦ ϕ is thearclength
parametrization[DE: Parametrisierung nach Bogenlänge] (or
unit-speed parametrization) of α. We haveβ(s) = α(ϕ(s)),
soβ(s(t)) = α(ϕ(s(t))) = α(t). It follows thatβ has constant
speed 1, and thus that the arclength ofβ|[a,b] is b− a.

The arclength parametetrization is hard to write down ex-
plicitly for most examples – we have to integrate a square root,
then invert the resulting function. (There has been some work
in computer-aided design on so-called “pythagorean hodo-
graph curves”, curves with rational parametrizations whose
speed is also a rational function, with no square root. But this
still doesn’t get us all the way to a unit-speed parametrization.)

The fact that the arclength parametrization always exists,
however, means that we can use it when proving theorems,
and this is usually easiest. (Even when considering curves
with less smoothness, e.g.,Ck, there is a general principle
that no regular parametrization is smoother than the arclength
parametrization.)

End of Lecture 13 Apr 2015

Although for an arbitrary parameter we have used the name
t (thinking of time) and writtend/dt with a dot, when we use
the arclength parametrization, we’ll call the parameters and
write d/dswith a prime. Of course, for any functionf along
the curve, the chain rule says

d f
ds

ds
dt
=

d f
dt
, i.e., f ′ = ḟ /ṡ= ḟ /|α̇|.
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Suppose now thatα is a regular smooth unit-speed curve.
Then its velocityα′ is everywhere a unit vector, the (unit)tan-
gent vector[DE: Tangenten(einheits)vektor] T(s) := α′(s) to
the curve. (In terms of an arbitrary regular parametrization,
we have of courseT = α̇/|α̇|.)

We should best think ofT(s) as a vector based atp = α(s),
perhaps as an arrow fromp to p+ T(s), rather than as a point
in Rn. The tangent lineto α at the pointp = α(s) is the line
{p + tT(s) : t ∈ R}. (Note about non-simple curves.) (As
long asα has a first derivative ats, this line is the limit (as
h→ 0) of secant lines throughp andα(s+ h). If α is C1 near
s, then it is the arbitrary limit of secant lines throughα(s+ h)
andα(s+ k).) While velocity depends on parametrization, the
tangent line and unit tangent vector do not.

We are really most interested in properties that are also in-
dependent of rigid motion. It is not hard to show that a Eu-
clidean motion ofRn is a rotationA ∈ SO(n) followed by a
translation by some vectorv ∈ Rn: x 7→ Ax+ v. Thusα could
be considered equivalent toAα + v: I → Rn, t 7→ Aα(t) + v.
Of course, given any two lines in space, there is a rigid mo-
tion carrying one to the other. To find Euclidean invariants
of curves, we need to take higher derivatives. We define the
curvature vector[DE: Krümmungsvektor] ~κ := T′ = α′′; its
length is thecurvature[DE: Krümmung] κ := |~κ|.

Recall the Leibniz product rule for the scalar product: ifv
andw are vector-valued functions, then (v ·w)′ = v′ ·w+v ·w′.
In particular, ifv ⊥ w (i.e., v · w ≡ 0) thenv′ · w = −w′ · v.
And if |v| is constant thenv′ ⊥ v. (Geometrically, this is just
saying that the tangent plane to a sphere is perpendicular to
the radius vector.) In particular, we have~κ ⊥ T.

Example: the circleα(t) = (r cost, r sint) of radius r
(parametrized here with constant speedr) has

T = (− sint, cost), ~κ =
−1
r

(cost, sint), κ ≡ 1/r.

Given regular smooth parametrizationα with speedσ :=
ṡ= |α̇|, the velocity isσT, so the acceleration vector is

α̈ =
(
σT

)·
= σ̇T + σṪ = σ̇T + σ2T′ = σ̇T + σ2~κ.

Note the second-order Taylor series for a unit-speed curve
around the pointp = α(0) (we assume without further com-
ment that 0∈ I ):

α(s) = p+ sT(0)+
s2

2
~κ(0)+O(s3).

These first terms parametrize a parabola agreeing withα to
second order (i.e., with the same tangent and curvature vec-
tor). Geometrically, it is nicer to use theosculating circle[DE:
Schmiegekreis], the unique circle agreeing to second order (a
line if ~κ = 0). It has radius 1/κ and centerp+ ~κ/κ2. Thus we
can also write

α(s) = p+ cos(κs)~κ/κ2 + sin(κs)T/κ +O(s3).

(Constant acceleration or second derivative gives a parabola –
its points are equivalent by shearing. Constant curvature gives
a circle – its points are equivalent by rotation.)

Solving for~κ we get the formula

|α̇|2~κ = α̈ −
〈α̈, α̇〉 α̇

|α̇|2

for the curvature of a curve not necessarily parametrized at
unit speed.

Any three distinct points inRn lie on a unique circle (or
line). The osculating circle toα at p is the limit of such circles
through three points alongα approachingp. (Variants with
tangent circles, note on less smoothness, etc.)

ConsideringT : I → Sn−1 ⊂ Rn, we can think of this as
another curve inRn – called thetantrix (short for tangent in-
dicatrix) of α – which happens to lie on the unit sphere. As-
sumingα was parametrized by arclength, the curves 7→ T(s)
has speedκ. Thus it is regular if and only if the curvature ofα
never vanishes. (Note on curves with nonvanishing curvature
– inR2 versusR3.)

End of Lecture 16 Apr 2015

A1. Plane Curves

Now let’s consider in particular plane curves (n = 2). We
equipR2 with the standard orientation and letJ denote the
counterclockwise rotation by 90◦ so thatJ(e1) = e2 and for
any vectorv, J(v) is the perpendicular vector of equal length
such that{v, Jv} is an oriented basis.

Given a (regular smooth) plane curveα, its (unit) normal
vector [DE: Normaleneinheitsvektor] N is defined asN(s) :=
J(T(s)). Since~κ = T′ is perpendicular toT, it is a scalar
multiple of N. Thus we can define the (signed)curvatureκ±
of α by κ±N := ~κ (so thatκ± = ±|~κ| = ±κ). For an arbitrary
regular parametrization ofα, we find

κ± =
det(α̇, α̈)

|α̇|3
.

FromN ⊥ T andT′ = κ±N, we see immediately thatN′ =
−κ±T. We can combine these equations as(

T
N

)′
=

(
0 κ±
−κ± 0

) (
T
N

)
.

Rotating orthonormal frame, infinitesimal rotation (speed
κ±) given by skew-symmetric matrix. The curvature tells us
how fast the tangent vectorT turns as we move along the curve
at unit speed.

SinceT(s) is a unit vector in the plane, it can be expressed
as (cosθ, sinθ) for someθ = θ(s). Althoughθ is not uniquely
determined (but only up to a multiple of 2π) we claim that we
can make a smooth choice ofθ along the whole curve. Indeed,
if there is such aθ, its derivative isθ′ = κ±. Picking anyθ0
such thatT(0) = (cosθ0, sinθ0) defineθ(s) := θ0+

∫ s

0
κ±(s) ds.

This lets us prove what is often called thefundamental the-
orem of plane curves[DE: Hauptsatz der lokalen Kurventhe-
orie] (although it really doesn’t seem quite that important):
Given a smooth functionκ± : I → R there exists a smooth
unit-speed curveα : I → R with signed curvatureκ±; this
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curve is unique up to rigid motion. First note that integrat-
ing κ± gives the angle functionθ : I → R (uniquely up to a
constant of integration), or equivalently gives the tangent vec-
tor T = (cosθ, sinθ) (uniquely up to a rotation). IntegratingT
then givesα (uniquely up to a vector constant of integration,
that is, up to a translation).

Now supposeα is a closed plane curve, that is, anL-
periodic mapR → R2. As above, we get an angle func-
tion θ : R → R but this is not necessarily periodic. Instead,
θ(L) = θ(0)+2πn for some integern called theturning number
[DE: Umlaufzahl] (or rotation index or . . . ) ofα. (It follows
thatθ(s+ kL) − θ(s) = kn for any integerk and anys.) Note
that thetotal signed curvature

∫ L

0
κ± ds of α is 2πn. (If we

reverse the orientation ofα we negate the turning number.)
We will later prove Fenchel’s theorem that

∫
κ ds≥ 2π for

any curve inRn (with equality only for convex plane curves).
A standard result is the Jordan curve theorem, saying that a
simple closed plane curve divides the plane into two regions,
one of which (called theinterior [DE: Innere]) is bounded.
Assuming the curve is oriented so that its interior is on the left,
then the “theorem on turning tangents”, more often known
even in English by the German nameUmlaufsatz, say that its
turning number is always+1. (This is a special case of the
Gauss–Bonnet theorem, needed as a lemma for the general
case, so we will give a proof later.)

A2. The Four-Vertex Theorem

A vertex[DE: Scheitelpunkt] of a plane curve is an extremal
point ofκ±, that is a point whereκ± achieves a local minimum
or maximum, so thatκ′± = 0. Since any real-valued function
on a compact set achieves a global minimum and maximum,
any curve has at least two vertices.

Note that the osculating circle toα at p crossesα at p un-
lessp is a vertex. Most people’s sketches of osculating cicles
are wrong! More generally, supposeα andβ are two regular
curves with the same tangent atp. Thenα stays to the left ofβ
in some neighborhood ofp if κα± > κ

β
± at p. And conversely of

course ifα stays to the left, then at least the weak inequality
κα± ≥ κ

β
± holds atp.

The Four-Vertex Theorem[DE: Vierscheitelsatz] says that
any simple closed plane curveα has at least four vertices.
(Note counterexampler = 1+ 2 sinθ in polar coords if curve
not embedded.) We give a proof due to Bob Osserman (1985).

Lemma: Given a compact setK in the plane (which might
be the trace of a curveα) there is a unique smallest circle
c enclosingK, called thecircumscibed circle[DE: Umkreis].
(Existence via compactness of an appropriately bounded set of
circles; uniqueness by constructing smaller circle containing
intersection of two given ones.)

Properties:

1. c must touchK (for otherwise we could shrinkc).

2. c∩K cannot lie in an open semicircle ofc (for otherwise
we could translatec to contradict (1).

3. thusc∩ K contains at least two points, and if there are
only two they are antipodal onc.

For the case of a curveα, by our previous remark, at any point
of c∩ α the curvature ofα is at least that ofc.

End of Lecture 20 Apr 2015

Now let’s prove the theorem. Let the curvature of the cir-
cumcirclec be k. If c ∩ α includes an arc, there is nothing
to prove. Otherwise supposec ∩ α includes at leastn ≥ 2
points pi . (At these pointsκ± ≥ i.) We claim each arcαi be-
tween consecutivepi and pi+1 contains a point withκ± < k.
Then it also contains a vertexqi (a local minimum ofκ±) with
κ± < k. Since the arc fromqi−1 to qi includes the pointpi with
κ± ≥ k is also includes a vertexp′i (a local maximum ofκ±
with κ± ≥ k. Thus we have found 2n ≥ 4 vertices as desired.

To prove the claim, consider the one-parameter family of
circles throughpi andpi+1 (with signed curvatures decreasing
from k). The last one of these to touchαi is tanget toαi at at
least one interior point, and sinceαi stays to the right of that
circle, its signed curvature is even less.

Where did we use the fact that the curveα is simple? (Re-
call that the theorem fails without this assumption!)

When two curves are tangent atp and don’t cross locally,
we got an inequality between their signed curvatures. But this
assumes their orientations agree atp. By the Jordan curve the-
orem, a simple curveα bounds a compact regionK. Clearly,
α and K have the same circumcirclec. If both curves are
oriented to have the compact regions to the left, then these
orientations agree. Similarly, further application of the Jordan
curve theorem ensure that the oriented circular arc frompi to
pi+1 used above agrees in orientation withαi .

A3. Evolutes and the Nesting Theorem

Given a curveα : I → Rn with nonvanishing curvature, its
evolute[DE: Evolute] β : I → Rn is the curve of centers of
osculating circles:β(t) := α(t) + ~κ(t)/κ(t)2. Let us consider
in particular a unit-speed plane curveα with κ = κ± > 0 and
write r = 1/κ for the radius of curvature. Then the evolute is
β(s) = α(s)+r(s)N(s). Its velocity isβ′ = T+r ′N+rN′ = r ′N,
so its speed is|r ′(s)|. (The evolute is singular whereα has
a vertex.) The acceleration of the evolute isr ′′N + r ′N′ =
r ′′N − r ′T/r, so its curvature is1

r |r ′ | .
Now consider a planar arcα with strictly monotonic, non-

vanishing curvature. By the formula above, its evolute also
has nonvanishing curvature, so in particular, the distance
|β(s1) − β(s2)| is stricly less than the arclength

∫ s2

s1
|r ′(s)|ds=∣∣∣∫ r ′ ds

∣∣∣ = ∣∣∣r(s1) − r(s2)
∣∣∣. This simply says the distance be-

tween the centers of two osculating circles toα is less than the
difference of their radii, that is, the circles are strictly nested.
This is thenesting theoremof Tait (1896) and Kneser (1914):
the osculating circles along a planar arc with stricly mono-
tonic, nonvanishing curvature are strictly nested.
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A4. The Isoperimetric Inequality

Another global result about plane curves is theisoperimet-
ric inequality [DE: isoperimetrische Ungleichung]. If an em-
bedded curve of lengthL bounds an areaA then 4πA ≤ L2.
(Equality holds only for a circle.)

If R ⊂ R2 is the region enclosed by the simple closed (C1)
curve α : [a,b] → R, α(t) = (x(t), y(t)), then we have by
Green’s theorem

A =
∫

R
dx dy=

∫
α

x dy=
∫ b

a
xẏ dt= −

∫ b

a
yẋ dt.

(Actually, the formula gives an appropriately defined alge-
braic area even if the curve is not simple; no change if
parametrization backtracks a bit.)

The trick suggested by Erhard Schmidt (1939) to prove the
isoperimetric inequality is to consider an appropriate compar-
ison circle. We deal with a smooth curveα. First find two
parallel lines tangent toα such thatα lies in the strip between
them. Choose coords so make them the vertical linesx = ±r.
(Here 2r is thewidthof α in the given direction.) Parametrize
α by arclength over [0, L] by (x(s), y(s)) and parametriz the
circle of radiusr over [0, L] by β(s) = (x(s), ȳ(s)): samex(s)
as forα, and thus ¯y(s) = ±

√
r2 − x(s)2. (Note about non-

convex curves, etc.)

End of Lecture 23 April 2015

Note that the unit normal vector toα is N = (−y′, x′), so
〈N(s), β(s)〉 = −xy′ + ȳx′. We haveA =

∫ L

0
xy′ dsandπr2 =

−
∫ L

0
ȳx′ ds. Thus

A+πr2 =

∫ L

0
xy′− ȳx′ ds=

∫ L

0
〈−N, β〉 ds≤

∫ L

0
|N| |β|ds= Lr.

Thus by the arithmetic-geometric mean inequality,
√

Aπr2 ≤ (A+ πr2)/2 ≤ Lr/2.

Squaring and dividing byr2 gives the isoperimetric inequality.
It is not hard to check that if all these inequalities hold with

equality, thenα must be a circle.

A5. The Cauchy–Crofton Formula

Given a unit vectoru = u(θ) = (cosθ, sinθ) ∈ S1 ⊂ R2, the
orthogonal projection to the line in directionu is πu : R2 →

R2, x 7→ 〈x,u〉u. If α : I → R2 is a smooth plane curve, then
πuα = πu ◦ α is its projection (usually not regular!).

The Cauchy–Crofton formula says the length ofα is π/2
time the average length of these projections. By average
length we mean?
S1

len(πuα) du=
? 2π

0
len(πu(θ)α) dθ :=

1
2π

∫ 2π

0
len(πu(θ)α) dθ

To prove this, first note that ifα is a line segment, the aver-
age projected length is independent of its position and orienta-
tion and proportional to its length. That is, the theorem holds

for line segments with some constantc in place ofπ/2. (We
could easily computec = π/2 by integrating a trig function,
but wait!) Next, by summing, it holds for all polygons (with
the samec). Finally, it holds for smooth curves (or indeed
for all rectifiable curves) by taking a limit of inscribed poly-
gons. (To know we can switch the averaging integral with
the limit of ever finer polygons, we can appeal for instance
to Lebesgue’s monotone convergence theorem.) To compute
c = π/2 it is easiest to consider the unit circleαwith length 2π
and constant projection length 4.

