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This course is an introduction to the geometry of smooth The length of an arbitrary curve can be defined (Jordan) as
curves and surfaces in Euclidean space (ustil)y The lo-  total variation:
cal shape of a curve or surface is described in terms of its
curvatures Many of the big theorems in the subject — such _ _
as the Gauss—Bonnet theorem, a highlight at the end of the lente) = TV(a) = to<SLiF:e Z|a(t) alt- 1)|
semester — deal with integrals of curvature. Some of these in-
tegrals are topological constants, unchanged under deformahis is the supremal length of inscribed polygons. (One can

tion of the original curve or surface. show this length is finite over finite intervals if and onlyaif
Usually not as level sets (like? + y? = 1) as in algebraic has a Lipschitz reparametrization (e.g., by arclength). Lips-

geometry, but parametrized (like (dpsint)). chitz curves have velocity defined a.e., and our integral for-
Of course, byEuclidean spacgpEe: euklidischer Rauinwve ~ mulas for length work fine.)

mean the vector spa®’ > x = (X, ..., X;) with the stan- If Jis another interval ang: J — | is an orientation-

dard scalar product[pe: SkalarproduKt (also called anin-  preserving homeomorphism, i.e., a strictly increasing surjec-

ner producj (a,b) = a- b = 3 ajb; and its associated norm tion, thenaop: J — R"is a parametrized curve with the same

lal = V(a, a)). image (trace) as, called areparametrizatiorof . (Note: re-
verse curver: —J — R", a(t) := a(-t) has the same trace in
reverse order — orientation reversing reparam.)

A. CURVES For studying continuous curves, it's sometimes helpful to
allow reparam’s that stop for a while (monotonic but not
strictly) — or that remove such a constant interval.

We instead focus on regular smooth curves Then if
¢: J — | is a diteomorphism (smooth with nonvanishing
derivative, sap~! is also smooth) then o ¢ is again smooth
and regular. We are interested in properties invariant under
such smooth reparametrization. This is an equivalence rela-
tion. An unparametrized (smooth) curean be defined as an
@quivalence class. We study these, but implicitly.

For a fixedty € | we define the arclength functiasit) :=

ft: |a(t)] dt. Heres mapsl to an intervald of length leng). If

a is a regular smooth curve, theft) is smooth, with positive

derivatives = |a| > 0 equal to the speed. Thus it has a smooth

e a(t) = (acost, asint, bt) is a helix inR3; inverse functionp: J — |. We sayB = a o ¢ is thearclength
parametrization{DE: Parametrisierung nach Bogenlariger

e oft) = (t2,t%) is a smooth parametrization of a plane unit-speed parametrizatigrof . We haves(s) = a(¢(9)),

Given any interval c R, a continuous map: | — R"is
called a(parametrized) curvgDE: parametrisierte Kurviein
R". We writea(t) = (a1(t), ..., an(t)).

We saya is CX if it has continuous derivatives of order up
to k. Here of courseC® means nothing more than continu-
ous, whileC? is a minimum degree of smoothness iffistient
for many of our purposes. Indeed, for this course, rather tha
tracking which results require, say? or C® smoothness, we
will use smooth[DE: glatt] to meanC> and will typically as-
sume that all of our curves are smooth.

Examples (parametrized d¢n= R):

curve with a cusp; S0B(s(t)) = ale(s(t))) = af(t). It follows thatg has constant
speed 1, and thus that the arclengtigify isb — a.
e af(t) = (sint, sin 2) is a figure-8 curve iR?; The arclength parametetrization is hard to write down ex-
plicitly for most examples —we have to integrate a square root,
e a(t) = (t,t%,...,t") is called themoment curvén R". then invert the resulting function. (There has been some work

o ] in computer-aided design on so-called “pythagorean hodo-
Definesimple[DE: einfach¢ andclosed[DE: geschlosseje  graph curves”, curves with rational parametrizations whose
curves (andimple closedDE: einfach geschlosseheurves).  speed is also a rational function, with no square root. But this
A smooth (or even jus€') curvea has avelocity vector  sijll doesn’t get us all the way to a unit-speed parametrization.)
[DE: Geschwindigkeitsvektpir(t) € R" at each point. The  The fact that the arclength parametrization always exists,
fundamental thm of calculus sa)fs a(t)dt = a(b) — a(a). however, means that we can use it when proving theorems,
The speed[DE: Bahngeschwmdlgke}lbf ais |a(t). We say and this is usually easiest. (Even when considering curves
a is regular [DE: regulér] if the speed is positive (never van- with less smoothness, e.CK, there is a general principle
ishes). Then the speed is a (smooth) positive functioh of that no regular parametrization is smoother than the arclength
(The cusped curve above is not regular at0; the others are parametrization.)

re%_l;:all’.) thipE: L& fais| (0 dt. W End of Lecture 13 Apr 2015

n :Lan is len@) = ) .

elengthl angg of a'is lent) f"a( ) © see Although for an arbitrary parameter we have used the name
t (thinking of time) and writterd/dt with a dot, when we use

b b
f la(t) dt > ' f d(t)dt‘ = |a(b) — a(a)|. the arclength parametrization, we’'ll call the parametand
a a write d/dswith a prime. Of course, for any functiohalong

. . Lo . the curve, the chain rule says
That is, a straight line is the shortest path. (To avoid using y

vector version of integral inequality, take scalar product with dfds df

a(b) — a(a).) I TiRTS e, ' =f/s=f/|al
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Suppose now that is a regular smooth unit-speed curve.
Then its velocity’ is everywhere a unit vector, the (unigén-
gent vectol|DE: Tangenten(einheits)vekiof (s) := &’(9) to

the curve. (In terms of an arbitrary regular parametrization,

we have of cours& = a/|al.)