Note that everything we have said also works for curves in
Rn (projected to lines in different directions) – only the value
of c will be different. Similarly, for an appropriatec = cn,k

we get that the length of a curve inRn is c times the average
length of projections to all differentk-dimensional subspaces.

For any plane curveα, the length ofπuα is at least twice the
width of α in the directionu. If α is a convex plane curve, we
have equality, so Cauchy–Crofton says the length isπ times
the average width. For instance any curve of constant width 1
(like the Reuleaux triangle on an equilateral triangle of side
length 1, named after Franz Reuleaux, Rector at TU Berlin in
the 1890s) has lengthπ. A unit square has minimum width 1
and maximum width

√
2; since its length is 4, the average

width is 4/π.
Writing the various different lines perpendicular tou as
`u,a := {x : 〈x,u〉 = a} for a ∈ R, we see that lenπuα =∫
R

#(α ∩ `u,a) da. Thus Cauchy–Crofton can be formulated as

lenα =
1
4

∫ 2π

0

∫
R

#
(
α ∩ `u(θ),a

)
da dθ.

A6. Fenchel’s theorem

Fenchel’s theorem says the total curvature of any closed
curve inRn is at least 2π. (Equality holds only for convex
plane curves.) To prove this forC1 curvesα, recall that the
tantrix T(s) has speedκ(s) and thus its length is the total cur-
vature ofα. On the other hand, the tantrix lies in no open
hemisphere ofSn−1, for if we had〈T(s),u〉 > 0 for all s then
we would get

0 <
∫ L

0
〈T(s),u〉 ds=

〈
u,

∫ L

0
T(s) ds

〉
=

〈
u, α(L) − α(0)

〉
= 〈u,0〉 = 0,

a contradiction. Fenchel’s theorem is thus an immediate corol-
lary of the theorem below on spherical curves.

We will state all results for generaln, but on first reading
one should probably think of the casen = 3 whereα lies on
the usual unit sphereS2 ⊂ R3.

To investigate spherical curves in more detail note first that
for pointsA,A′ ∈ Sn−1 ⊂ Rn the spherical distance (the length
of the shortest spherical path, a great circle arc) between them
is

ρ(A,A′) = arccos
〈
A,A′

〉
= 2 arcsin

(
|A− A′|/2

)
≤ π.
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The points areantipodal [DE: antipodisch] if A = −A′ (i.e.,
ρ = π, . . . ). A nonantipodal pair is connected by a unique
shortest arc, with midpointM = (A+ A′)/|A+ A′|.

Lemma: supposeA,A′ nonantipodal with midpointM; sup-
poseρ(X,M) < π/2. Then 2ρ(X,M) ≤ ρ(X,A) + ρ(X,A′).
(This can be used to show that the distance fromX to a great
circle is a convex function when resticted to the semicircle
where the distance is at mostπ2.)

To prove this, first note thatA,A′,X all lie in some three di-
mensional subspace ofRn, so we work there, and in particular
on S2. Consider a 2-fold rotation aroundM, taking A to A′

andX to some pointX′. Using the triangle inequality and the
symmetry, we get

2ρ(X,M) = ρ(X,X′) ≤ ρ(X,A) + ρ(A,X′) = ρ(X,A) + ρ(X,A′)

as desired.
End of Lecture 27 Apr 2015

Theorem: Supposeα is a closed curve onSn−1 of length
L < 2π. Thenα is contained in some spherical cap{x ∈ Sn−1 :
ρ(X,M) ≤ L/4} of (angular) radiusL/4 < π/2, and in particu-
lar in some open hemisphere. (Note as promised that Fenchel
is an immediate corollary.)

To prove this, pick two pointsA,A′ on α dividing the ar-
clength in half. Thenρ(A,A′) ≤ L/2 < π. Let M be the
midpoint and letX be any point onα. If ρ(X,M) < π/2, then
by the lemma,

ρ(X,M) ≤
(
ρ(X,A) + ρ(X,A′)

)
/2 ≤ len(αAXA′ )/2 = L/4.

Thus the distance fromM to any point onα is either at most
L/4 or at leastπ/2. By continuity, the same possibility holds
for all X; picking X = A we see it is the first possibility.

There are of course other approaches to proving Fenchel’s
theorem. One goes through an integral geometry formula
analogous to our last version of Cauchy–Crofton. (We’ll state
it just for curves inS2 but it holds – with the same constantπ
– in any dimension.) Foru ∈ S2, the great circleu⊥ is the set
of points orthogonal tou. Then the formula says the length
of α equalsπ times the average number of intersections ofα
with these great circles. (Whenα itself is a great circle, this is
clear, since there are always 2 intersections.)

First note that the length of a spherical curve is the limit
of the lengths of spherical inscribed polygons (made of great
circle arcs). (Indeed the spherical inscribed polygon always
has length larger than the euclidean polygon with the same
vertices, which is already approaching the lenth of the curve
from below.) Then just as for Cauchy–Crofton, we check this
formula first for great circle arcs, then for polygons and then
by a (trickier) limiting argument for smooth curves.

With this formula, one can prove Fenchel’s theorem for
smooth curves by considering height functions〈α(s),u〉. Each
has at least two critical points (min, max), but critical points
satisfyT(s) ∈ u⊥. That is, the tantrix intersects every great
circle at least twice, and thus has length at least 2π.

Without giving precise definitions about knots, we can
understand the Fáry–Milnor theorem: a nontrivally knotted
curve inR3 has total curvature at least 4π. For suppose for
some height function〈α(s),u〉 there was only one min and

one max. At each intermediate height, there are exactly two
points ofα. Joining these pairs by horizontal segments gives
an embedded disk spanningα, showing it is unknotted. For
a knotted curve, every height function must have at least four
critical points, meaning four intersections of the tantrix with
every great circle.

A7. Schur’s comparison theorem
and Chakerian’s packing theorem

Schur’s theorem is a precise formulation of the intuitive
idea that bending an arc more brings its endpoints closer to-
gether.

Supposeα is an arc inRn of lengthL, and consider a com-
parison arc ˜α in R2 ⊂ Rn of the same length, such that with
respect to a common arclength parameters, the curvature of
α̃ is positive and everywhere at least that of of ˜α: κ̃(s) ≥ κ(s).
Assuming that ˜α with its endpoints joined by a straight seg-
ment gives a convex (simple closed) curve, we conclude that
its endpoints are closer:∣∣∣α(L) − α(0)

∣∣∣ ≥ ∣∣∣α̃(L) − α̃(0)
∣∣∣.

Proof: by convexity, we can finds0 such that the tangent
T0 := T̃(s0 to α̃ is parallel toα̃(L) − α̃(0). Moveα by a rigid
motion so thatα(s0) = α̃(s0) and they share the tangent vector
T0 there. We have

∣∣∣α(L) − α(0)
∣∣∣ ≥ 〈
α(L) − α(0),T0

〉
=

∫ L

0

〈
T(s),T0

〉
ds,

while for α̃, our choice ofT0 gives equality:

∣∣∣α̃(L) − α̃(0)
∣∣∣ = 〈
α̃(L) − α̃(0),T0

〉
=

∫ L

0

〈
T̃(s),T0

〉
ds,

Thus it suffices to show
〈
T(s),T0

〉
≥

〈
T̃(s),T0

〉
(for all s).

We start froms0 (where both sides equal 1) and move out in
either direction. WhileT̃ moves straight along a great circle
with speed ˜κ, a total distance less thanπ, we see thatT moves
at slower speedκ and perhaps not straight. Thus is geometri-
cally clear thatT is always closer to the starting direction. In
formulas,

〈
T̃(s),T0

〉
= cos

∫ s

s0

κ̃ ds≤ cos
∫ s

s0

κ ds≤
〈
T(s),T0

〉
.

(The last inequality follows since
∫
κ ds is the length of the

tantrix, while arccos
〈
T(s),T0

〉
is the distance between its end-

points.)
Note that this same proof can be made to work for arbitrary

curves of finite total curvature. The case of polygonal curves
is known as Cauchy’s arm lemma and was used in his proof
(1813) of the rigidity of convex polyhedra, although his proof
of the lemma was not quite correct.

Chakerian proved the following packing result (which again
can be generalized to all curves although we consider only
smooth curves): A closed curve of lengthL in the unit ball
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in Rn has total curvature at leastL. To check this, simply
integrate by parts:

lenα =
∫
〈T,T〉 ds=

∫ 〈
−α,~κ

〉
ds≤

∫
|α| κ ds≤

∫
κ ds.

What about nonclosed curves? We just pick up a boundary
term in the integration by parts, and find that length is at most
total curvature plus 2.

A8. Framed space curves

We now specialize to consider curves in three-dimensional
spaceR3. Just as for plane curves we used the 4-fold rotation
J, in 3-space we will use its analog, the vector cross product.
Recall thatv× w = −w× v is a vector perpendicular to bothv
andw.

A framingRahmen along a smooth space curveα is a
(smooth) choice of a unit normal vectorU(s) at each point
α(s). DefiningV(s) := T(s) × U(s) we have an (oriented) or-
thonormal frame{T,U,V} for R3 at each point of the curve,
and the idea is to follow how this frame rotates. As before,
expressing the derivatives in the frame itself gives a skew-
symmetric matrix:T

U
V


′

=

 0 κU κV
−κU 0 τU
−κV −τU 0


T
U
V

 .
HereκU , κV andτU are functions along the curve which de-
pend on the choice of framing. We see thatT′ = ~κ =
κUU + κVV, so these are just the components of the curva-
ture vector in the chosen basis for the normal plane. (And
κ2 = κ2U + κ

2
V.) The third functionτU measures the twisting or

torsion of the framingU.

End of Lecture 30 Apr 2015

Sometimes in physical problems a framing is given to us by
material properties of a bent rod. Mathematically, the curveα
might lie on a smooth surface in space; then we often choose
U to be the surface normal so that theconormal Vis (like T)
tangent to the surface. (We will explore suchDarboux frames
[DE: Darboux-Rahmen] in detail when we study surfaces.)

But when no external framing is given to us, there are two
ways to choose a nice framing such that one of the entries in
the matrix above vanishes. The first has no twisting (τU = 0),
and such a{T,U,V} is called a parallel frame or Bishop frame.
Given anyU0 at α(s0) we wantU′ to be purely tangential,
indeed

U′ = −κUT = −
〈
~κ,U

〉
T.

But this ODE has a unique solution. Since it prescribesU′ ⊥
U the solution will have constant length, and since〈U′,T〉 =
− 〈T′,U〉, the solution will stay normal toT. If we rotate a
parallel framing by a constant angleϕ in the normal plane (that
is, replaceU by cosϕU + sinϕV) then we get another parallel
framing (corresponding to a differentU0). Indeed any two
parallel framings differ by such a rotation. Parallel frames are

very useful, for instance in computer graphics when drawing
a tube around a curve. One disadvantage is that along a closed
curve, a parallel framing will usually not close up.

The second special framing comes from prescribingκV = 0,
i.e.,~κ = κUU. That is,U should be the unit vector in the direc-
tion ~κ. Here the disadvantage is that things only work nicely
for curves of nonvanishing curvatureκ , 0. Assuming this
condition, we renameU as theprincipal normal[DE: Haupt-
normaleneinheitsvektor] N and V as thebinormal [DE: Bi-
normaleneinheitsvektor] B and call{T,N, B} theFrenet frame
[DE: Frenet-Rahmen]. We haveTN

B


′

=

 0 κ 0
−κ 0 τ
0 −τ 0


TN
B

 ,
whereκ(s) is the curvature andτ(s) is called thetorsion [DE:
Torsion] of α. In terms of a unit-speed parametrization, we
haveα′ = T, α′′ = T′ = ~κ = κN, so N = ~κ/κ. Finally,
N′ = −κT + τB soτ = 〈N′, B〉 = |N′ + κT |. The expansion of
the third derivative in the Frenet frame is

α′′′ = (κN)′ = κ′N + κN′ = −κ2T + κ′N + κτB.

Expressions in terms of an arbitrary parametrization ofα
with speedσ(t) are left as an exercise. Here the nonvanishing
curvature condition just says that ˙α andα̈ are linearly indepen-
dent, so that{α̇, α̈, α̇×α̈} is an oriented basis. The orthonormal
frame {T,N, B} is the result of applying the Gram–Schmidt
process to this basis.

Of course N and B span thenormal plane [DE: Nor-
malebene] to α at p = α(s). The curve stays to second order in
the osculating plane[DE: Schmiegeebene] spanned byT and
N, which contains the osculating circle. The plane spanned by
T andB is called therectifying plane[DE: Streckebene] (since
the projection ofα to that plane has curvature vanishing atp).

The Taylor expansion ofα to third order aroundp = α(0) is

α(s) ≈ p+
(
s− s3

6 κ
2
)
T +

(
s2

2 κ +
s3

6 κ
′
)
N +

(
s3

6 κτ
)
B

where of courseT, N, B, κ, τ andκ′ are all evaluated ats= 0.
Exercise: look at the projections to the three planes above,
and see which quadratic and cubic plane curves approximate
them.

The “fundamental theorem of space curves” says that given
functionsκ, τ : I → R with κ > 0 determine a space curve
(uniquely up to rigid motion) with that curvature and tor-
sion. This is basically a standard theorem about existence and
uniqueness of solutions to an ODE. For any given{T0,N0, B0}

the matrix ODE above has a solution, which stays orthonor-
mal and thus gives a framing. (Changing the initial condition
just rotates the frames by a constant rotation.) As in the case of
plane curves, integratingT(s) recovers the curveα (uniquely
up to translation).

Example: a curve with constant curvature and torsion is a
helix. Its tantrix traces out a circle onS2 at constant speedκ.
Any curve whose tantrix lies is a circle onS2 (i.e., makes con-
stant angle with some fixed vectoru) is called ageneralized
helix. Exercise: this condition is equivalent toτ/κ being con-
stant.
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Suppose nowα is a unit-speed curve withκ > 0. If {T,N, B}
is the Frenet frame and{T,U,V} is a parallel frame, then how
are these related? We have of course(

N
B

)
=

(
cosθ sinθ
− sinθ cosθ

) (
U
V

)
for someθ = θ(s). Then~κ = κN = κ cosθU + κ sinθV
meaning thatκU = κ cosθ andκV = κ sinθ. Differentiating
B = − sinθU + cosθV gives

−τN = B′ = −θ′
(
cosθU + sinθV

)
+0T = −θ′N

so thatθ′ = τ or θ =
∫
τds. (The constant of integration

corresponds to the freedom to rotate the parallel frame.) We
see that the twisting or torsionτ of the Frenet frame really
does give the rateθ′ at which it rotates relative to the twist-
free Bishop frame. Sometimes it is useful to use acomplex
curvatureκ(s)eiθ(s) = κU(s)+ iκV(s). Well defined up to global
rotation byeiθ0 in the complex plane (corresponding again to
the freedom to rotate the parallel frame).

It is clear that a space curve lies in a plane if and only if
τ ≡ 0, if and only if θ is constant, if and only if the complex
curvature stays on some fixed line through 0.

As another example, the complex curvature of a helix traces
out the circle|z| = κ at constant speed.

Bishop (1975) demonstrated the usefulness of the parallel
frame by characterizing (C2 regular) space curves that lie on
some sphere. Indeed,α lies on a sphere of radius 1/d if and
only if its complex curvature lies on a line at distanced from
0 ∈ C. In an appropriately rotated parallel frame, this line
will be the lineκU ≡ d. (The characterization in terms of the
Frenet frame is more awkward, needing special treatment for
points whereτ andκ′ vanish.)