We should best think of (s) as a vector based at= «(9),
perhaps as an arrow fromto p + T(s), rather than as a point
in R". Thetangent lineto « at the pointp = a(9) is the line
{p+1tT(s) : t € R}. (Note about non-simple curves.) (As
long asa has a first derivative a8, this line is the limit (as
h — 0) of secant lines through anda(s + h). If « is C! near
s, then it is the arbitrary limit of secant lines throug(s + h)

Solving forkZ we get the formula

PR =&

for the curvature of a curve not necessarily parametrized at
unit speed.

Any three distinct points iR" lie on a unique circle (or
line). The osculating circle to at pis the limit of such circles
through three points along approachingp. (Variants with
tangent circles, note on less smoothness, etc.)

ConsideringT: | — S™! c R", we can think of this as

anda(s+k).) While velocity depends on parametrization, the @nother curve irk" — called thetantrix (short for tangent in-

tangent line and unit tangent vector do not.

dicatrix) of @« — which happens to lie on the unit sphere. As-

We are really most interested in properties that are also insUMinga was parametrized by arclength, the cusve> T(s)
dependent of rigid motion. It is not hard to show that a gy-has speed. Thus itis regular if and only if the curvature of

clidean motion ofR" is a rotationA € SO() followed by a
translation by some vectere R™: x —» Ax+ v. Thusa could
be considered equivalent far + v: | - R", t — Aa(t) + V.

never vanishes. (Note on curves with nonvanishing curvature
—inR? versusRk3.)

End of Lecture 16 Apr 2015

Of course, given any two lines in space, there is a rigid mo-
tion carrying one to the other. To find Euclidean invariants

of curves, we need to take higher derivatives. We define the

curvature vectofDE: Krimmungsvektdrd ;= T’ = «”; its
length is thecurvature[DE: Krimmund « := |4].

Recall the Leibniz product rule for the scalar productv if
andw are vector-valued functions, then (v) = V' -w+v-w'.
In particular, ifv L w (i.e.,v-w = 0) thenv - w = —w' - v.
And if |v| is constant ther’ L v. (Geometrically, this is just

Al. Plane Curves

Now let's consider in particular plane curvas £ 2). We
equip R? with the standard orientation and létdenote the
counterclockwise rotation by 9Go thatJ(e;) = e, and for
any vectorv, J(v) is the perpendicular vector of equal length
such thafv, Jv} is an oriented basis.

saying that the tangent plane to a sphere is perpendicular to Given a (regular smooth) plane curge its (unit) normal

the radius vector.) In particular, we have. T.
Example: the circlea(t) = (rcost,rsint) of radiusr
(parametrized here with constant spegtas

. -1 .
T = (-sint,cost), K= T(cost,smt), k=1/r.

Given regular smooth parametrizationwith speedo :=
$ = |a|, the velocity isoT, so the acceleration vector is

a=(oT) =0T +0T =T +0?T =T + 2R

Note the second-order Taylor series for a unit-speed curve

around the poinp = «(0) (we assume without further com-
ment that 0= 1):

a(s) = p+ sT(0) + ;?(0) +O(sd).

These first terms parametrize a parabola agreeing avith

vector[DE: NormaleneinheitsvektpiN is defined as\(s) :=
J(T(s)). Sincek = T’ is perpendicular tdl, it is a scalar
multiple of N. Thus we can define the (signed)rvaturex.
of a by k. N := ¥ (so thatk, = +|{] = +«). For an arbitrary
regular parametrization af, we find

det@, @)
Ky = —3
||
FromN L T andT’ = x.N, we see immediately th&¥’ =
—k. T. We can combine these equations as

T\ (0 «\(T

N/ “\-x. OJINJ"
Rotating orthonormal frame, infinitesimal rotation (speed
k+) given by skew-symmetric matrix. The curvature tells us

how fast the tangent vectdrturns as we move along the curve
at unit speed.

second order (i.e., with the same tangent and curvature vec- SinceT(s) is a unit vector in the plane, it can be expressed

tor). Geometrically, it is nicer to use tlsculating circlg DE:

as (co9, sind) for somed = 6(s). Although@ is not uniquely

Schmiegekre]sthe unique circle agreeing to second order (adetermined (but only up to a multiple ofPwe claim that we

line if = 0). It has radius A and centep + ¥/x*. Thus we
can also write

a(s) = p + cosks)R/«> + sinks) T /k + O(S).

can make a smooth choice®élong the whole curve. Indeed,
if there is such &, its derivative is¢’ = k.. Picking anyé,
such thafl (0) = (cosbp, sindp) defined(s) := 90+f051<i(s)ds
This lets us prove what is often called themdamental the-
orem of plane curvepbE: Hauptsatz der lokalen Kurventhe-

(Constant acceleration or second derivative gives a parabolacrie] (although it really doesn’'t seem quite that important):
its points are equivalent by shearing. Constant curvature giveSiven a smooth functior.: | — R there exists a smooth

a circle — its points are equivalent by rotation.)

unit-speed curver: | — R with signed curvature.; this
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curve is unigue up to rigid motion. First note that integrat-

ing . gives the angle functiof: | — R (uniquely up to a

3. thusc N K contains at least two points, and if there are
only two they are antipodal on

constant of integration), or equivalently gives the tangent vec-

tor T = (cosb, sind) (uniquely up to a rotation). Integrating
then givese (uniquely up to a vector constant of integration,
that is, up to a translation).