To prove this, note that by translating and rescaling we can
treat the case ofα ⊂ S2, i.e.,〈α, α〉 ≡ 1. It follows thatα ⊥ T
soU := α is a framing of itself. Fromα′ = T we see that this
framing is parallel. That is,U = α, V = T × α is a Bishop
frame. The equationU′ = T meansκU ≡ 1, as desired. (Note
that since the position vector onS2 is also the normal vector to
the spherical surface,{T,U,V} is also the Darboux frame for
α ⊂ S2!) Conversely, supposeα has a parallel frame{T,U,V}
with κU ≡ 1, i.e.,U′ = T. Thenα − U is a constant pointP,
meaningα lies on the unit sphere aroundP.

End of Lecture 4 May 2013

A9. Framings for curves in higher dimensions

A framingalong a smooth curveα in Rn is a choice of ori-
ented orthonormal basis{E1,E2, . . . ,En} at each point ofα,
whereE1(s) = T(s) is the unit tangent vector, and eachEi(s)
is a smooth function. Of course the otherEi (for i ≥ 2) are
normal vectors. The infinitesimal rotation of any framing is
given, as in the three-dimensional case, by a skew-symmetric
matrix, here determined by the

(
n
2

)
entries above the diagonal.

Again it is helpful to choose special framings where onlyn−1
of these entries are nonzero.

In a parallel framing, these are the entries of the top row.
That is, the curvature vectorT′ is an arbitrary combination∑
κiEi of the normal vectorsEi , but each of them is parallel

with derivative−κiT only in the tangent direction. Given any
framing at an initial point, solving an ODE gives us a parallel
frame along the curve.

The generalized Frenet frame exists only under the (some-
what restrictive) assumption that the firstn− 1 derivatives ˙α,
α̈, . . . , α(n−1) are linearly independent, and{T,E2, . . . ,En} is
then the Gram–Schmidt orthonormalization of these vectors.
For this frame, it is only the matrix entries just above the di-
agonal that are nonzero. Thus

E′i := τiEi+1 − τi−1Ei−1

In particularT′ = τ1E2 soτ1 = κ is the usual curvature andE2

is theprincipal normal(the unit vector in the direction of~κ).
Theτi are called Frenet curvatures. A “fundamental theorem”
says that for any functionsτi(s) with τi > 0 for i < n−1, there
is a curve with these Frenet curvatures; it is unique up to rigid
motion.

7
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B. SURFACES

Given an open setU ⊂ Rm and a mapf : U → Rn we write
Dp f for the derivative off at p ∈ U, the linear mapRk → Rn

such that f (p + v) ≈ f (p) + Dp f (v). We sayp ∈ U is a
critical point of f if Dp f is not surjective (which is automatic
if m < n); and we sayq = f (p) ∈ Rn is a critical value.
Any otherq ∈ Rn is called aregular valueof f . We say f
is animmersionif Dp f is injective at everyp (which requires
m≤ n).

Intuitively, a subsetM ⊂ Rn is a smooth embedded k-
dimensional submanifoldif every point p ∈ M has an open
neighborhoodU ⊂ Rn in which M looks like an open set in
Rk. From analysis we recall several equivalent precise formu-
lations:

1. Diffeomorphism: There is an openV ⊂ Rn and a
diffeomorphismϕ : U → V ⊂ Rn taking U ∩ M to
V ∩ (Rk × {0}).

2. Level set: There is a smooth maph: U → Rn−k such
that 0 is a regular value ofh andU ∩ M = h−1(0).

3. Parametrization: There is an open setV ⊂ Rk and a
smooth immersionf : V → Rn that is a homeomor-
phism fromV ontoU ∩ M.

4. Graph: There is an open setV ⊂ Rk and and a smooth
maph: V → Rn−k such thatU ∩ M is the graph ofh –
up to permutation of coordinates inRn.

Here of course, a diffeomorphism gives a level set represen-
tation, and a graph is a special kind of parametrization.

For the rest of this semester, we will consider surfaces
(k = 2) in R3. An example is the graph of a smooth func-
tion f : U → R, parametrized by (u, v) 7→

(
u, v, f (u, v)

)
or

given as the zero-set ofF(x, y, z) := f (x, y) − z.
Another example would be the unit sphereS2, the level

set x2 + y2 + z2 = 1. It can be covered by six open hemi-
spheres on which it is a graph in one of the coordinate direc-
tions. Using stereographic projection we can parametrize all
but a single point of the sphere by an immersion fromR2.
The usual geographic coordinates (lattitude and longitude)
(ϕ, θ) 7→

(
cosθ cosϕ, sinθ cosϕ, sinϕ

)
give an immersion

(−π/2, π/2) × R → R3, which is injective if restricted to
θ ∈ (−π, π).

We will typically use parametrizations to describe our sur-
faces. Letx : U → R3 be a smooth map defined on an open
subsetU ⊂ R2. At a point (u, v) ∈ U we write

xu(u, v) =
∂x
∂u
= D(u,v)x(∂u), xv(u, v) =

∂x
∂v
= D(u,v)x(∂v)

for the partial derivatives. (Here{∂u, ∂v} form the standard ba-
sis for R2, thought of as the tangent vectors at (u, v).) The
derivativeD(u,v)x is injective if and only ifxu andxv are lin-
early independent (if and only ifxu × xv , 0). If this is true at
all points ofU, thenx is an immersion.

Note that an immersion need not be one-to-one; even if it
is, it need not be a homeomorphism onto its image (figure 8,

spiral examples). If it is, then of course its image is a smooth
submanifold. Given an immersionx, any point inU has a
neighborhoodV such thatx|V is a homeomorphism.

Given an immersionx parametrizing a surfaceM, the span
of xu and xv (the image ofDx) is two-dimensional, and is
called thetangent plane TpM at p = x(u, v). Orthogonal to
this is thenormal line NpM, spanned byxu × xv.

Note that we typically blur the distinction between a point
(u, v) ∈ U and its imagep = x(u, v) ∈ M = x(U). We write,
for instance,xu(p) = xu(u, v) interchangeably.

Example (surfaces of revolution): Suppose we have a regu-
lar curveα(t) = (r(t),0, z(t)) in the x > 0 half of thexz-plane.
Consider the map

x(t, θ) =
(
r(t) cosθ, r(t) sinθ, z(t)

)
.

This is an immersion (domainI × R, but injective only on
smaller pieces), parametrizing asurface of revolution. Con-
sider injectivity issues, tangent, normal, etc. – see homework.

Example (ruled surface): A surface swept out by straight
lines (aruled surface) can be parametrized by a base curve
β(t) and a director fieldδ(t) by settingx(t,u) = β(t) + uδ(t).

End of Lecture 7 May 2015

B1. Curves, length and area

How do we describe a curve in a surfaceM? If x : U → R3

is a surface patch andα : I → U ⊂ R2 is a (regular smooth)
curve inU thenβ = x ◦ α is a (regular smooth) curve inR3

lying on the surfaceM. Conversely, any curve onM can be
described this way. We postpone a discussion of the details
and of the effects of changing coordinates (to an overlapping
surface patch).

Writing α(t) = (u(t), v(t)) we have ˙α = (u̇, v̇) and by the
chain rule the velocity vectoṙβ of β = x ◦ α is thus u̇xu +

v̇xv. We see that the tangent planeTpM spanned by{xu, xv} is
exactly the set of all velocity vectors to curves inM through
p = x(u, v).

The speed ofβ is of course given by the Euclidean norm
of its velocity vector; the tangent spaceTpM inherits an inner
product〈·, ·〉 as a subspace ofTpR

3 = R3. The basis{xu, xv}

is of course in most cases not orthonormal. The inner product
is a symmetric bilinear form and is expressed in this basis by
the symmetric matrix

gp :=

(
E F
F G

)
:=

(
〈xu, xu〉 〈xu, xv〉

〈xv, xu〉 〈xv, xv〉

)
.

(Here,E, F andG are traditional names for the entries of this
matrix.) The matrix representation means that ifa = auxu +

avxv andb = buxu + bvxv are two tangent vectors, then their
inner product is

〈a,b〉 =
(
au av

) (〈xu, xu〉 〈xu, xv〉

〈xv, xu〉 〈xv, xv〉

) (
bu

bv

)
.

Of course the associated quadratic forma 7→ 〈a,a〉 is given
by the same matrix. This is called the first fundamental form
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of the surface, and we useg = gp as a name for the matrix and
for the bilinear/quadratic form. (OftenI = Ip, from the roman
numeral one, is used instead.)

Returning to the curveβ, we get

|β̇|2 = gp(β̇) =
(
u̇ v̇

)
gp

(
u̇
v̇

)
= Eu̇2 + 2Fu̇v̇+Gv̇2.

The length of the curveβ is of course then the integral of
speed: lenβ =

∫ √
g(β̇) dt.

Note that the velocity (˙u, v̇) of α has the same expres-
sion (in the standard basis ofR2) as the velocity ofβ (in
our basis{xu, xv}). We often blur the distinction between
T(u,v)U = T(u,v)R

2 andTpM, and that betweenα andβ, etc. We
can think, for instance, ofgp as defining a new inner product
onT(u,v)R

2 (whose matrix is
( E F

F G
)

with respect to the standard
basis{∂u, ∂v}).

We can use the first fundamental form to measure not only
length but also area. The parallelogram spanned byxu andxv

has area|xu × xv| and we note

|xu × xv|
2 = |xu|

2|xv|
2 − 〈xu, xv〉

2 = EG− F2 = detg.

The area of the surface patch is then∫
U
|xu × xv|du dv=

∫
U

√
detg du dv.

Note also that a surface patchx(u, v) is regular (an immersion)
if and only if EG− F2 = detg is nonvanishing; this is often
the easiest way to test the linear independence ofxu andxv.

Although it is easy to arrange that{xu, xv} is an orthonormal
basis – so thatg is the identity matrix – at one given point of
interest (say, (0,0) ∈ U), it is too much to hope that a general
surface have a parametrization in which{xu, xv} is an orthonor-
mal basis everywhere. (We will later classify the “intrinsically
flat” surfaces for which this is possible. As an example think
of generalized cylinders – ruled surfaces with constant direc-
tor δ.)

There are, however, various special classes of parametriza-
tions which have some of the same advantages. We say a sur-
face patchx is orthogonalif xu ⊥ xv, that is ifF = 〈xu, xv〉 = 0
or equivalently ifg =

( E 0
0 G

)
is a diagonal matrix. An orthogo-

nal parametrization isconformalif |xu| = |xv|, that is, ifE = G
or equivalently ifg is a scalar multiple of the identity matrix.
This means exactly that the mapx : U → R3 preserves angles
between tangent vectors (or equivalently between curves). It
is known that any surface admits a conformal parametriza-
tion locally. (This is a version of the uniformization theo-
rem from complex analysis.) Conformal coordinates are also
called isothermal coordinates.

We have already mentioned the normal lineNpM spanned
by xu × xv. The parametrizationx has an implicit orientation
which allows us to pick out aunit normal vector

ν = νp :=
xu × xv∣∣∣xu × xv

∣∣∣ .
Note that a different parametrization (likey(u, v) := x(v,u))
may give the opposite normal vectorν. Some surfaces are
globally nonorientable, meaning that no continuous choice of
ν across the whole surface is possible.

B2. Smooth maps, change of parametrization, differentials

We usually talk about smoothness of maps defined on an
open subset ofRm. If A ⊂ Rm is an arbitrary subset, then a map
f : A → Rn is said to besmoothif it has a smooth extension
f̄ to some openU ⊃ A. (It suffices to check this locally in a
neighborhood of each point. Standard properties – like the fact
that the composition of two smooth maps is smooth – follow
immediately.) In the case whenA is a surface, we’d like to
check that is the same as requiring smoothness in coordinates.

Lemma: If x : U → M is a regular parametrization then
x−1 : x(U) → U is smooth. (Thus we sayx is a diffeomor-
phism onto its image.)

Proof: Assume (w/o l.o.g.) that (0,0) ∈ U. We will
check smoothness nearp = x(0,0). Consider the function
y : (t,u, v) 7→ x(u, v) + tνp, y : R × U → R3. At the origin, its
partial derivatives (νp, xu, xv) are linearly independent. That
is, D0y is bijective. By the inverse function theorem,y is in-
jective and has a smooth inverse on some neighborhood of
p = y(0). But of course this inverse is locally the desired
extension ofx−1, showing thatx−1 is smooth.

SupposeM ⊂ R3 is a surface parametrized byx : U → M =
x(U). The fact thatx andx−1 are both smooth immediately
shows:

1. f : M → Rn is smooth⇐⇒ f ◦ x is smooth.

2. f : Rn → M is smooth ⇐⇒ x−1 ◦ f : Rn → R2 is
smooth.

Combining these facts, ifN ⊂ R3 is a second surface
parametrized byy : V → N = y(V) then we can also consider
a map f : M → N. It is smooth if and only ify−1 ◦ f ◦ x is a
smooth mapU → V. (Note also that in this case, the smooth
extensionf̄ to a neighborhood ofM in R3 can be chosen to
take values inN.)

Now suppose we have two parametrizationsx : U → M
andy : V → M with overlapping images. That means on the
open subsetW = x(U) ∩ y(V) of M we have two different
systems of coordinates. Then the mapϕ := y−1◦x : x−1(W)→
y−1(W) is a diffeomorphism between these open subsets ofU
andV (with inverseϕ−1 = x−1 ◦ y). Being a composition of
homeomorphisms,ϕ is a homeomorphism. But we also see
thatϕ (and symmetricallyϕ−1) is smooth.

If f : Rn → M ⊂ R3 with f (a) = p then of courseDa f is a
linear map fromRn to TpM ⊂ R3. Similarly, given a smooth
map f : M → Rn we get a differential Dp f : TpM → Rn,
the restriction ofDp f̄ for any extensionf̄ . (Different exten-
sions will have different derivatives in the normal directionνp

but not in tangent directions, since the derivative in any tan-
gent direction can be computed as the derivative along a curve
in M, where f̄ = f is determined.)

End of Lecture 11 May 2015

B3. The Gauss map and the shape operator

A key tool for studying curves was the unit tangent vector
and its derivatives. A similar role for surfaces is played by the

9
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unit normalν. Given a smooth surfaceM, the mapν : p 7→
νp ∈ S

2 ⊂ R3 is called theGauss mapof the surfaceM, and
is a smooth mapν : M → S2. Note that the Gauss map ofS2

itself is the identity map. (Or the antipodal map, if we oriented
S2 with the inward normal.)

Going back to the general case, the differential of the Gauss
map atp ∈ M is a linear mapDpν : TpM → TνpS

2. But
these are the same plane – the plane inR3 with normalν. (Of
course any two planes are isomorphic vector spaces, but these
arenaturally isomorphic.) Thus we can viewDpν as a linear
operator onTpM. Its negativeSp := −Dpν : TpM → TpM is
called theshape operator(or Weingarten operator).

Recall that an operatorA: V → V on an inner product
spaceV is called self-adjoint if 〈Av,w〉 = 〈v,Aw〉 for all
v,w ∈ V. This is equivalent to saying that the bilinear form
(v,w) 7→ 〈Av,w〉 is symmetric (and thus induces a quadratic
form v 7→ 〈Av, v〉). Note that ifA is 2-dimensional with basis
{e, f } then it suffices to check〈Ae, f 〉 = 〈e,A f〉.

Proposition: The shape operatorSp onTpM is self-adjoint.
Proof: Consider a parametrizationx: U → M of a neigh-

borhood ofp and use{xu, xv} as a basis forTpM. The claim
is that

〈
Dpν(xu), xv

〉
=

〈
Dpν(xv), xu

〉
. Write νu := Dpνxu and

νv := Dpν(xv) for these partial derivatives ofν ◦ x (andxuv for
the mixed second partial ofx). Differentiating〈ν, xu〉 ≡ 0 in
thexv direction gives〈νv, xu〉 = − 〈ν, xuv〉, while differentiat-
ing 〈ν, xv〉 ≡ 0 in thexu direction gives〈νu, xv〉 = − 〈ν, xuv〉.
Thus〈νu, xv〉 = 〈νv, xu〉, proving the claim.

Given this proposition, the shape operatorSp defines a
quadratic formv 7→

〈
Spv, v

〉
onTpM, called thesecond funda-

mental form hp of M, often written using the Roman numeral
asII p(v) := hp(v). Note that arguments as in the proof show

〈νu, xu〉 = − 〈ν, xuu〉 , 〈νv, xv〉 = − 〈ν, xvv〉 .