Now supposex is a closed plane curve, that is, &n
periodic mapR — R2. As above, we get an angle func-
tion #: R — R but this is not necessarily periodic. Instead,
0(L) = 6(0)+2xn for some integen called theturning number
[DE: Umlaufzah] (or rotation index or ...) ofv. (It follows
thatd(s + kL) — 6(s) = knfor any integeik and anys.) Note
that thetotal signed curvaturefoL ke dsof ais 2rn. (If we
reverse the orientation ef we negate the turning number.)

We will later prove Fenchel’s theorem thﬁkdsz 2r for
any curve inR" (with equality only for convex plane curves).

A standard result is the Jordan curve theorem, saying that

For the case of a curve by our previous remark, at any point
of cn «a the curvature of is at least that of.

End of Lecture 20 Apr 2015

Now let’s prove the theorem. Let the curvature of the cir-
cumcirclec bek. If ¢ n « includes an arc, there is nothing
to prove. Otherwise supposen « includes at leash > 2
pointsp;. (At these pointk. > i.) We claim each ara; be-
tween consecutiv@; and p;;; contains a point with, < k.
Then it also contains a vertex (a local minimum of..) with
k: < k. Since the arc from;_; to g includes the poinp; with
k. > Kis also includes a verteg (a local maximum ok,
\g{ith k+ > k. Thus we have foundr2> 4 vertices as desired.

simple closed plane curve divides the plane into two regions, To prove the claim, consider the one-parameter family of

one of which (called thénterior [DE: Innerd) is bounded.

circles throughp; andpi;1 (with signed curvatures decreasing

Assuming the curve is oriented so that its interior is on the leftfrom k). The last one of these to touehis tanget tay; at at
then the “theorem on turning tangents”, more often knowrl/éast one interior point, and sineg stays to the right of that

even in English by the German nardenlaufsatz say that its
turning number is always-1. (This is a special case of the

circle, its signed curvature is even less.
Where did we use the fact that the cuwvés simple? (Re-

Gauss—Bonnet theorem, needed as a lemma for the genetlll that the theorem fails without this assumption!)

case, so we will give a proof later.)

A2. The Four-Vertex Theorem

A vertex[DE: Scheitelpunitof a plane curve is an extremal
point of k., that is a point where.. achieves a local minimum
or maximum, so that, = 0. Since any real-valued function
on a compact set achieves a global minimum and maximu
any curve has at least two vertices.

Note that the osculating circle toat p crossesr at p un-

lesspis a vertex. Most people’s sketches of osculating cicles

are wrong! More generally, supposeandg are two regular
curves with the same tangent@tThena stays to the left oB
in some neighborhood qf if «¢ > /('j_ at p. And conversely of

When two curves are tangent ptand don'’t cross locally,
we got an inequality between their signed curvatures. But this
assumes their orientations agre@aBy the Jordan curve the-
orem, a simple curve bounds a compact regidf. Clearly,
a and K have the same circumcircle If both curves are
oriented to have the compact regions to the left, then these
orientations agree. Similarly, further application of the Jordan
curve theorem ensure that the oriented circular arc fppio

P used above agrees in orientation wigh

A3. Evolutes and the Nesting Theorem

Given a curvar: | — R" with nonvanishing curvature, its

course ifa stays to the left, then at least the weak inequalityevolute[DE: Evolutd g: 1 — R" is the curve of centers of

& > & holds atp.
The Four-Vertex TheorenpDe: Vierscheitelsafzsays that
any simple closed plane curve has at least four vertices.

(Note counterexample= 1 + 2 sing in polar coords if curve B(s)
not embedded.) We give a proof due to Bob Osserman (1985

Lemma: Given a compact sKtin the plane (which might
be the trace of a curve) there is a unique smallest circle
¢ enclosingK, called thecircumscibed circldDe: Umkreid.

osculating circles(t) := a(t) + R(t)/«(t)%. Let us consider
in particular a unit-speed plane curwenith « = k. > 0 and
write r = 1/« for the radius of curvature. Then the evolute is
= a(9)+r(s)N(9). Its velocity isB’ = T+r’'N+rN’ = r’'N,

0 its speed ig’(s)]. (The evolute is singular where has

| vertex.) The acceleration of the evoluterfdN + r’N’
r”N —r'T/r, so its curvature |$ﬁ

Now consider a planar axe with strictly monotonic, non-

(Existence via compactness of an appropriately bounded set ¥fnishing curvature. By the formula above, its evolute also
circles; unigqueness by constructing smaller circle containing!@s nonvanishing curvature, so in particular, the distance

intersection of two given ones.)
Properties:

1. c must touchK (for otherwise we could shring).

2. cnK cannot lie in an open semicircle offor otherwise
we could translate to contradict (1).

(s1) — B(s2)] is stricly less than the arclengﬁz Ir'(s)|ds=
|[1dg = |r(s1) - r(sp)|- This simply says the distance be-
tween the centers of two osculating circleatis less than the
difference of their radii, that is, the circles are strictly nested.
This is thenesting theorerof Tait (1896) and Kneser (1914):
the osculating circles along a planar arc with stricly mono-
tonic, nonvanishing curvature are strictly nested.
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A4. The Isoperimetric Inequality for line segments with some constanin place ofr/2. (We
could easily compute = 7/2 by integrating a trig function,
Another global result about plane curves is i@perimet-  but wait!) Next, by summing, it holds for all polygons (with
ric inequality [DE: isoperimetrische Ungleichuiiglf an em-  the samec). Finally, it holds for smooth curves (or indeed
bedded curve of length bounds an area then 4A < L2.  for all rectifiable curves) by taking a limit of inscribed poly-
(Equality holds only for a circle.) gons. (To know we can switch the averaging integral with

If R c R2 is the region enclosed by the simple clos€d)( the limit of ever finer polygons, we can appeal for instance
curvee: [a,b] - R, a(t) = (X(t),y(t), then we have by O Lebesgue’s monotone convergence theorem.) To compute

Green'’s theorem ¢ = /2 itis easiest to consider the unit ciraavith length 2r
and constant projection length 4.
b b : . .
A= fdxdy: fxdyz f Xy dt = _f yxdt Note that everything we have said also works for curves in
R @ a a R" (projected to lines in dierent directions) — only the value

(Actually, the formula gives an appropriately defined aIge-Of ¢ will be different. Similarly, for an appropriate = Cnk
braic area even if the curve is not simple; no change ifVe get that the length of a curve R is ¢ times the average

parametrization backtracks a bit.) length of projections to all dierentk-dimensional subspaces.

The trick suggested by Erhard Schmidt (1939) to prove the '(Ij:t?]r a}ny _plilrr]le ((j:_urv?_, the Iﬁzng_th ofrya is at Ileast twice the
isoperimetric inequality is to consider an appropriate compar\—NI Ofa In the directionu. I a IS a convex piane curve, we

ison circle. We deal with a smooth curwe First find two have equality,.so Cauc.hy—Crofton says the length li'sne§

parallel lines tangent t@ such thatr lies in the strip between the average width. Fgr Instance any curve of co_nstant W'd.th 1
them. Choose coords so make them the vertical linestr (like the Reuleaux triangle on an equilateral triangle of side
(Here Z is thewidth of « in the given direction.) Parametrize length 1, named after Franz Reuleaux, Rector at TU Berlin in

« by arclength over [fL] by (x(S),¥(s)) and parametriz the the 1890§) has Igngbh A upit sq.uare has minimum width 1
circle of radiusr over [Q L] by B(S) = (x(S), /(S): samex(s) and maximum widthv2; since its length is 4, the average

idth is 4/x.
as fora, and thusy(§) = ++/r2— x(92. (Note about non- V'O *" . . .
conve;curves etsg/)() ( ( Writing the various dierent lines perpendicular to as

lua = {X 1 (X Uy = @} for a € R, we see that lemya =

End of Lecture 23 April 2015 J. #(a 0 £y,5) da Thus Cauchy—Crofton can be formulated as
Note that the unit normal vector @is N = (-y, X), so
— L
N(9),8(s)) = —xy + yX. We haveA = [~ xy dsandar? = 1=
(N(9.B(9) = =X+ by on = 1 f f Het ooy s) dah
— |, yx ds Thus 4Jo Jr

A6. Fenchel's theorem

L L L
A+nr2=fxy—)7>(ds=f<—N,ﬁ>dssf|N||ﬂ|ds= Lr.
0 0 0

Thus by the arithmetic-geometric mean inequality, ,
Fenchel's theorem says the total curvature of any closed

VA2 < (A+nr?)/2 < Lr/2. curve inR" is at least 2. (Equality holds only for convex

plane curves.) To prove this f@* curvesa, recall that the
Squaring and dividing by? gives the isoperimetric inequality. tantrix T(s) has speed(s) and thus its length is the total cur-
Itis not hard to check that if all these inequalities hold with vature ofe. On the other hand, the tantrix lies in no open

equality, therw must be a circle. hemisphere of"2, for if we had(T(s),u) > O for all sthen
we would get
A5. The Cauchy-Crofton Formula L L
0< f (T(s),uy ds= (u,f T(s)ds)
0 0
Given a unit vectou = u(d) = (cost, sinb) € St c R?, the = (U (L) - a(0)) = (U, 0 = O

orthogonal projection to the line in directianis r,: R?> —
R?, X - (x,uyu. If a: | — R?is a smooth plane curve, then
mya = my o a IS its projection (usually not regular!).

The Cauchy—Crofton formula says the lengthaofs 7/2
time the average length of these projections. By averagg
length we mean

a contradiction. Fenchel’s theorem is thus an immediate corol-
lary of the theorem below on spherical curves.
We will state all results for general but on first reading
ne should probably think of the case= 3 wherex lies on
the usual unit spher& c R3,
21 1 (& To investigate spherical curves in more detail note first that

f len(rye) du = JC lenuge) df = - f len(ryp@)dd  for pointsA, A’ € S"™1 c R" the spherical distance (the length
s 0 0 of the shortest spherical path, a great circle arc) between them
To prove this, first note that if is a line segment, the aver- is

age projected length is independent of its position and orienta-

tion and proportional to its length. That is, the theorem holds  p(A, A’) = arccog A, A’) = 2 arcsiflA - A'|/2) < «.
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The points arantipodal [DE: antipodisch if A = —A’ (i.e., one max. At each intermediate height, there are exactly two
p = m, ...). Anonantipodal pair is connected by a uniquepoints ofe. Joining these pairs by horizontal segments gives
shortest arc, with midpoirl = (A+ A')/|A+ A|. an embedded disk spanning showing it is unknotted. For
Lemma: supposA, A’ nonantipodal with midpoini; sup-  a knotted curve, every height function must have at least four
posep(X,M) < n/2. Then 2(X,M) < p(X, A) + p(X, A). critical points, meaning four intersections of the tantrix with
(This can be used to show that the distance fdoto a great every great circle.
circle is a convex function when resticted to the semicircle
where the distance is at mos2.)
To prove this, first note thak, A’, X all lie in some three di- A7. Schur's comparison theorem
mensional subspace BFf, so we work there, and in particular and Chakerian's packing theorem
on §2. Consider a 2-fold rotation arourid, taking A to A’
andX to some poinX’. Using the triangle inequality and the  Schur’s theorem is a precise formulation of the intuitive