Thus the matrix of the second fundamental form w.r.t. the ba-
sis{xu, xv} is

hp :=

(
L M
M N

)
:=

(
− 〈νu, xu〉 − 〈νu, xv〉

− 〈νv, xu〉 − 〈νv, xv〉

)
=

(
〈ν, xuu〉 〈ν, xuv〉

〈ν, xvu〉 〈ν, xvv〉

)
.

We see that to compute the first and second fundamental
forms of a parametrized surface, we start by computing the
first and second partial derivatives (xu, xv; xuu, xuv, xvv), then
compute the cross productxu × xv and its length|xu × xv|. The
scalar products among the first derivatives give the matrixgp.
The scalar products of the second derivatives withxu × xv,
divided by the length of this normal vector, give the matrixhp.

As usual, it is easier to find the matrix for the bilin-
ear/quadratic formhp than to find the matrix for the associ-
ated operator, the shape operatorSp. (Since{xu, xv} is not
generally orthonormal, it is easier to find the scalar products
of νu with the basis elements than to find its expression in the
basis.) But by linear algebra we knowhp = gpSp, or equiva-
lently Sp = g−1

p hp. Of course the inverse of a 2× 2 matrix is
easy to compute:

g−1
p =

(
E F
F G

)−1

=
1

EG− F2

(
G −F
−F E

)
.

The first and second fundamental forms are emphasized in
many textbooks because they are easiest to compute in coor-
dinates. But the shape operatorSp at a pointp ∈ M is more
directly meaningful. It encodes all the different notions of cur-
vature of the surfaceM at the pointp, capturing the second-
order behavior of the surface, or more precisely, exactly those
parts which are independent of parametrization and invariant
under rigid motion.

B4. Curvatures of a surface

Recall a few facts about a self-adjoint linear operatorA on
an inner product spaceV. Its eigenvalues are all real; its eigen-
vectors are perpendicular (since〈λv,w〉 = 〈Av,w〉 = 〈v,Aw〉 =
〈v, µw〉 implies 〈v,w〉 = 0 for λ , µ). That is, we can choose
an orthonormal basis of eigenvectors, and thenA is of course
represented by a diagonal matrix. The largest and smallest
eigenvalues are the minimum and maximum of the quadratic
form 〈Av, v〉 over the unit sphere inV. (Of course, ifv is a unit
eigenvector with eigenvalueλ then〈Av, v〉 = λ.)

Especially important are the symmetric functions of the
eigenvalues. (These are the coefficients of the characteristic
polynomial det(λI − A), whose roots are the eigenvalues.) In
particular, the product of the eigenvalues is thedeterminant
detA and their sum is thetrace tr A. The average eigenvalue
tr A/dimV is also the average of〈Av, v〉 over the whole unit
sphere.

Now let’s consider the shape operatorSp on TpM. Its
eigenvaluesk1 andk2 are called theprincipal curvatures(of M
at p); the eigenvectors are theprincipal curvature directions,
forming two orthogonal lines inTpM. We can choose unit
eigenvectorse1 ande2 such that{e1,e2, ν} is an oriented or-
thonormal basis. We define theGauss curvature

K := k1k2 = detSp

and themean curvature.

H :=
k1 + k2

2
=

1
2

tr Sp.

Note thatK is independent of orientation, whileH changes
sign if we switch the sign ofν; more intrinsic is the mean
curvature vector~H = Hν. (Note also that some authors define
the mean curvature with the opposite sign and/or without the
factor 1/2 – despite the name “mean”.)

End of Lecture 18 May 2015

As we will see, the intrinsic local shape of the surface is de-
termined by the Gauss curvatureK, in particular, qualitatively
by its sign. We sayp ∈ M is anelliptic point if K(p) > 0 (that
is, the principal curvatures have the same sign) or ahyperbolic
point if K(p) < 0 (. . . opposite signs). A point whereK(p) = 0
is called aparabolicpoint.

A point wherek1 = k2 is called anumbilic point; in par-
ticular aplanar point hask1 = k2 = 0. (Nonplanar umbilic
points are of course elliptic.) At umbilic points, the princi-
pal directions are not uniquely defined and the normal curva-
ture defined below is constant. Note that many authors use

10
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“parabolic” to mean what we call “parabolic and nonplanar”;
this no longer depends just onK.

The Gauss curvatureK and the mean curvatureH are
smooth functions on any smooth surface. The principal curva-
turesk1 andk2 are the two rootsH ±

√
H2 − K of the charac-

teristic polynomialk2− 2Hk+ K of the shape operator. These
are smooth functions only away from umbilic points (where
they coincide because the square root vanishes).

For a unit tangent vectorw ∈ TpM, thenormal curvature
of M in directionw is hp(w) =

〈
Spw,w

〉
. Note that for an

arbitrary nonzero vectorw ∈ TpM,

hp

(
w
|w|

)
=

〈
Spw,w

〉
〈w,w〉

=
hp(w)

gp(w)
.

We can write any unit normal vector asw = cosθ e1 + sinθ e2

and we find the normal curvature ofM in this direction is
cos2 θ k1 + sin2 θ k2, a weighted average of the principal cur-
vatures. Of course, the mean curvature is the average normal
curvature over the whole circle of directions; the principal cur-
vatures are the minimum and maximum of the normal curva-
ture.

The intersection ofM with a normal plane atp – a plane
spanned byνp and some unit tangent vectorw ∈ TpM – is
a curveα with T = w and~κ = hp(w)ν. Orienting this nor-
mal plane such that{w, ν} is an oriented basis, we thus have
hp(w) = κ±: the normal curvature is the (signed) curvature of
the normal sliceα. Later we will see how the normal curva-
ture is the normal component of the curvature of an arbitrary
curve throughp in directionw.

Let us now consider a surface given as a graph:x(u, v) =(
u, v, f (u, v)

)
, in particular at a pointp where gradf = 0 so

that the surface is horizontal there. We havexu = (1,0, fu),
xv = (0,1, fv) so that atp this is an orthonormal basis for
TpM, meaninggp = I . Of courseνp = (0,0,1). Since the
normal (vertical) components of the second derivatives ofx
are the second derivatives off , we see that

hp = hessf =

(
fuu fuv

fvu fvv

)
.

Of course, since we have an orthonormal basis, this is also
the matrix of the shape operator. Thus we haveK = fuu fvv −

f 2
uv and 2H = tr(hessf ) = fuu + fvv = ∆ f . (In general, one

should think of mean curvature as a geometric version of the
Laplacian; in terms of the intrinsic Laplace–Beltrami operator
∆M, we have for instance∆Mx = 2~H.)

If we start with any pointp on an arbitrary surfaceM, we
can apply a rigid motion (or equivalently, choose new Eu-
clidean coordinates) to put it into a standard position as fol-
lows. First translate so thatp = 0 is the origin, then rotate
so thatνp = (0,0,1) is vertical. Note that the surface is then
locally a graphz = f (x, y) with grad f = 0 at p as above. Fi-
nally, rotate around the vertical axis until thex- andy-axes are
principal directions. As above, with respect to the standard
basis forTpM = R2, the matrix forSp is hessf ; this is now
the diagonal matrix

( k1 0
0 k2

)
. This means the second-order Tay-

lor expansion off around 0 isf (x, y) = 0+ k1x2 + k2y2 + · · · ,
where the remainder terms are third-order.

Thus we see that at any pointp ∈ M there is a uniquely
determined paraboloid (z = k1x2 + k2y2 in the rotated coordi-
nates) that has second-order contact withM at p. Two surfaces
tangent atp have second-order contact if and only if they have
the same principal curvatures and directions there (i.e., have
the same ocsulating paraboloid). Up to rigid motion, two sur-
faces agree to second order (at given points) if and only if they
have the same Gauss and mean curvatures there.

Note: for curves we preferred to talk about osculating cir-
cles (with constant curvatureκ) rather than osculating parabo-
las (with constant acceleration vector). For surfaces, we might
want to use a surface with constant principal curvatures (or
equivalently, constantK and H). But we will see later this
happens only for spheres and planes and cylinders. (Similarly,
you will show in homework that spheres and planes are the
only totally umbilic surfaces.) Although surfaces are in some
sense determined by their curvatures, this is much more com-
plicated than saying space curves are determined byκ(s) and
τ(s). First there are compatibility conditions (PDE not ODE:
compatibility basically saysνuv = νvu) and second there’s no
standard parametrization (like arclength).

From the Taylor series or osculating paraboloid, we do see
for instance that near an elliptic pointp, the surface is locally
convex – it stays to one side of its tangent plane. This is not
true at a hyperbolic point; insteadTpM cutsM locally in two
curves crossing atp; their tangent vectors atp are exactly the
directions with vanishing normal curvature, calledasymptotic
directions.

We could also consider the intersections with nearby par-
allel planes (say at distances±ε2 to either side of the tangent
plane). Unlessp is a planar point, these planes will intersect
M approximately in the curvesk1x2 + k2y2 = ±ε2, which are
scaled (byε) versions of theDupin indicatrix, defined to be
the set ofw ∈ TpM such that

〈
Spw,w

〉
= ±1. This is an el-

lipse at an elliptic point, a pair of hyperbolas (with common
asymptotes in the asymptotic directions) at a hyperbolic point,
and a pair of parallel lines at a nonplanar parabolic point.

End of Lecture 21 May 2015

B5. Curves on surfaces and the Darboux frame

Let’s now consider an arbitrary curveα on a surfaceM.
The Darboux framealong the curve is{T, η, ν} whereT is
of course the unit tangent toα, ν is the surface normal, and
η := ν×T is called theconormal. As for our other frames, the
derivative (with respect to an arclength parameter forα) gives
a skew-symmetric matrix:Tη

ν


′

=

 0 κg κn
−κg 0 τg
−κn −τg 0


Tη
ν

 .
Of courseν depends only on the surfaceM, and soν′ =
Dpν(T) = −Sp(T). Comparing with the above, we find
κn =

〈
Sp(T),T

〉
andτg =

〈
Sp(T), η

〉
. Thusκn = hp(T) is

the normal curvature ofM in the directionT. It is the normal
part of the curvature~κ = κgη + κnν of α. The tangential part

11
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κg is called thegeodesic curvature. The remaining derivative
τg, the twisting of the Darboux frame, is called thegeodesic
torsion. Like the normal curvatureκn, the geodesic torsion
τg = hp(T, η) = hp(η,T) depends only onM (andT). Curves
in M having tangentT at p differ (to second-order) only in
having different geodesic curvatures. (Walking in the moun-
tains, we have a choice of turning left or right; whether we
curve up or down is fixed by staying on the earth’s surface.)

Curvesα on M for which one of these quantities vanishes
special. Curvature lines are curves for whichτg = 0, meaning
that T is always a principal direction. (This is no condition
at an umbilic point.) We haveν′ = −κnT, whereκn is one
of the principal curvatures. The Darboux frame is a paral-
lel (Bishop) frame along a curvature line. Curvature-line co-
ordinates are (necessarily orthogonal) coordinates for which
the coordinate lines are curvature lines. Locally away from
umbilic points, this happens exactly when both the first and
second fundamental forms have diagonal matrices in the basis
{xu, xv}. (The coordinates we used for surfaces of revolution
had this form.) This makes many computations much easier.

Asymptotic curves are those for whichκn ≡ 0, that is,T is
always an asymptotic direction. (This of course requiresK ≤
0.) The conormalη is the principal normalN of an asymptotic
line; the Darboux frame is the Frenet frame. Locally near
a hyperbolic point, asymptotic coordinates always exist, and
are characterized by the second fundamental form having an
off-diagonal matrixh =

( 0 M
M 0

)
.

Geodesics are curves for whichκg = 0. Given a starting
point p and a starting directionT, there is always a unique
geodesic, the solution to the ODET′ = κnν. We will consider
this in more detail later. (The surface normal is the principal
normalν = N and the curvature equals the normal curvature.)

Any straight line contained in a surface (for instance, the
rulings on a ruled surface) has constantT and is both an
asymptotic line and a geodesic. (The geodesic torsionτg gives
the speed at which the surface normal and conormal rotate
around the line.)

A curvature line which is also a geodesic has constant
conormalη; equivalently it is the intersection ofM with a
plane meetingM perpendicularly (like the generating curves
on a surface of revolution).

The surface normalν is constant along a curvature line
which is also asymptotic; such a curve is the intersection ofM
with a plane always tangent toM and consists of course of
parabolic points. (Example: top or bottom of round torus – or
of tube around any plane curve.)

B6. Vector fields and line fields

A (smooth)vector field Xon U ⊂ R2 is a smooth map
U → R2 interpreted asp 7→ Xp ∈ TpR

2 = R2. That is, we
think of Xp as an arrow based atp. A flow line (or integral
curve or trajectory) ofX is a curveα in U whose velocity is
given byX, that is,α̇(t) = Xα(t) for all t. This is a system of
ODEs in the two variablesu andv. The standard theorems
on ODEs say give not only existence and uniqueness of flow
lines, but also smooth dependence on the initial point. That is:

Theorem: LetX be a smooth vector field onU ⊂ R2. For
any p ∈ U there exists a neighborhoodV 3 p, a time interval
I = (−ε, ε), and a smooth mapα : V × I → R2 (called the
local flowof X) such that for eachq ∈ V the curvet 7→ α(q, t)
is the integral curve ofX throughq, meaningα(q,0) = q and
∂α(q, t)/∂t = Xα(q,t).

For fixedt ∈ I the mapq 7→ α(q, t) is called the flow ofX by
time t. Note that the uniqueness of integral curves implies that
flowing by timesand then by timet is the same as flowing by
time s+ t, i.e.,α

(
α(q, s), t

)
= α(q, s+ t) (whenever both sides

are defined). Takings = −t we see that the flow by timet is
invertible: it is a diffeormorphism fromV to its image inU.

End of Lecture 28 May 2015

Corollary: If X is a vector field onU andXp , 0 for some
p ∈ U, then there exists a neighborhoodW 3 p and a smooth
function f : W → R which is constant along each flow line
of X but hasd f , 0 everywhere. (Such anf is called a local
first integral forX.)

Pf: Assume without loss of generality thatp = (0,0) and
Xp = (1,0). Let α : V × I → U be a local flow and con-
sider its restriction ¯α to the two-dimensional cross-section
{u = 0} (transverse toXp). This restriction ¯α(v, t) has non-
singular derivative at 0, so it locally has an inverse on some
open neighborhood of (0,0), mapping this diffeomorphically
to someW 3 p. We can takef to be thev-coordinate of this
inverse.

Definition: A (smooth)vector field Xon a surfaceM is
a functionM → R3 such thatXp = X(p) ∈ TpM for each
p ∈ M. Note thatXp = a(p)xu + b(p)xv = D(u,v)x(a,b) for
smooth real-valued functionsa, b on M. (Smoothness in these
coordinates is equivalent to smoothness inR3.) We see that,
just asDx gives a pointwise isomorphism betweenT(u,v)R

2

andTp(M), it gives a one-to-one correspondance between vec-
tor fields onU ⊂ R2 and those onx(U) ⊂ M.

Thus all local results about vector fields hold also on sur-
faces. (Literally just replaceU by M in the theorem or corol-
lary above.) A stronger way to express the corollary is to say
that around a point whereXp , 0 there are coordinates such
that X = xu. (The restrictionα(v, t) gives a new parametriza-
tion of W in terms of coordinates (v, t); the function f used
above is thev coordinate and we renamet asu to getX = xu.)
We can say: any nonzero vector field is locally constant in
appropriate coordinates.

Theorem: SupposeX and Y are two vector fields onM
which are linearly indpendent at some pointp. Then there
exists a parametrizationx : U → M of some neighborhood
W 3 p such thatxu||X andxv||Y onW.

Note: It is too much to ask thatxu = X andxv = Y; coordi-
nate vector fields always commute (in the sense that the time-t
flow alongX and the time-s flow alongY are commuting dif-
feomorphisms). But general vector fieldsX andY do not have
this property.