symmetry, we get idea that bending an arc more brings its endpoints closer to-
, , , gether.
20(X, M) = p(X, X) < p(X, A) + p(A, X') = p(X. A) + p(X, A) Supposer is an arc inR" of lengthL, and consider a com-

parison ara’in R? c R" of the same length, such that with
respect to a common arclength parametehe curvature of
a is positive and everywhere at least that ohof{s) > «(s).
Theorem: Suppose is a closed curve 08" of length  Assuming thai"Wwith its endpoints joined by a straight seg-
L < 27. Thena is contained in some spherical cape S"* : ment gives a convex (simple closed) curve, we conclude that
p(X, M) < L/4} of (angular) radiud. /4 < 7r/2, and in particu-  its endpoints are closer:
lar in some open hemisphere. (Note as promised that Fenchel
is an immediate corollary.) (L) - a(0)| > |a(L) - &(0)|-
To prove this, pick two point&\, A’ on « dividing the ar-
clength in half. Therp(A,A') < L/2 < n. Let M be the Proof: by convexity, we can findy such that the tangent
midpoint and letX be any point on. If p(X, M) < 7/2, then  To := T(So to @ is parallel toa{L) — @(0). Movea by a rigid
by the lemma, motion so thatr(sy) = a(S) and they share the tangent vector
To there. We have

as desired.
End of Lecture 27 Apr 2015

PX M) < (p(X, A) + p(X. A))/2 < len(aaxa)/2 = L/4.

L
Thus the distance fror to any point one is either at most (L) = a(0)] = {e(L) - a(0), To) = f (T(9). Toyds
L/4 or at leastr/2. By continuity, the same possibility holds 0
for all X; picking X = Awe see it is the first possibility. while for &, our choice ofTy gives equality:

There are of course other approaches to proving Fenchel’s )
theorem. One goes through an integral geometry formula . . . - -
analogous to our last version of Cauchy—Crofton. (We'll state |@(L) - @(0)] = (@(L) - &(0), To) = j(; (T(s). Toyds
it just for curves inS? but it holds — with the same constant
—in any dimension.) Fou € S?, the great circlei* is the set  Thus it sufices to show(T(s), To) > (T(8), To) (for all 9).
of points orthogonal ta. Then the formula says the length  We start fromsy (where both sides equal 1) and move out in
of @ equalsr times the average number of intersectionsof either direction. Whilél moves straight along a great circle
with these great circles. (Whenitself is a great circle, thisis  with speed; a total distance less thanwe see thal moves
clear, since there are always 2 intersections.) at slower speed and perhaps not straight. Thus is geometri-
First note that the length of a spherical curve is the limitcally clear thafT is always closer to the starting direction. In
of the lengths of spherical inscribed polygons (made of greatormulas,
circle arcs). (Indeed the spherical inscribed polygon always . .
has length larger than the euclidean polygon with the same = _ ~
vertices, which is already approaching the lenth of the curve (T(9):To) = COSL kds< cosfso kds= (T(9) To)
from below.) Then just as for Cauchy—Crofton, we check this
formula first for great circle arcs, then for polygons and then(The last inequality follows sincgfxdsis the length of the

by a (trickier) limiting argument for smooth curves. tantrix, while arccoéT (s), To) is the distance between its end-
With this formula, one can prove Fenchel's theorem forpoints.)
smooth curves by considering height functigaés), uy. Each Note that this same proof can be made to work for arbitrary

has at least two critical points (min, max), but critical points curves of finite total curvature. The case of polygonal curves

satisfy T(s) € ut. That is, the tantrix intersects every great is known as Cauchy’s arm lemma and was used in his proof

circle at least twice, and thus has length at least 2 (1813) of the rigidity of convex polyhedra, although his proof
Without giving precise definitions about knots, we canof the lemma was not quite correct.

understand the Fary—Milnor theorem: a nontrivally knotted Chakerian proved the following packing result (which again

curve inR® has total curvature at least4 For suppose for can be generalized to all curves although we consider only

some height functioqa(s), uy there was only one min and smooth curves): A closed curve of lendthin the unit ball
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in R" has total curvature at leakt To check this, simply very useful, for instance in computer graphics when drawing

integrate by parts: a tube around a curve. One disadvantage is that along a closed
curve, a parallel framing will usually not close up.
lena = f<T’T> ds= f<_a, %) ds< f|(I|KdSS deS The second special framing comes from prescriking 0,
i.e.,K = kyU. Thatis,U should be the unit vector in the direc-

What about nonclosed curves? We just pick up a boundarion K. Here the disadvantage is that things only work nicely

. X ; ; . or curves of nonvanishing curvatuke# 0. Assuming this
term in the integration by parts, and find that length is at mos ondition, we renamé as theprincipal normal[De: Haupt-
total curvature plus 2.

normaleneinheitsvektpN and V as thebinormal [DE: Bi-
normaleneinheitsvektpB and call{T, N, B} the Frenet frame