Pf: Let u andv be first integrals ofY andX (respectively)
on some neighborhoodV 3 p. The map (u, v) : V → R2

has nonsingular differential atp. (Sinceu̇ = 0 only along
curves tangent toXp while v̇ = 0 only tangent toYp, these can
never both vanish.) Thus it locally has an inverse, the desired
parametrization.

12
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Corollary: Any p ∈ M has a neighborhood with an orthog-
onal parametrization.

Pf: We just need to find a pair of orthogonal vector fields.
Start with an arbitrary parametrizationx of some neighbor-
hood ofp. SetX = xu andY = νp× xu and apply the theorem.
The new parametrization has coordinate lines in the (orthogo-
nal) X andY directions.

In the theorem, note thatX and Y stay linearly indepen-
dent (in particular nonvanishing) on the parametrized neigh-
borhood. The theoremm only depends on equivalence classes
of X andY underX ∼ f X (where f is a nonvanishing scalar
function). These areline fields (or direction fields). Note:
globally, a line field may be nonorientable. Locally, however,
we can always pick a consistent orientation for the lines, so the
line fields always arises as above from a nonvanishing vector
field. The theorem is really about a pair of (nowhere equal)
line fields. (Line fields have unparametrized integral curves.)

As further applications of the theorem, we can derive local
existence of asymptotic and curvature-line coordinates.

Cor: If p ∈ M is a nonumbilic point, then some neighbor-
hood ofp can be parametrized by curvature-line coordinates.

Pf: In a orientable neighborhood without umbilics, we can
distinguish the principal curvatures (sayk1 < k2). Then we
get two line fields – along the eigenspaces fork1 andk2 re-
spectively. Then just apply the theorem.

Cor: If p ∈ M is a hyperbolic point, then some neighbor-
hood ofp can be parametrized by asymptotic coordinates.

Pf: In an orientable neighborhood whereK < 0 we have
two asymptotic lines at each point, and can distinguish them
globally (one is to the left of the negative principal curvature
direction). Thus we get two line fields and can apply the the-
orem.

B7. First variation of length

We want to understand the geometric meaning of the mean
curvatureH. In particular, if we consider variations of a sur-
face, we will see how to express the derivative of area in terms
of H. If a surface hasH ≡ 0 then it is a critical point for area,
called aminimal surface.

First we consider the simpler case of the length of a (com-
pact) curve. Supposeαt(s) is a smoothly varying family
of smooth curves inRn. We assume thatα(s) = α0(s) is
parametrized by its arclengths. (But s is not arclength for the
other curvesαt.) If α is not closed, we assume the variation
is supported on a compact region away from the endpoints.
(That is,αt(s) is independent oft for s outside this region.)

We can take a Taylor series int and get

αt(s) = α(s) + tξ(s) +O(t2),

whereξ is a variation vector field alongα. We will see that the
derivative of length depends only on this infinitesimal varia-
tion, and not on the higher order terms we have omitted. (One
could think of the vector fieldξ as being a tangent vector to
the infinite dimensional space of curves at the “point”α.)

End of Lecture 1 June 2015

We find the velocity ofαt is α′t = T + tξ′ +O(t2), and hence

|α′t |
2 = |T + tξ′|2 +O(t2) = 1+ 2t

〈
ξ′,T

〉
+O(t2).

Therefore d
dt

∣∣∣
t=0
|α′t | = 〈ξ

′,T〉. Using len(αt) =
∫ L

0
|α′t |dswe

find

d
dt

∣∣∣∣∣
t=0

len(αt) =
d
dt

∣∣∣∣∣
t=0

∫
|α′t |ds

=

∫
d
dt

∣∣∣∣∣
t=0
|α′t |ds=

∫ 〈
ξ′,T

〉
ds.

Here smoothness justifies interchanging the derivative and in-
tegral. Next we can integrate by parts, recalling thatT′ = ~κ =
κN; our assumptions mean that the endpoint terms vanish. We
find

δξ len(α) :=
d
dt

∣∣∣∣∣
t=0

len(αt) = −
∫ 〈
ξ,~κ

〉
ds.

We can think of the right-hand side as the inner product on
L2(I ,R3) (the tangent space atα to the space of curves, where
the vector fieldsξ and~κ alongα live). Thus the formula can
be thought of as saying that~κ is the negative gradient of the
length functional.

A curve is length-critical if no variation changes its length
to first order. That is, we haveδξ len = 0 for all ξ, which
happens if and only ifκ ≡ 0. Of course we know that straight
lines minimize length.

We see that (as claimed above) the derivativeδξ len only
depends onξ and not on the higher-order terms. Also, it is
independent of the tangential part ofξ – if we keep the same
family of curvesαt but change their parametrizations, that cor-
responds to changingξ by a tangential field but clearly has no
effect on (the derivative of) length. Any family of curves can
be reparametrized so that the variation fieldξ is normal.

Note furthermore thatδξ len depends only the component
of ξ in the principal normal direction. The so-called Hasi-
moto flow is the PDEξ = T ×~κ = κB for a moving curveαt in
R3, which physically is an approximation to smoke-ring flow.
Since we move only in the binormal direction, this flow pre-
serves length; indeed is it a so-called integrable system which
also preserves a whole hierarchy of other invariants.

Curve-shortening flow is the PDEξ = ~κ for a moving curve
αt whose length decreases as fast as possible, since we follow
the (negative) gradient direction. It is one of the earliest ex-
amples of a geometric flow, and has interesting properties like
preserving embeddedness of plane curves.

B8. Minimal surfaces

We now want to do the similar calculation to find the first
variation of surface area. A more sophisticated approach
would use the characterization 2~H = ∆Mx and an intrisic ver-
sion of Stokes’ theorem. We will take a more hands-on ap-
proach in coordinates.

Consider an initial surface with an orthogonal parametriza-
tion x : U → M. Let ϕ : U → R have compact support inU

13
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and describe a normal variation ofM. That is, we consider the
family of surfacesxt := x + tϕν. (Guided by our experience
with curves, we realize that nothing would change if we added
tangential terms or higher-order terms.)

We findxt
u = xu + tϕνu + tϕuν andxt

v = xv + tϕνv + tϕvν.
Recalling that we have assumed〈xu, xv〉 = 0, this gives〈

xt
u, x

t
u
〉
= 〈xu, xu〉 + 2tϕ 〈xu, νu〉 +O(t2),〈

xt
u, x

t
v
〉
= tϕ 〈xu, νv〉 + tϕ 〈xv, νu〉 +O(t2),〈

xt
v, x

t
v
〉
= 〈xv, xv〉 + 2tϕ 〈xv, νv〉 +O(t2).

This can be written asgt = g− 2tϕh+O(t2).
Since in our orthogonal coordinatesg =

( E 0
0 G

)
is a diagonal

matrix, the off-diagonal entries are irrelevant for the first-order
calculation of detgt. Writing h =

( L M
M N

)
we get in fact

detgt = (E − 2tϕL)(G − 2tϕN) +O(t2)

= EG− 2tϕ(LG + NE) +O(t2).

Taking the square root gives√
detgt =

√
EG

(
1− tϕ

LG + NE
EG

)
+O(t2),

but we recognize the fractionLG+NE
EG = 2H as twice the mean

curvature. Thus

δϕ
√

detg =
d
dt

∣∣∣∣∣
t=0

√
detgt = −2ϕH

√
detg.

To find the first variation of area, we simply integrate this
overU:

δϕ area(x) = δϕ

∫
M

dA= δϕ

∫
U

√
detg du dv

=

∫
U

(
δϕ

√
detg

)
du dv=

∫
U
−2ϕH

√
detg du dv

= −2
∫

M
ϕH dA

We see that the mean curvature is the negative gradient for
area – to save area one should move the surface in the direction
of the mean curvature vector. A surface is area-critical if and
only if δϕ area is zero for every variationϕ, that is, if and only
if H ≡ 0. Such a surface is called a minimal surface. Least-
area surfaces spanning a given boundary are known to exist
and be smooth; they are thus minimal surfaces. (It can also
be shown that, given a minimal surfaceM, any sufficiently
small piece ofM – indeed any piece which is a graph in some
direction – is the least-area way to span its boundary.)

Minimal surfaces have many interesting properties. For in-
stance the Gauss mapν : M → S2 is (anti)conformal, since
its differential has matrix

( k 0
0 −k

)
in an orthonormal basis of

principal directions at a point withK = −k2. One can check
that in any conformal parametrizationx : U → M of a mini-
mal surface, the coordinate functions – or more generally all
height functions〈x,u〉 : U → R for constantu ∈ S2 – are har-
monic functions. Thus they can be thought of as the real parts
of complex holomorphic functions, leading to the so-called
Weierstrass representation. (Thinking ofS2 as the Riemann
sphereĈ, the Gauss map itself is a meromorphic function.)
End of Lecture 4 June 2015

B9. Isometries

What do we mean when we talk aboutintrinsic properties
of a surface, properties that only depend on the intrinsic ge-
ometry of the surface and not on how it sits in space? More
precisely, these are properties that are the same for any two
isometric surfaces.

Def: An isometryis a diffeomorphismϕ : M → N between
two surfaces which preserves the scalar product on tangent
spaces. That is, for anyp ∈ M and anyv,w ∈ TpM, we have〈
Dpϕ(v),Dpϕ(w)

〉
= 〈v,w〉. It follows that ϕ preserves the

length of curves: len(ϕ ◦ α) = len(α) for any curve inM.
Example: Ifϕ is a rigid motion ofRn then of course it re-

stricts to any surfaceM to give an isometryM → ϕM. Less
trivially, R×(−π, π) is isometric to the unit cylinder inR3 with
one vertical line removed. (We see from this simple example
that the mean curvatureH, for instance, is not an intrinsic no-
tion; the surprising result later will be thatK is intrinsic.)

Note: If x : U → x(U) = M is a parametrization and
ϕ : M → N is a diffeomorphism then of coursey := ϕ ◦
x : U → N is a parametrization. We see thatϕ = y ◦ x−1

is an isometry if and only if, at corresponding points, the first
fundamental forms forx andy have the same matrix with re-
spect to the coordinate bases. That is,

〈
xu, xv

〉
=

〈
yu, yv

〉
, etc.

Def: We say surfacesM and N are locally isometric if
each point in either surface has a neighborhood isometric to
an open subset of the other surface.

Note: we can assume the neighborhoods are small enough
to be parametrized patches. Then we test local isometry by
finding parametrizations with the same first fundamental form
g(u, v) = g =

( E F
F G

)
.

Example: The plane and the cylinder are locally isometric.
Relaxing the condition of isometry, we can consider con-

formal (angle-preserving) mapsϕ : M → N. Here the con-
dition is that there is a positive functionλ : M → R (called
the conformal factor) such that for anyv,w ∈ TpM we have〈
Dpϕ(v),Dpϕ(w)

〉
= λ(p)2 〈v,w〉.

We have seen the sense in which two surfaces are locally
isometric if and only if they have the same first fundamental
form gi j . A somewhat surprising result is that all surfaces are
locally conformal. (By transitivity, it suffices to prove that any
surface has conformal parametrizations. This is a PDE result
that we won’t try to prove here.) The analog is not true for
higher-dimensional manifolds – only certain special metrics
areconformally flat.

B10. Covariant derivatives

If M is a surface, andY is a (vector-valued) function onM,
then we know what the directional derivative ofY at p ∈ M in
directionw ∈ TpM means:∂wY(p) = DpY(w) is the derivative
of Y along any curve (inM throughp) with velocity vectorw.
Now supposeY: M → R3 is a tangent vector field (meaning
Yp ∈ TpM for eachp). In general, its directional derivatives
∂wY will not be tangent toM. Indeed, since the tangent spaces
change asp ∈ M moves, a tangent vector is forced to change
in the normal direction just to stay tangent. We can make this

14
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precise using the second fundamental form – since〈Y, ν〉 ≡ 0,
we get〈
∂wY, ν

〉
=

〈
DY(w), ν

〉
= −

〈
Dν(w),Y

〉
=

〈
S(w),Y

〉
= h(w,Y).

This normal change inY is forced by the geometry ofM.
The intrinsic change inY is given by the tangential parts

of its directional derivatives, calledcovariant derivatives. We
write

∇wY = (∂wY)|| = ∂wY−
〈
∂wY, ν

〉
ν = DpY(w)−h(w,Yp) ∈ TpM.

To define∂wY and∇wY it of course not necessary thatY be
defined on a whole neighborhood ofp (in M) – it suffices ifY
is a vector field (tangent toM) along some curveα : I → M
throughp with velocity (parallel to)w. If Y is defined alongα
sometimes we write∇dtY := ∇α̇(t)Y for the tangential part of the
derivativeẎ = d

dtY
(
α(t)

)
. (Here again, when we talk aboutt-

derivatives ofY, we are really differentiating the composition
Y ◦ α.)

If α is parametrized at unit speed, then∇dsY = ∇TY is the
tangential part ofY′. In particular, choosingY = T and com-
paring with the Darboux equationT′ = κgη + κnν, we see that
∇TT = κgη gives the geodesic curvature. The equationκg = 0
for a geodesic can be written∇TT = 0. (A curve satisfies
∇α̇α̇ = 0 if and only if it is a geodesic parametrized at con-
stant – not necessarily unit – speed.)

We say the vector fieldY is parallel alongα if ∇dtY ≡ 0.
GivenYp at any initial pointp = α(0), there is a unique way
to extend it to a parallel fieldY alongα (solving the ODE
∇TY = 0). Any curveα from p to q thus gives a mapTpM →
TqM calledparallel transport– taking an initial vector atp
to the value atq of the parallel field alongα. It is important
to note that this parallel transport fromp to q does depend on
the choice ofα – it’s not a natural identification of the distinct
tangent spaces.

Important properties are that a parallel vector field has con-
stant length; a pair of parallel fields make constant angle; thus,
parallel transport is an orthogonal mapTpM → TqM, a map
respecting the scalar products. This is easy to confirm: par-
allel fields have derivatives only in the normal directionν, so
〈X,Y〉′ = 〈X′,Y〉 + 〈X,Y′〉 = 0.

Given two vector fieldsX andY on M, the covariant deriva-
tive ∇XY is defined at every point ofM, giving a new vector
field. Note that∇XY isR-linear in each argument:

∇X+X′Y = ∇XY+ ∇X′Y, ∇X(Y+ Y′) = ∇XY+ ∇XY′,

∇aXY = a∇XY = ∇XaY, a ∈ R.

If f : M → R is a smooth function, then of coursef X means
the vector field whose value atp ∈ M is ( f X)p := f (p)Xp.
Since∇XY at p depends only onXp, we find that∇ f XY =
f∇XY. But on the other hand, the Leibniz product rule gives

∇X( f Y) =
(
∇X f

)
Y+ f∇XY,

where we adopt the convention that∇X f := ∂X f . Since any
vector field is a combinationf xu + gxv, these formulas will
allow us to express covariant derivatives of arbitrary vector

fields in terms of the covariant derivatives of the coordinate
vector fields.

End of Lecture 8 June 2015

If X andY are two vector fields onM, then in general∇XY
and∇YX are unequal. The difference is called theLie bracket:

[X,Y] := ∇XY− ∇YX.

A special property of coordinate vector fields is that they have
vanishing Lie bracket: [xu, xv] = 0. To verify this, note that
∇xuxv is by definition the tangential part ofxuv. Thus [xu, xv] =
0 is a trivial consequence ofxuv = xvu. Given two linearly
independent vector fieldsX andY, we discussed the fact that
we cannot always find coordinates withX = xu andY = xv.
Indeed the condition [X,Y] = 0 is exactly what is needed –
this is part of the Frobenius Theorem (covered next semester).

B11. Christoffel symbols

For ease of writing equations in coordinates, we will change
notation a bit: we write (u1,u2) := (u, v) and use the subscripti
for a partial derivative with respect toui , so for instancexi :=
xui = ∂x/∂ui . Then we can write the entries of the matrices
for the first and second fundamental forms asgi j =

〈
xi , x j

〉
andhi j =

〈
ν, xi j

〉
= −

〈
νi , x j

〉
.

We now want to explicitly calculate covariant derivatives in
coordinates. We start with the covariant derivatives∇xi x j of
the coordinate vector fields; since these are tangent vectors,
they can be expressed in terms of the coordinate basis. We in-
troduce theChristoffel symbolsΓk

i j as their components. That

is, theΓk
i j are defined by

∇xi x j =:
2∑

k=1

Γk
i j xk = Γ

1
i j x1 + Γ

2
i j x2.

(The vanishing of the Lie bracket can now be expressed as
the symmetryΓk

i j = Γ
k
ji .) Since we already know the normal

componenthi j =
〈
xi j , ν

〉
of xi j , we could write the equations

above as

xi j = ∂xi x j = Γ
1
i j x1 + Γ

2
i j x2 + hi jν.

(This is called the Gauss formula.)
At every point in the surface, we have a (nonorthonormal)

frame{x1, x2, ν}. The derivatives ofν expressed in this frame
– and the normal components of the derivatives of thexi –
are given by the second fundamental form and shape operator.
The tangential parts of the derivativesxi j are new – given by
the Christoffel symbols.

Of course, as we saw withS and h, when dealing with
nonorthonormal bases, it is easier to compute scalar products
than components. Here we have〈

x ji , xk
〉
=

〈
∇xi x j , xk

〉
=

〈∑
`

Γ`i j x`, xk

〉
=

∑
`

Γ`i j g`k =: Γi jk .
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Here we multiply by the matrixg = (gi j ) to “lower an index”.
It is customary to write the inverse matrix as

(
gi j ) := g−1 =

1
EG− F2

(
G −F
−F E

)
.

Then multiplying byg−1 “raises the index” again:Γk
i j =∑

` g
k`Γi j`. Of course we still have the symmetryΓi jk = Γ jik .

Suppose we writeX andY in coordinates asX =
∑
αixi and

Y =
∑
βixi (for smooth functionsαi , βi). Then by linearity and

the product rule, we have

∇XY =
∑
i, j

αi∇xi

(
β jx j

)
=

∑
i,k

αi
(
∂xiβ

k +
∑

j

β jΓk
i j

)
xk

=
∑
i,k

αi
(∂βk

∂ui
+

∑
j

β jΓk
i j

)
xk.

Now we consider derivatives of the coefficients of the first
fundamental form:

gi j,k := ∂xkgi j = ∂xk
〈
xi , x j

〉
=

〈
∂xkxi , x j

〉
+

〈
∂xkx j , xi

〉
=

〈
xik, x j

〉
+

〈
x jk, xi

〉
= Γki j + Γk ji .

This is a set of eight equations. We could write them out
explicitly in the classical notation, gettingEu = 2Γ111, etc.
But let’s just cyclically permute the equation above and use
the symmetry of the Christoffel symbols:

gi j,k = Γki j + Γk ji = Γki j + Γ jki ,

g jk,i = Γi jk + Γik j = Γi jk + Γki j ,

gki, j = Γ jki + Γ jik = Γ jki + Γi jk .

Subtracting the top equation from the sum of the other two
givesg jk,i + gki, j − gi j,k = 2Γi jk . More important than the exact
form of this equation is the fact that it confirms the intrinsic
nature of the covariant derivative: The Christoffel symbols,
and thus all our formulas for covariant derivatives, can be ex-
pressed in terms of the first fundamental form (and its deriva-
tives) alone.

After this excursion into very abstract notation, let’s look
concretely at these equations in more classical notation. We
specialize to the case of an orthogonal parametrization (g12 ≡

0); this makes all the equations a bit simpler. The equations
2Γi jk = g jk,i + gki, j − gi j,k become:

2Γ111 = g11,1 = Eu, −2Γ112 = g11,2 = Ev,

2Γ121 = g11,2 = Ev, 2Γ122 = g22,1 = Gu,

−2Γ221 = g22,1 = Gu, 2Γ222 = g22,2 = Gv.

Of course multiplying by the inverse of a diagonal matrix
is easy, soΓk

i j =
∑
` g

k`Γi j` becomesΓ1
i j = Γi j1/E andΓ2

i j =

Γi j2/G. That is, we get

Γ1
11 = Eu/2E, Γ1

12 = Ev/2E Γ1
22 = −Gu/2E

Γ2
11 = −Ev/2G, Γ2

12 = Gu/2G Γ2
22 = Gv/2G

End of Lecture 11 June 2015

B12. Compatability conditions

Suppose we are given symmetric matricesgi j andhi j vary-
ing smoothly on a given domainU ⊂ R2. Is there some
parametrizationx : U → R3 with these as first and second
fundamental form, respectively? Of course fromg andh we
know the Christoffel symbols and the matrix for the shape op-
erator. Thus we try to solve the Gauss/Weingarten system

xi j = Γ
1
i j x1 + Γ

2
i j x2 + hi jν, νi = −S(xi).

(Of course we also need thatν is the unit normal vector to the
surface given byx. As long as that holds at some initial point,
the Gauss/Weingarten system is set up to ensure it stays true,
since the scalar products ofν with itself and with thexi will
be constant.)

Unlike for ODEs, solutions to PDEs exist only if compat-
ibility equations are satisfied. (The basic idea is that given
functionsg andh, the systemfx = g, fy = h can have a solu-
tion f only if gy = fxy = fyx = hx.) We will write down the
compatibility equations for our system (equatingxi jk = xik j);
these are clearly necessary.

Using the notation∂k := ∂xk = ∂/∂u
k for partial derivatives,

differentiating the Gauss formula gives

xi jk =
(
∂khi j

)
ν + hi jνk +

∑
`

(
∂kΓ

`
i j

)
x` + Γ`i j x`k.

The Gauss/Weingarten system shows us how to write the
right-hand side in the basis{x1, x2, ν}. Eachxi jk = xik j then
gives us three scalar compatibility equations; it turns out to
be enough to consider a few of these, since the rest are equiv-
alent by symmetries. First note that the normal component
is ∂khi j +

∑
Γ`i j h`k. The two cases of interest arex112 = x121

andx221 = x212; the normal parts give the(Mainardi–)Codazzi
equations (evidently first discovered by Peterson), the first of
our compatibility conditions:

∂2h11 + Γ
1
11h12 + Γ

2
11h22 = ∂1h12 + Γ

1
12h11 + Γ

2
12h21,

∂1h22 + Γ
1
22h11 + Γ

2
22h12 = ∂2h12 + Γ

1
12h12 + Γ

2
12h22.

Here of course, the Christoffel symbols should be viewed as
functions of thegi j .

Recalling that the shape operator has matrixg−1h, we write
this in index notation ash j

i :=
∑

k g jkhki, so thatνi = −S(xi) =
−

∑
j h j

i x j . This lets us express thex2 component ofx112 =

x121. We get

−h11h
2
2 + ∂2Γ

2
11 +

∑
`

Γ`11Γ
2
`2 = −h12h

2
1 + ∂1Γ

2
12 +

∑
`

Γ`12Γ
2
`1.

This can be written as

∂2Γ
2
11−∂1Γ

2
12+Γ

1
11Γ

2
12+Γ

2
11Γ

2
22−Γ

1
12Γ

2
11−Γ

2
12Γ

2
21 = h11h

2
2−h21h

2
1.

Expandingh11 = h1
1g11 + h2

1g21 andh21 = h1
2g11 + h2

2g21, the
right-hand side becomes

g11
(
h1

1h2
2 − h2

1h1
2
)
= g11 detS = g11K.
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Since the left-hand side is intrinsic (expressible in terms of the
first fundamental form alone), so is the Gauss curvatureK.
That is, we have Gauss’sTheorema Egregium(“remarkable
theorem”): The Gauss curvatureK is an intrinsic notion, re-
maining unchanged under local isometries, as when a surface
is bent without stretching.

The equation above in the form

∂2Γ
2
11− ∂1Γ

2
12+Γ

1
11Γ

2
12+Γ

2
11Γ

2
22− Γ

1
12Γ

2
11− Γ

2
12Γ

2
21 = g11

deth
detg

,

again with the understanding that the Christoffel symbols
should be expressed as functions of thegi j and their deriva-
tives, is theGauss equation, the last compatibility condition.

A theorem of Bonnet (basically using standard results about
first-order PDEs) now says these compatibility conditions are
also sufficient. If symmetric matrix functionsgi j andhi j (with
g positive definite) satify the Gauss and Codazzi equations,
then there is a surface with these fundamental forms, unique
up to rigid motion. We will not go into the details of the proof.

Let us return to the special case of orthogonal coordinates,
and write the intrinsic formula for Gauss curvature more ex-
plicitly. We get

2EK = −∂v

(Ev

G

)
− ∂u

(Gu

G

)
+

EuGu

2EG
−

EvGv

2G2
+

E2
v

2EG
−

G2
u

2G2
,

or equivalently

−2EGK = Evv −
EvGv

G
+Guu −

G2
u

G

−
EuGu

2E
+

EvGv

2G
−

E2
v

2E
+

G2
u

2G

=
√

EG
(
∂v

( Ev
√

EG

)
+ ∂u

( Gu
√

EG

))
.

For conformal coordinates with conformal factorλ = eϕ >
0 we haveE = G = λ2 and the formula becomes

K = −
1
λ2

(
∂v

(λv

λ

)
+ ∂u

(λu

λ

))
= −e−2ϕ∆ϕ.

Bonnet’s theorem leaves many related open questions. One
is the following: to what extent the compatibility conditions
determine the second fundamental form from the first funda-
mental form? This is a rigidity question: when does a sur-
face admit a unique isometric embedding intoR3? Unlike hy-
persurfaces in higher dimensions – see Kühnel’s book – sur-
faces can always be locally embedded in many ways. Glob-
ally, however, there are often rigidity results (like for convex
surfaces) and other (abstract) surfaces cannot be globally em-
bedded at all. We may return to these results later.

End of Lecture 15 June 2015

For curves, of course, there is no intrinsic geometry – any
two curves are locally isometric, for instance by choosing ar-
clength parametrizations for both of them. Two plane curves
are related by a rigid motion if and only if they have the same
(extrinsic) curvatureκ (as a function of arclength). Note, how-
ever, that specifying curvature as a given functionκ(t) of an

unspecified parametert gives hardly any information about
the shape of the curve. Any arc of monotonic curvature can
be parametrized byκ = t for instance.

What is the situation for surfaces? Two surfaces are lo-
cally isometric (intrinsically equivalent, one might say) if and
only if they have the same first fundamental formg in corre-
sponding coordinates. This implies that they have the same
Gauss curvatureK(u, v) in such coordinates. By Bonnet’s the-
orem, two surfaces are related by a rigid motion (extrinsically
equivalent, one might say) if and only if they have the same
first and second fundamental formsg andh in corresponding
coordinates. This implies that they have the same Gauss and
mean curvaturesK andH (or equivalently, the same principal
curvatures) in such coordinates.

If we ask when surfaces with the sameK are isometric, then
we are faced with the same problem as for curves of not know-
ing what parametrization is being used to compare the curva-
ture functions. For instance, as long asp ∈ M is not a critical
point of the functionK, then a neighborhood ofp is foliated
by lines of constantK and we can usev := K as one of the two
coordinates in a regular parametrization of this neighborhood.
One case where this problem doesn’t arise is that of surfaces
with constant Gauss curvature.

Suppose we have two isometric surfaces with the same
mean curvature (or equivalently the same principal curva-
tures). This does not always imply that that they are related by
a rigid motion. What happens is that, even though the eigen-
values of the shape operator are the same on both surfaces,
the eigenvectors (the principal directions) can rotate. An im-
portant example is that of minimal surfaces: it turns out that
any minimal surface has an isometricconjugate minimal sur-
face. Here the curvature directions have become asymptotic
directions and vice versa. (In fact, these sit in a one-parameter
family of isometric minimal surfaces with all possible asymp-
totic directions.)

B13. Surfaces of constant curvature

There are many interesting facts about surfaces with con-
stant Gauss curvature or constant mean curvature. Our first
goal is a thereom of Minding saying any two surfaces with
the same constantK ≡ c are locally isometric. Then we turn
to theorem of Liebmann that characterize the round sphere are
the unique closed surface of constantK and the unique convex
surface of constantH.

We will use one further special kind of parametrization:
Def: An orthogonal parametrizationx : U → R3 gives

geodesic parallel coordinatesif |xu| ≡ 1.
Using the notationa = |xv|, we have in geodesic parallel

coordinatesE ≡ 1 andG = a2. Specializing our formula forK
to this case gives−2a2K = a∂u(2aau/a), that is,K = −auu/a.

Clearly, in geodesic parallel coordinates, theu-curves are
parametrized at unit speed: any pair ofv-curves cut segements
of equal length from all theu-curves. We claim theu-curves
(for each constantv) are geodesics, so that thev-curves should
really be considered as parallel curves at constant distance
from each other. (The name “geodesic parallel coordinates”
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then comes from the fact that theu- andv-coordinate lines are
geodesics and parallels, respectively.)

To check the claim, we must show∇xuxu = 0. This is equiv-
alent toΓ1

11 = 0 = Γ2
11, or toΓ111 = 0 = Γ112. But in orthogoal

coordinates, we hadΓ111 = Eu/2 andΓ112 = −Ev/2.
Lemma: Any surface locally admits geodesic parallel coor-

dinates.
Proof: In fact we can start with any curveα(v) in the surface

to be the curveu ≡ 0. Then eachu-curvev ≡ c is determined
as the geodesic starting atα(c) in the conormal direction. The
only thing that one needs to check is that the coordinates stay
orthogonal. But since thev-curves are geodesics,xuu is a nor-
mal vector, so〈xuu, xv〉 = 0. Thus

0 = Ev = ∂v 〈xu, xu〉 = 2 〈xu, xuv〉

= 2
(
〈xv, xuu〉 + 〈xu, xuv〉

)
= 2∂u 〈xu, xv〉 = 2Fu.

This impliesF ≡ 0 since we knowF vanishes alongα.
Note that the special case whereα is itself a unit-speed

geodesic gives what are calledFermi coordinates(alongα),
often used in Lorenzian geometry for general relativity
(choosingα to be the wordline of some particle). In this case,
not only is the first fundamental form the identity matrix along
the whole starting curve, but also its derivative in the conor-
mal direction vanishes, so all the Christoffel symbols vanish
along that curve. (In particular our claim is thatEu = 0 = Gu

alongα and this follows from calculations like the one above
for Fu, using the additional fact thatα is a geodesic.)

Thm (Minding): Two surfaces with the same constant
Gauss curvatureK are locally isometric. Indeed, give a point
in each surface and orthonormal frames at these points, the lo-
cal isometry can be chosen to map the one frame to the other.

Pf: Construct Fermi coordinates in each surface, starting
with a unit-speed geodesic (through the given point in the di-
rection of the first frame vector). The first fundamental form
in these coordinates will be given by

( 1 0
0 a2

)
and we have that

K = −auu/a with a(0, v) ≡ 1. This can be viewed as the (ordi-
nary!) differential equationauu = −Ka for a, which of course
has a unique solution given the initial conditionsa(0) = 1,
au(0) = 0. Thusa is independent ofv and is the same on both
surfaces.

Note that of course we can solve this ODE explicitly. For
K = 0 we havea ≡ 1 (as for the standard coordinates onR2,
while for K > 0 we geta = cos(

√
Ku), and forK < 0 we get

a = cosh(
√
−Ku).

Note that ordinary spherical coordinates (latitude, longi-
tude) are Fermi coordinates (around the equator) for the round
sphere withK ≡ 1. The pseudosphere is an example of a sur-
face withK ≡ −1, but no such surface is complete.

Lemma: Any closed surface inR3 has at least one point
(and hence an open set) whereK > 0.

Proof: SinceM is compact, it is contained in some ball
around the origin. LetBR(0) be the smallest such ball. Its
boundary sphere (with normal curvatures 1/R) must be tan-
gent toM. SinceM stays inside, its normal curvatures – in
particular both principal curvatures – are at least 1/R. Thus at
the point of tangencyK > 1/R2 > 0.

Lemma: In curvature-line coordinates withg =
( E 0

0 G

)
and

h =
( L 0

0 N

)
, the Codazzi equations become

Lv = HEv, Nu = HGu.