A8. Framed space curves [DE: Frenet-Rahméen We have

TY 0 « OYT
We now specialize to consider curves in three-dimensional Nl =]-« 0 7|[N],
spaceR®. Just as for plane curves we used the 4-fold rotation B 0 - 0)\B
J, in 3-space we will use its analog, the vector cross product. ] . )
Recall thatv x w = —w x v is a vector perpendicular to both Wherex(s) is the curvature and(_s) is called tha'ors!on[_DE:
andw. Torsion] of a. In terms of a unit-speed parametrization, we
A framingRahmen along a smooth space cues a havee’ =T, o” = T’ = £ = N, SON = &/«. Finally,
(smooth) choice of a unit normal vectbl(s) at each point N = —«T +7Bsor = (N’,B) = [N’ +«T|. The expansion of
a(9). DefiningV(s) := T(9) x U(s) we have an (oriented) or- the third derivative in the Frenet frame is
thonormal framgT, U, V} for R® at each point of the curve, o o r_ 2 ,
and the idea is to follow how this frame rotates. As before, @ = (kN)' = 1N+ kN" = =T + N + kB,

expressing the derivatives in the frame itself gives a skew- Expressions in terms of an arbitrary parametrizatiorr of

symmetric matrix: with speedr(t) are left as an exercise. Here the nonvanishing
, curvature condition just says thatinda are linearly indepen-
T 0« (T dent, so thata, @, axa} is an oriented basis. The orthonormal
Uf =|-«xu 0 7uyllUf. frame {T, N, B} is the result of applying the Gram—-Schmidt
\ —Ky —Tu 0 V

process to this basis.
Herexy, kv andry are functions along the curve which de- ngl)éb(;?wl;a:ze Natanij 35@2;25&?;?:' Sptlgggc[gﬁ:d ’c\)lr(zjr(-er in
pend on the choice of framing. We see tt = ¥ = theosculatina Ign_e{gE' échmie eebehza anned byl and
“uU + kyV, SO these are just the components of the curvay = i, congt]ari)ns the dsculatinggcircle Tﬁe plane gpanned by
tgre vzector in the chosen basis for the normal plane. (An andB s called thaectifying plangpe: Streckeberidsince

the projection ofr to that plane has curvature vanishingosat

«* = k2 + kZ.) The third functionry measures the twisting or
torsion of the framingJ. The Taylor expansion af to third order aroungb = «(0) is

End of Lecture 30 Apr 2015

Sometimes in physical problems a framing is giventous by () * p+ (S— %KZ)T + (%K + %K')N + (%KT)B
material properties of a bent rod. Mathematically, the curve ,
might lie on a smooth surface in space; then we often choog&here of coursd, N, B, x, 7 and«” are all evaluated &= 0.

U to be the surface normal so that ttenormal Vis (like T) Exercise: Iqok at the prOJectlons_to the three planes at_)ove,
tangent to the surface. (We will explore suarboux frames and see which quadratic and cubic plane curves approximate
[DE: Darboux-Rahmélrin detail when we study surfaces.) them. . ” .

But when no external framing is given to us, there are two, 1 h€ “fundamental theorem of space curves” says that given
ways to choose a nice framing such that one of the entries iffnctions«, 7: | — R with x > 0 determine a space curve
the matrix above vanishes. The first has no twisting£ 0), ~ (Uniquely up to rigid motion) with that curvature and tor-
and such 4T, U, V} is called a parallel frame or Bishop frame. sion. This is basically a standard theorem about existence and

Given anyU, at o(sy) we wantU’ to be purely tangential, uniqueness of solutions to an ODE: For any givER No, Bo}
indeed the matrix ODE above has a solution, which stays orthonor-

mal and thus gives a framing. (Changing the initial condition
U =T =-(®RU)T. just rotates the frames by a constant rotation.) As in the case of
plane curves, integrating(s) recovers the curve (uniquely
But this ODE has a unigue solution. Since it prescribés. up to translation).
U the solution will have constant length, and sigtE, T) = Example: a curve with constant curvature and torsion is a
—(T’,U), the solution will stay normal td. If we rotate a helix. Its tantrix traces out a circle dif at constant speed
parallel framing by a constant angtén the normal plane (that  Any curve whose tantrix lies is a circle @3 (i.e., makes con-
is, replaceJ by cospU + singV) then we get another parallel stant angle with some fixed vectay is called ageneralized
framing (corresponding to a filerentUg). Indeed any two helix. Exercise: this condition is equivalenttgx being con-
parallel framings dfer by such a rotation. Parallel frames are stant.
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Suppose now is a unit-speed curve with> 0. If {T, N, B} In a parallel framing, these are the entries of the top row.
is the Frenet frame and’, U, V} is a parallel frame, then how That is, the curvature vectdr’ is an arbitrary combination
are these related? We have of course > kiEj of the normal vectorg;, but each of them is parallel

. with derivative—«; T only in the tangent direction. Given any
(N) _ ( cosy S'”9) (U) framing at an initial point, solving an ODE gives us a parallel
B) \-sing cosg/\V frame along the curve.