In terms of the principal curvatures, withL = k1E, N = k2G,
the equations can be written as

Ev =
2E∂vk1

k2 − k1
, Gu =

2G∂uk2

k1 − k2
.

Proof: Dropping the terms involvingh12, the Codazzi equa-
tions are

∂2h11 + Γ
2
11h22 = Γ

1
12h11, ∂1h22 + Γ

1
22h11 = Γ

2
12h22.

Substituting the values we computed for the Christoffel sym-
bols in arbitrary orthogonal coordinates gives

Lv − NEv/2G = LEv/2E, Nu − LGu/2E = NGu/2G.

Recalling that the mean curvature isH = L/2E + N/2G gives
the first form.

Now differentiating the equationsL = k1E, N = k2G yields
(∂vk1)E + k1Ev = Lv = HEv, etc., which simplifies to the final
equations in the statment.

Lemma (Hilbert): Supposep is a nonumbilic point with
k1 > k2 and supposek1 has a local maximum whilek2 has a
local minimum atp. ThenK(p) ≤ 0.

End of Lecture 18 June 2015

Proof: Choose curvature-line coordinates in a neighbor-
hood of p. By assumption, the and use the classical notation
of the last lemma. We haveL = k1E, N = k2G. Differen-
tiating these equations and comparing the Codazzi equations
gives (∂vk1)E + k1Ev = Lv = HEv, etc., that is,

Ev =
2E∂vk1

k2 − k1
, Gu =

2G∂uk2

k1 − k2
.

But by assumption the derivatives of the principal curvatures
vanish atp, so by the final formulas of the last lemma,Ev =

0 = Gu there. Differentiating these formulas (and dropping
terms involving first derivatives ofki to evaluate atp), we find
that

Evv =
2E∂2

vvk1

k2 − k1
, Guu =

2G∂2
uuk2

k1 − k2

at p. By assumption, atp we havek1 > k2 at p and also
∂2

vvk1 ≤ 0 ≤ ∂2
uuk2. ThusEvv ≥ 0 andGuu ≥ 0 at p. The

Gauss equation in orthogonal coordinates gave a nice formula
for K involving

√
EG. At a point whereEv = 0 = Gu, it is

easy to reduce this formula to−2EGK = Evv+Guu. It follows
immediately thatK(p) ≤ 0.

Note: Recall our earlier claim that the only surfaces with
constantH andK (or equivalently, with constant principal cur-
vatures) are planes, spheres and cylinders. Ifk1 = k2 then we
are in the totally umbilic case of planes or spheres. Otherwise,
we can use the calculations above. We have∂2

vvk1 = 0 =⇒
Evv = 0 and similarlyGuu = 0, giving K ≡ 0. Surfaces with
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K ≡ 0 are calleddevelopable; we will study these later. Our
first few results will suffice to conclude that the developable
surfaces here with constantH are round cylinders.

Thm (Liebmann 1899): A smooth closed surfaceM ⊂ R3

with constant Gauss curvatureK is necessarily a round sphere.
Proof: By the first lemma,K > 0; the sphere we seek has

radius 1/
√

K. Denote the two principal curvatures byk1 ≥ k2.
By compactnessk1 attains a maximum at somep ∈ M (where
k2 has a minimum, sincek1k2 ≡ K). If k1(p) =

√
K = k2(p),

the surface is totally umbilic – and as we have seen already, it
is thus a piece of a sphere, indeed the whole sphere sinceM is
closed. Thus we may assumek1 > k2 at p. But then we are in
the situation of Hilbert’s lemma, soK ≤ 0, a contradiction.

Thm (Liebmann 1900): A smooth closed surfaceM ⊂ R3

with K > 0 and constant mean curvatureH is necessarily a
round sphere.

Proof: We proceed exactly as before, lettingk1 attain its
maximum atp. Again we just need to rule out the nonumbilic
casek1 > k2. But here again Hilbert’s lemma applies to give
the contradictionK ≤ 0.

Note: One might ask if there are any other closed sur-
faces of constant mean curvature (CMC), perhaps even allow-
ing “immersed” surfaces with self-intersections. Heinz Hopf
(1955) conjectured not, and proved this in the case the surface
is simply connected (topologically a sphere). A.D. Alexan-
drov proved (1962) there are no embedded examples of any
genus. It was a surprise then in 1986 when Henry Wente
found an immersed CMC torus. Since then, general methods
for finding many examples have been developed.

B14. More on geodesics

We derived earlier the formula for the first variation of
length of a space curve:δξ len(α) = −

∫ 〈
ξ,~κ

〉
ds. Of course,

if α lies on a surfaceM, then this formula holds for all varia-
tions including those that keepα on M. Their variation vector
fieldsξ are tangent toM. As before, up to reparametrization,
we can assumeξ is normal toα. Thusξ = ϕη is a varying mul-
tiple of the conormal vectorη. We getδξ lenα = −

∫
ϕκg ds.

Although only straight lines are length-critical with respect to
all variations in space, we see that, considering only varia-
tions withinM, a curveα is length-critical if and only if it has
κg ≡ 0, that is, if and only if it is a geodesic.

Here are a few facts without proof. We will return to them
next semester for more general manifolds. First, sufficiently
short arcs of any geodesic are length-minimizing. On any sur-
face, we can define a metric by settingd(p,q) to be the infi-
mal length of paths fromp to q. (One shows that this infi-
mum never vanishes forp , q and that the metric topology
coincides with the usual topology onM.) If the infimum is
realized, that is, if a shortest path alongM from p to q exists
then it is a geodesic. IfM is closed, then shortest paths always
exist.

Now consider two nonvanishing vector fieldsX andY, tan-
gent toM along some curveα. As in our discussion of the
total curvature of plane curves, even though the angleθ be-
tweenX andY is only defined up to multiples of 2π, given a

choice ofθ at the basepointα(0), there is a unique smooth an-
gle function alongα. For consideration of the angle, we might
as well assume that both vector fields have unit length.

So supposeX is a unit parallel field alongα, meaning∇dt X =
0, andY is any unit field. Letθ(t) be the angle fromX to Y
at α(t). As we observed earlier, parallel transport preserves
the angle between two vectors, soθ is constant ifY is also
parallel. In general, we claim that the rate of change in angle
θ measures the covariant derivative ofY.

Any unit Y is perpendicular to its derivative. In particular,
the covariant derivative∇dtY, being perpendicular toν as well,
is a scalar multiple ofν×Y, the scalar being given by the triple
product

〈 ∇
dtY, ν × Y

〉
=

〈
Ẏ, ν × Y

〉
.

In terms of the parallel fieldX, we can writeY = cosθ X +
sinθ (ν × X). Taking the covariant derivative, we get

∇

dt
Y = θ̇

(
− sinθ X + cosθ (ν × X)

)
= θ̇ (ν × Y).

Equivalently,θ̇ =
〈 ∇

dtY, ν × Y
〉
.

B15. The Umlaufsatz

Note: from here on, these notes become more sketchy and
less detailed.

At the beginning of the semester, we mentioned the “the-
orem on turning tangents”, also known (even in English) as
the Umlaufsatz: a simple closed plane curve (oriented with
the bounded region to its left) has turning number 1 (or equiv-
alently total signed curvature 2π). This is actually the pla-
nar case of the Gauss–Bonnet Theorem. The local version of
Gauss–Bonnet talks about a simple closed curveγ enclosing
a diskR on a surfaceM, and says the total geodesic curva-
ture ofγ in M equals 2πminus the total Gauss curvature ofR.
WhenM = R2 then of courseK ≡ 0 andκg = κ±, so Gauss–
Bonnet does reduce to the Umlaufsatz; we use the Umlaufsatz
in our proof of Gauss–Bonnet.

End of Lecture 22 June 2015

Hopf was not the first to prove the Umlaufsatz, but we will
sketch his proof. Let the curveγ be parametrized at unit speed
as anL-periodic mapγ : R → R2. Shift the parameter if nec-
essary, to ensure thatγ(0) is an extreme point on the convex
hull. For convenience, rotate so thatγ(0) is a point with lowest
y-coordinate alongγ. ThenT(0) = γ′(0) = e1 is horizontal.

Now define thesecant map

f (s, t) :=
γ(s) − γ(t)∥∥∥γ(s) − γ(t)∥∥∥ ∈ S1.

Becauseγ has no self-intersections, this is well defined on
the diagonal strips < t < s+ L in the (s, t)-plane. On the
lower boundarys = t it is extended smoothly byf (s, s) =
T(s), while on the upper boundary it is extended smoothly by
f (s, s+ L) = −T(s). We will be interested inf restricted to
the triangle

∆ :=
{
(s, t) : 0 ≤ s≤ t ≤ L

}
.
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Just as we lifted theS1-valued mapT(s) to a real-valued an-
gle functionθ(s) when we defined turning number, here we
can lift the mapf : ∆ → S1 to a mapθ : ∆ → R such that
f (s, t) =

(
cosθ(s, t), sinθ(s, t)

)
. (For smooth functions like we

have here, this is easiest to do by considering what the deriva-
tives ofθ must be. But such a lift exists for any continuousf ,
as one learns in algebraic topology.) The lift is unique up to
adding a constant multiple of 2π. We choose the lift for which
θ(0,0) = 0.

Along the diagonal, thisθ(s, s) is the lift of T, soθ(L, L) is
by definition 2π times the turning number: our goal is to show
θ(L, L) = 2π. Now consider the other sides of the triangle
∆, recalling thatγ(0) was chosen to be a lowest point on the
curve.

Along the vertical side,f (0, t) must point upwards, that is,
it stays in the (closed) upper semicircle. Thus the angle func-
tion θ(0, t), starting atθ(0,0) = 0 must stay in the interval
[0, π]. When we reacht = L, where f (0, L) = −e1 we know
θ(0, L) is π (modulo 2π) so the only possibility in the interval
is θ(0, L) = π.

Continuing along the horizontal side,f (s, L) always points
downwards, staying in the lower semicircle. Thus, starting
at θ(0, L) = π, we see thatθ(s, L) stays in the interal [π,2π].
When we reachθ(L, L), which must be a multiple of 2π, we
see it must be 2π as desired.

One basic idea here is that a continuous function with dis-
crete (integer) values is constant. This is a recurring theme
in topology. Algebraic topology associates to any topological
spaceX various algebraic objects (fundamental groups, ho-
mology groups, etc.) and to any continuous mapf : X → Y
homomorphisms between the associated groups. For the cir-
cle S1, the fundamental group (or the first homology group)
is the integers; a mapf : S1 → S1 induces a homomorphism
f∗ : Z → Z – this must be given by multiplication by some
d ∈ Z, called thedegreeof f .

Given a smooth closed plane curveα, its tangent vector can
be viewed as a mapT : S1 → S1. The turning number ofα
is the degree of this map. For smooth maps like this, one can
also bypass the machinery of algebraic topology and define
the degree via differential topology, as we did by lifting to the
angle function. Equivalently, the degree off can be computed
by integrating the derivative off around the circle – just as we
computed turning number as12π

∫
κ ds.

An alternative approach to degree is to note that almost ev-
ery value in the range off is a regular value, attained only at
points where the differential of f is surjective. In particular, it
is attained only finitely many times, and each time has a well-
defined sign±1 depending on the orientation. The degree can
be computed at any regular value as the sum of these signs.

(Another possibly familiar example of degree is thewinding
numberused in complex analysis. Ifα is a closed curve in
R2r {0}, then the winding number ofα around 0 is the degree
of α/|α| : S1→ S1.)

We will want the Umlaufsatz not just for smooth curves but
for all piecewise smooth curves. As a warmup, consider what
it should say for polygons. The tangent vectorT is constant
along each side of a polygon but then jumps at each corner.
If the interior angle isθi , then theexterioror turning angleis

τi := π − θi ∈ (−π, π). The total signed curvature should be
replaced by

∑
θi ; this will be 2π times the turning number.

Of course, the fact that
∑
θi = 2π (or equivalently,

∑
θi =

(n − 2)π for an n-gon) is standard in elementary geometry.
To prove it by induction starting from the known case of a
triangle, we just need to cut a larger polygon into pieces. (The
one nontrivial lemma is that any simple polygon has some
diagonal that can be drawn without crossing any edges. In
fact one can always find an “ear”, such a diagonal that cuts
of just a triangle. Note that this is also the key lemma for a
polygonal version of the Jordan curve theorem.)

How about piecewise smooth curves? (Note: important to
have smooth onclosedsubintervals to get well-defined one-
sided tangents.) Definition:

∫
κ over smooth parts plus turning

angles at junctions. But how do we choose the sign at cusps
whereτ = ±π? (Note: do Carmo’s definition here doesn’t
always work.) Right definition:+π if cusp points out from
bounded region,−π if cusp points into bounded region. From
now on, we will writeτi ∈ [−π, π] for this turning angle at the
ith corner (with the correct choice of sign at cusps).

To prove the Umlaufsatz in this generality, one could try
to take a limit of smooth or polygonal approximations – but
preserving embeddedness and controlling the limiting value
of total curvature is quite tricky. Hopf does it as follows: the
secant map on the open triangle still limits to the tangent di-
rection on all smooth points of the diagonal. The lifted map
θ will jump at the points (s, s) corresponding to corners. We
just need to show that the lifted map jumps by no more than
π at each corner – and that the sign is right where the jump
is ±π. (The sign that naturally comes up here is given by the
orientation of a triangle consisting of the cusp and two nearby
points chosen such that the curve avoids the segment between
them. One can check that this is equivalent to our definition
above.)

B16. Gauss–Bonnet: local form

Now we want to turn towards Gauss–Bonnet. As a first
result for curves on surfaces, consider a parametrized surface
patchx : U → M = x(U) and a simple closed (piecewise
smooth) curveγ ∈ M. Consider the angle thatT = γ′ makes
with xu. Then we claim this changes by 2π as we go around
γ. (Same convention as above for corners.)

Proof: pull everything back toU. If the metricg were stan-
dard, this would just be the Umlaufsatz. But we can con-
tinuously deformg to the Euclidean metric (through convex
combinations) – an integer value must remain constant.

End of Lecture 25 June 2015

Let us define the total geodesic curvatureTC(γ) of a piece-
wise smooth curveγ as

∫
κg ds+

∑
τi , where the integral is

taken over each smooth subarc. We have not yet formally de-
fined integrals over regions in a surface, but for any coordinate
chartx(U) and any regionD ⊂ U, we have (just as for surface
area) ∫

x(D)
K dA=

"
D

K
√

detg du dv,
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and can check that this is independent of coordinates. The
local version of Gauss–Bonnet then says (for a piecewise
smooth curveγ enclosing a diskR⊂ M to its left):∫

R
K dA= 2π − TC(γ).

Additivity under splitting a region.
Following do Carmo, we prove this directly under the as-

sumption thatR is contained in a orthogonally parametrized
neighborhoodx(U). (The case of larger disks is then a spe-
cial case of one of the global versions of Gauss–Bonnet.) We
write D := x−1(R) ⊂ U and writeα for the piecewise smooth
boundary curve ofD with γ = x ◦ α.

Let us first examine the right hand side. By the extension
to the Umlaufsatz, 2π is the total turning of the tangent vector
relative toxu (with the appropriate convention at corners). By
definition,TC is the total turning of the tangent vector relative
to a parallel field (with the same convention at corners). Thus
2π − TC is the total turning ofxu relative to a parallel field.
Passing to the orthogonal unit vectorse1 := xu/

√
E ande2 :=

xv/
√

G, we find that the rate of turning ofxu (relative to a
parallel field) is

〈
∇Te1,e2

〉
=

1
√

EG

〈
∇Txu, xv

〉
.

With T = u̇xu + v̇xv, we have〈
∇Txu, xv

〉
= u̇Γ112+ v̇Γ122.

But in orthogonal coordinates we computedΓ112 = −Ev/2 and
Γ122 = Gu/2. Thus the total turning, the integral of the rate of
turning, is ∫

Guv̇− Evu̇

2
√

EG
dt.

On the other hand, using our formula forK, we get∫
D

K dA=
"

R
K
√

EG du dv

=

"
R
∂v

( Ev

2
√

EG

)
+ ∂u

( Gu

2
√

EG

)
du dv.

Now we recall Green’s theorem in the plane: ifP andQ are
two functions on a regionRbounded by a (piecewise smooth)
curveα, then"

R
∂uQ− ∂vP du dv=

∫
α

P du+ Q dv=
∫
α

(Pu̇+ Qv̇) dt.

(This is a special case of Stokes’ Theorem, of course already
known to Gauss in other forms.) We apply Green’s theorem
with P = −Ev/2

√
EG andQ = Gu/2

√
EG to give∫

D
K dA=

∫
α

−Evu̇+Guv̇

2
√

EG
dt.

This agrees with the expression we got above for 2π − TC, so
we have proved the Gauss–Bonnet theorem.

Interpretation in terms of holonomy of parallel transport.
Gauss curvature as density – limit over small disks aroundp.
Special case of sphere – spherical polygons (esp. triangles).

So far we have Gauss–Bonnet in the local form
∫

R
K dA =

2π−TC(∂R) for any diskRcontained in an orthogonal coordi-
nate patch and with peicewise smooth boundary. A comment
on orientation is in order. Of course any coordinate patch is or-
intable. If we switch orientation, thenK is unchanged, so the
whole Gauss–Bonnet equation must be unchanged. Indeed,
our convention that∂R is oriented withR to the left depends
on the surface normal, soT switches sign. That means how-
ever that the conormalη is unchanged, so the total geodesic
curvature of∂R is unchanged. A better way to express the ori-
entation convention for∂R might be to simply say the conor-
malη should point inwards towardsR.

B17. Global topology of surfaces

To consider the global forms of Gauss–Bonnet, we need
to discuss the topology of surfaces. Aregular region Ron
a smooth surface will mean a compact subsetR which is the
closure of its interior and whose boundary is a finite disjoint
union (possibly empty) of simple closed, piecewise smooth
curves. Topologically,R is therefore a compact 2-manifold
with boundary, a compact Hausdoff space locally homeomor-
phic to the closed half-plane

{
(x, y) : y ≥ 0

}
. (That is, each

point p ∈ R has a neighborhood homeomorphic either to the
plane or to the half-plane.)

One way to build such a topological space is to start with a
finite collection of triangles and “zip” certain pairs of edges
together. (Any edge that is not paired remains part of the
boundary.) This is called atriangulation of the surface. A
difficult theorem of Radó (1925) says that any topological 2-
manifold with boundary can be triangulated. For our smooth
regionsR in space, this is not so difficult. Although we skip
the details, the idea is that if we tileR3 with a fine enough
cubic lattice – adjusted to be transverse toR– then each small
cube contains just a single disk ofR with piecewise smooth
boundary: a polygon. Of course it is easy to cut ann-gon into
n − 2 triangles. Given an atlas of coordinate charts for a sur-
face, note that we may assume the triangulation is fine enough
that each triangle lies in one of the charts.

End of Lecture 29 June 2015

We now want to give a topological classification of regu-
lar regionsR, that is, of compact 2-manifolds with boundary,
that is, of spaces obtainable by zipping triangles together. For
this discussion, we use the wordsurfaceto mean such a topo-
logical space (rather than a smooth surface inR3 as usual).
We follow the description by Francis and Weeks of Conway’s
“ZIP proof”.

Let us first describe the statement. To “perforate” a surface
is to delete an open disk. (A sphere with one perforation is
a closed disk; a sphere with two perforations is an annulus –
also called a cylinder.) To add a “handle” or “cross-handle”
to a surface is to perforate it twice, and then sew in an an-
nulus connecting the new boundaries. (Or equivalently, then
zip these boundaries to each other.) To add a “cross-cap” to a
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surface is to perforate it once and then sew in a Möbius band
along the new boundary. (Or equivalently, then zip the two
halves of the boundary together.)

Adding a cross-handle is the same as adding two cross-
caps. (The Klein bottle is the union of two Möbius bands.)

Thm: Any surface is a finite union of components, each
being a sphere with a certain number of perforations, handles,
and cross-caps.

Pf: The starting collection of triangles is of this form. It
suffices to show that a single zipping (involving one or two
components) preserves this. First consider the case where en-
tire boundary components are zipped together: either join two
components or add a (cross-)handle. If the two edges to be
zipped are instead the two halves of one boundary compo-
nent, we add a cross-cap or remove a perforation. Finally, if
the edges to be zipped are just subarcs of the cases considered
so far, then the effect is the same except that we are left with
one or two more perforations.

Note that adding a cross-cap (or a cross-handle) makes a
component non-orientable. An orientable component is thus
Σg,k, a sphere withg ≥ 0 handles andk ≥ 0 perforations.
On a non-orientable component there is no way to distinguish
handles from cross-handles. Thus it is has the formNh,k, a
sphere withh ≥ 1 cross-caps andk ≥ 0 perforations. We can
restate the classification as follows.

Thm: A connected surface has the formΣg,k if orientable or
Nh,k if nonorientable.

Note that the closed nonorientable surfacesNh,0 cannot be
embedded inR3, while all the other types can be.

The Euler numberof a triangulation isχ := V − E + F.
This is clearly the sum of the Euler numbers of the compo-
nents. For a single triangleχ = 1. Zipping a pair of edges
leavesF unchanged and decreasesE by one; the effect onV
varies. But tracing through the cases considered above shows
that the Euler number depends only on the topology. Indeed
χ
(
Σg,k

)
= 2− 2g− k while χ

(
Nh,k

)
= 2− h− k. When thought

of as an invariant of a topological space,χ is called theEuler
characteristic.

Note that the topological type of a connected surface is thus
determined by its orientability, its Euler numberχ, and its
numberk of boundary components.

B18. Gauss–Bonnet: global forms

Recall that a regular regionR on a smooth surfaceM in R3

is compact with piecewise smooth boundary. Every point inR
has a neighborhood with an orthogonal parametrization, and
R can be triangulated by triangles, each containted in such a
parametrized neighborhood. To integrate a functionf overR,
we sum over the triangles:∫

R
f dA=

∑∫
Tk

f dA=
∑∫

x−1
k (Tk)

f
√

detgk duk dvk.

Note that our local form of Gauss–Bonnet applies to each tri-
angle:

∫
T

K dA= 2π − TC(∂T).
Consider first a closed surfaceR = M. Counting edges

of triangles gives 2E = 3F, soχ(M) = V − F/2. Now we

sum the Gauss–Bonnet relation over all triangles. Each edge
is used twice, with opposite orientations, so the terms

∫
κg ds

cancel out. Thus
∫

M
K dA equals the sum over all triangles of

a+ b+ c− π, wherea,b, c are the interior angles. This is the
sum ofall interior angles minusπF. But grouping the angle
sum around the vertices, it is 2πV. Thus we get∫

M
K dA= 2π(V − F/2) = 2πχ(M).

An alternative way of doing the bookkeeping is to start with
total charge 2πχ(M) by putting charges+2π at each vertex and
in each face and−2π on each edge. Then move the charges
from the vertices and edges into the faces, based on angles and
total curvatures. We are left with charge in each face, equal
(by the local form of Gauss–Bonnet) to

∫
K.

For a general regionR, we do the same thing. But along
boundary edges,

∫
κg ds does not cancel out. Similarly, at

boundary vertices, the sum of interior angles is not 2π. Also
2E = 3F must be corrected by the number of boundary edges.
Putting it all together, we get:∫

R
K dA= 2πχ(R) − TC(∂R).

This is the most general form of Gauss–Bonnet, with the pre-
vious versions (for disks and closed surfaces) as special cases.
There are several immediate applications.

• Any closed surface inR3 with K > 0 hasχ > 0 so it is
homeomorphic to a sphere or a projective plane; if it is
embedded it must be a sphere.

• If there are two closed geodesics on a surface withK >
0, then they intersect (because otherwise they would
bound an annulus withχ = 0). (Note that Lyusternik
and Shnirelman proved that any sphere has at least three
different simple closed geodesics.)

• A simple closed geodesic on a surface withK ≤ 0 can-
not bound a disk to either side (because such a disk has∫

K = 2π).

• There is no geodesic 1-gon or 2-gon (disk) on a surface
with K ≤ 0 (because geodesics that are tangent coin-
cide, so the exterior angles are notπ but strictly less).

• The angle excess of a geodesic triangle has the same
sign as the average (or total) Gauss curvature in the tri-
angle.

B19. The Gauss image and total absolute curvature

The Gauss–Bonnet theorem shows thatK is a density – im-
portant is its integral over a region. There is also an extrinsic
interpretation.

Near any pointp ∈ M whereK , 0 the Gauss mapν is
locally an immersionM → S2 – orientation-preserving ifK >
0 and orientation-reversing ifK < 0. Its Jacobian determinant
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K = detDν gives the factor by which area is stretched – here
we mean an “algebraic” signed area. (Think about curvature-
line coordinates.)

We can say
∫

R
K dA equals the signed area ofν(R) ⊂ S2.

(And we can recoverK(p) as the limit of area
(
ν(R)

)
/area(R)

as the regionRshrinks down to the pointp.)
Using the appropriate notion of area with multiplicities, we

can say
∫

R
K dA= area(ν|R) for any regionR⊂ M.

End of Lecture 6 July 2015

Consider a closed surfaceM ⊂ R3. An analog of the Jor-
dan curve theorem says that it divides space into one bounded
and one unbounded region; we can orient it with the outward
unit normal (pointing into the unbounded region). ThusM is
necessarily an orientable surface of some genusg ≥ 0.

By Gauss–Bonnet, the area of the Gauss imageν(M) in S2

equals 2πχ = 4π(1 − g). That is, the Gauss map covers the
sphere 1− g times (in an oriented sense) – thedegreeof the
Gauss map is 1− g. By degree theory, almost every point
w ∈ S2 has finitely many preimages, 1− g of them if counted
with signs. That is, if there arek preimages withK > 0 then
there arek+ g− 1 with K < 0.

(Note that the points with normalν = ±w are exactly the
critical points of the function〈·,w〉 : M → R.)

Now consider bringing a plane with given normalw ∈ S2

in from infinity until it first touchesM. Any point of contact
p ∈ M hasK ≥ 0, sinceM stays stays to one side of the plane.
This means every pointw ∈ S2 has at least one preimage with
K ≥ 0. (That is,k ≥ 1 in the counts above.) LetM± denote the
regions where±K > 0. Then we have

∫
M+

K dA ≥ 4π. With

Gauss–Bonnet, this gives
∫

M−
K dA≤ −4πg. Subtracting these

gives
∫

M
|K|dA≥ 4π(1+ g).

Equality holds in these last three inequalities if and only if
all pointsp ∈ M with K > 0 are extreme on the convex hull.
Such a surface is calledtight. An interesting theory of tight
surfaces characterizes them, for instance, as exactly those sur-
faces having thetwo-piece propertyof being cut into no more
than two pieces by any plane.

Now consider the case thatK > 0 holds on all ofM. (So by
Gauss–Bonnet,M is a sphere and

∫
K dA =

∫
|K|dA = 4π.)

The Gauss map is bijective, indeed a diffeomorphismM →
S2. Each pointp ∈ M is an extreme point on the convex hull,
that is,M is globally convex (as we mentioned before.

The results on total absolute curvature do not hold for ab-
stract surfaces. For instance,R2/Z2 is a torus with a flat
(K ≡ 0) metric. An abstract surface of genusg > 1 can be
given ahyperbolicmetric withK ≡ −1. By Gauss–Bonnet its
area is then−2πχ = 4π(g− 1).

B20. Developable Surfaces

We now want to consider a surfaceM ⊂ R3 with K ≡ 0.
Each point onM is parabolic – a closed subsetP ⊂ M consists
of planar points; the open complementU := M r P consists
of nonumbilic points. (Note the example of a triangle joined
to three cylinders as in do Carmo; the example of a cylinder

whereP is, say, a Cantor set (×R); and the example of two
cones whereP is a single line at which the ruling is Lipschitz
but notC1 as in Kühnel.)

We follow a paper of Massey, as summarized in do Carmo’s
book.

At eachp ∈ U there is a unique asymptotic direction. Inte-
grating these, we foliateU by a unique family of asymptotic
lines. The first claim is that these curves are straight lines in
space. Of course, along these asymptotic curves which are
also lines of curvature, the surface normalν is constant. (But
compare top curve of round torus – asymptotic=curvature line
of parabolic points, but not straight – need to know conormal
derivative ofK vanishes.)

Proof: Locally onU we can use curvature-line coordinates
where, say, theu-curves are the asymptotics. Thenν is a func-
tion of v alone. Now consider the real-valued function〈x, ν〉
on U. Sincexu ⊥ ν andνu ≡ 0, its u-derivative vanishes,
so it is a also function ofv alone: 〈x, ν〉 = ϕ(v). Differenti-
ating gives〈x, νv〉 = ϕ′(v). Note thatνv , 0 since we are at
nonplanar points; of courseνv (like ν) is constant along each
asymptotic curve. Thus each of these equations is the equa-
tion of some plane in space (depending onv); the planes are
orthogonal. Theu-curvev = const. lies in the intersection line
of these planes.

We next claim that we may assumeu is the arclength pa-
rameter along eachu-curve (asymptotic line).

Proof: Recall that in curvature-line coordinates withg =( E 0
0 G

)
and h =

( L 0
0 N

)
, the Codazzi equations becomeLv =

HEv andNu = HGu. Here we haveL ≡ 0, soEv ≡ 0, meaning
that E is a function ofu alone. Thus definings =

∫ √
E du

(independent ofv), this is arclength along eachu-curve. Then
(s, v) are equally valid curvature-line coordinates, whereg =( 1 0

0 G

)
andh =

( 0 0
0 N

)
.

The conditionE ≡ 1 means that the new coordinates are
not only curvature-line coordinates but also simultaneously
geodesic parallel coordinates. As before we writeG = a2

(with a = |xv|) and haveK = −auu/a. Thus hereauu = 0,
meaning thata is a linear function along each asymptotic line
(that is, for eachv).

Now consider again the Codazzi equationNu = HGu =

2Haau, where the mean curvature satisfies 2H = N/G =

N/a2. Combining these gives

Nu

N
=

au

a
,

meaning that for eachv (i.e., along each asymptotic curve),N
is a constant multiple ofa. That isN = c(v)a. Finally consider
the principal radius of curvaturer = 1

2H =
a2

N =
a

c(v) in thexv

direction. This (likea andN) is a linear function along each
asymptotic line.

Lemma: An asymptotic line through a pointp ∈ U, even if
extended indefinitely, never reachesP.

Proof: The mean curvatureH is continuous onM. It van-
ishes onP but along any asymptotic line inU is the (nowhere
vanishing) reciprocal of a linear function.

Prop: The boundary∂U = ∂P ⊂ M is a union of open line
segments. (Note: might be uncountable union!)
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Proof: Consider a boundary pointp and some neighbor-
hoodV parametrized as a graph overTpM. The setU ∩ V is
foliated by lines, which in the projection do not cross. Thus in
a smaller neighborhoodV′ of p their directions are given by a
Lipschitz function. Thus (consider the lines`pi through points
in U ∩ V′ approachingp) there is a a well-defined limiting
direction atp. Any point inU along the resulting linèp is a
limit of points along thè pi and in particular is in∂U.

Thm: A complete surface withK = 0 is a cylinder over
some plane curve.

Proof: First we claim that the direction of the asymptotic
lines is locally constant onU. Along any line, the radius of
curvature is a linear function, which can never vanish on a
smooth surface. Thusr is constant on each line. It follows
from the equations above (in local coordinates) thata = |xv|

is also constant, implying thatxv is constant along each line.
That is, 0= xvu = xuv. Thusxu (which we know is constant
along each line, of course) is locally constant as claimed.

At points of ∂U we defined lines whose direction was a
limit; using the Lipschitz condition, we find the direction is
actually locally constant onU ∪ ∂U. (We don’t get, say, a
Cantor function!)

Finally consider the interiorPr∂U of P. It consists of open
pieces of planes, bounded by complete lines. Each such piece
must then be an infinite strip, bounded by two parallel lines.
We can foliate it by further parallel lines.

Thus, as claimed, all ofM is foliated in this way by parallel
lines.
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