' The generalized Frenet frame exists only under the (some-
for somef = 6(s). Thenk = kN = kcosfU + ksindV  what restrictive) assumption that the first 1 derivativesy;

meaning thaky = xcosf andky = «sing. Differentiating ¢, ... o™ are linearly independent, arfdl, Ey, ..., Eq} is
B = -sindU + cosfV gives then the Gram-Schmidt orthonormalization of these vectors.
, ’ . , For this frame, it is only the matrix entries just above the di-
—7N = B’ = —¢'(cosdU + sindV)+0T = —¢'N agonal that are nonzero. Thus
so thaty = roro = des (The constant of integration E = 7iEis1 — 1i-1Eic1

corresponds to the freedom to rotate the parallel frame.) We
see that the twisting or torsion of the Frenet frame really In particularT’ = 71 E; sor; = «is the usual curvature arigh
does give the rat¢ at which it rotates relative to the twist- is theprincipal normal(the unit vector in the direction o).
free Bishop frame. Sometimes it is useful to useomplex Ther; are called Frenet curvatures. A “fundamental theorem”
curvaturex(s)€’® = ky(s) +ikv(s). Well defined up to global  says that for any functions(s) with 7; > 0 fori < n—1, there
rotation bye® in the complex plane (corresponding again tois a curve with these Frenet curvatures; it is unique up to rigid
the freedom to rotate the parallel frame). motion.
It is clear that a space curve lies in a plane if and only if
T = 0, if and only if@ is constant, if and only if the complex
curvature stays on some fixed line through 0.
As another example, the complex curvature of a helix traces
out the circlgz = « at constant speed.
Bishop (1975) demonstrated the usefulness of the parallel
frame by characterizing®? regular) space curves that lie on
some sphere. Indeed,lies on a sphere of radiugd if and
only if its complex curvature lies on a line at distarctéom
0 € C. In an appropriately rotated parallel frame, this line
will be the linexy = d. (The characterization in terms of the
Frenet frame is more awkward, needing special treatment for
points wherer and«’ vanish.)
To prove this, note that by translating and rescaling we can
treat the case aof c S2, i.e.,(a,a) = 1. It follows thate L T
soU := «is a framing of itself. Fromy’ = T we see that this
framing is parallel. Thatisy = a,V = T x a is a Bishop
frame. The equatiob’ = T means = 1, as desired. (Note
that since the position vector 68 is also the normal vector to
the spherical surfac¢T, U, V} is also the Darboux frame for
a c $?!) Conversely, suppose has a parallel framgT, U, V}
with xy = 1, i.e.,U’ = T. Thena — U is a constant poin®,
meaning lies on the unit sphere arouid

End of Lecture 4 May 2013

A9. Framings for curves in higher dimensions

A framingalong a smooth curve in R" is a choice of ori-
ented orthonormal basi€s, E,, .. ., By} at each point ofy,
whereE;(s) = T(9) is the unit tangent vector, and ea€l{(s)
is a smooth function. Of course the othgr(for i > 2) are
normal vectors. The infinitesimal rotation of any framing is
given, as in the three-dimensional case, by a skew-symmetric
matrix, here determined by t %) entries above the diagonal.
Again itis helpful to choose special framings where amyl
of these entries are nonzero.
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B. SURFACES spiral examples). If it is, then of course its image is a smooth
submanifold. Given an immersiox any point inU has a
Given an open sél ¢ R™and a magf : U — R" we write neighborhood/ such thai|y is a homeomorphism.
D, f for the derivative off at p € U, the linear mak — R" Given an imme(siom parame;rizing a_surfaqm, the span
such thatf(p + v) ~ f(p) + Dpf(v). We sayp € U is a of x, andx, (the image ofDx) is two-dimensional, and is
critical point of f if D, f is not surjective (which is automatic called thetangent plane JM at p = x(u,v). Orthogonal to
if m < n); and we sayq = f(p) € R"is acritical value  this is thenormal line N;M, spanned by, X x.

Any otherq € R" is called aregular valueof f. We sayf Note that we typically blur the distinction between a point
is animmersionif D, f is injective at everyp (which requires  (U:V) € U and its imagep = x(u,v) € M = x(U). We write,
m< n). for instancexy(p) = xu(u, v) interchangeably.

Intuitively, a subsetM c R" is a smooth embedded k-  Example (surfaces of revolution): Suppose we have a regu-
dimensional submanifolif every pointp € M has an open lar curvea(t) = (r(t), 0, z(t)) in the x > 0 half of thexzplane.
neighborhood) < R" in which M looks like an open set in Consider the map

RX. From analysis we recall several equivalent precise formu- .
lations: X(t,0) = (r(t) coso, r(t) sing, z(t)).

1. Diffeomorphism: There is an opéh ¢ R" and a  This is an immersion (domaih x R, but injective only on

diffeomorphismy: U — V ¢ R" takingU n M to  Smaller pieces), parametrizingsarface of revolution Con-
V N (RX x {0)). sider injectivity issues, tangent, normal, etc. — see homework.
Example (ruled surface): A surface swept out by straight
2. Level set: There is a smooth mapU — R" X such lines (aruled surfacg can be parametrized by a base curve
that O is a regular value ¢fandU N M = h~1(0). B(t) and a director field(t) by settingx(t, u) = B(t) + us(t).

3. Parametrization: There is an open ¥etc R and a End of Lecture 7 May 2015

smooth immersionf: V — R" that is a homeomor-

phism fromV ontoU N M. B1. Curves, length and area

4. Graph: There is an open 9étc R and and a smooth ) )
maph: V — R"X such thatU N M is the graph ofh — How do we describe a curve in a surfade If x: U — R3
up to permutation of coordinates . is a surface patch and: | — U c R? is a (regular smooth)

curve inU theng = x o a is a (regular smooth) curve iR®
Here of course, a ieomorphism gives a level set represen-lying on the surfaceM. Conversely, any curve okl can be
tation, and a graph is a special kind of parametrization. described this way. We postpone a discussion of the details
For the rest of this semester, we will consider surfacesand of the &ects of changing coordinates (to an overlapping
(k = 2) inR3. An example is the graph of a smooth func- surface patch).
tion f: U — R, parametrized byu,v) — (u,v, f(u,v)) or Writing o(t) = (u(t), v(t)) we havea = (0,v) and by the
given as the zero-set 6f(x,y,2) := f(x,y) -z chain rule the velocity vectgs of 8 = x o a is thusux, +
Another example would be the unit sphe¥& the level  Vx,. We see that the tangent plafigM spanned byxy, Xy} is
setx? + y?> + 72 = 1. It can be covered by six open hemi- exactly the set of all velocity vectors to curveshhthrough
spheres on which it is a graph in one of the coordinate direcp = x(u, v).
tions. Using stereographic projection we can parametrize all The speed oB is of course given by the Euclidean norm
but a single point of the sphere by an immersion frifa  of its velocity vector; the tangent spa€gM inherits an inner
The usual geographic coordinates (lattitude and longitudeproduct(-,-) as a subspace @i,R3 = R3. The basigxy, X/}
(p,0) +— (cosdcosy,sindcosy,sing) give an immersion is of course in most cases not orthonormal. The inner product
(-n/2,7/2) x R — RS2, which is injective if restricted to is a symmetric bilinear form and is expressed in this basis by
0 € (-n, 7). the symmetric matrix
We will typically use parametrizations to describe our sur-
faces. Letx: U — R3 be a smooth map defined on an open G = (E F) . ((Xu, Xu) (Xu, Xv))

subsetU c R?. At a point (,v) € U we write F G) ™ (v Xu) (X, Xy

oX oX
Xu(u’ V) = E,l = D(u,v)x(au)7 Xv(u’ V) = 5_\/ = D(u,v)x(av)

(Here,E, F andG are traditional names for the entries of this
matrix.) The matrix representation means that i a,x, +

. o a,xy andb = byx, + byx, are two tangent vectors, then their
for the partial derivatives. (Her@,, 6,} form the standard ba- jnner product is

sis for R?, thought of as the tangent vectors at\).) The
derivative D)X is injective if and only ifx, andxy are lin- Kus Xu) X X\ (b
early independent (if and only ¥, x x, # 0). If this is true at (a.b) = (a“ aV) ((Xv, Xu) Xy, Xv>) (b\,)
all points ofU, thenx is an immersion.

Note that an immersion need not be one-to-one; even if iIOf course the associated quadratic faam (a, a) is given
is, it need not be a homeomorphism onto its image (figure 8by the same matrix. This is called the first fundamental form
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of the surface, and we usge= g, as a name for the matrixand  B2. Smooth maps, change of parametrization, derentials
for the bilineafquadratic form. (Ofter = I, from the roman

numeral one, is used instead.) We usually talk about smoothness of maps defined on an
Returning to the curvg, we get open subset &™. If A c R™is an arbitrary subset, then a map
_ _ o i _ - _ f: A — R"is said to besmoothif it has a smooth extension
1B = gp(B) = (U V) 9p (v) = Elf + 2FWV + GV, f to some opetJ > A. (It suffices to check this locally in a
neighborhood of each point. Standard properties — like the fact
The length of the curvg is of course then the integral of that the composition of two smooth maps is smooth — follow
speed: le = f \Vo(B) dt. immediately.) In the case whehis a surface, we'd like to
Note that the velocity i, V) of « has the same expres- check thatis the same as requiring smoothness in coordinates.
sion (in the standard basis &?) as the velocity ofg (in Lemma: Ifx: U — M is a regular parametrization then

our basis{xy,X,}). We often blur the distinction between x™*: x(U) — U is smooth. (Thus we say is a difeomor-
TuwyY = TuyR2andT,M, and that betweem andg, etc. We  phism onto its image.)
can think, for instance, af, as defining a new inner product ~ Proof: Assume (yo l.0.g.) that (00) € U. We will
onTyR? (Whose matrix ig E § ) with respect to the standard check smoothness negr = x(0,0). Consider the function
basis{d,, 0,}). y: (L u,v) = x(U,V) +tvp, y: Rx U — RS At the origin, its
We can use the first fundamental form to measure not onlyartial derivatives¥p, X, x,) are linearly independent. That
length but also area. The parallelogram spannex,andx, s, Doy is bijective. By the inverse function theoremnis in-
has aredx, x x,| and we note jective and has a smooth inverse on some neighborhood of
p = y(0). But of course this inverse is locally the desired
extension ok1, showing thak ! is smooth.
The area of the surface patch is then SupposeM c R?is a surface parametrized Ry U — M =
x(U). The fact thatx andx! are both smooth immediately

fIXuXXVIdudv=f ydetgdudv shows:
u u

1. f: M - R"issmooth< f o xis smooth.

Xy X X2 = [Xul2IXl? = (Xy, Xv)? = EG — F2 = detg.

Note also that a surface patefu, v) is regular (an immersion)
if and only if EG — F2 = detg is nonvanishing; this is often 2. f'R" > Mis smooth &= x1of:R" > R?is
the easiest way to test the linear independenog ahdx. smooth.
Although it is easy to arrange thigd,, x,} is an orthonormal
basis — so thag is the identity matrix — at one given point of Combining these facts, iN c R3 is a second surface
interest (say, (M) € U), it is too much to hope that a general parametrized by: V — N = y(V) then we can also consider
surface have a parametrization in whigh, x,} is an orthonor- @ mapf: M — N. Itis smooth if and only ify ™ o f o x is @
mal basis everywhere. (We will later classify the “intrinsically sSmooth magJ — V. (Note also that in this case, the smooth
flat” surfaces for which this is possible. As an example thinkextensionf to a neighborhood oM in R® can be chosen to
of generalized cylinders — ruled surfaces with constant directake values irN.)
toré.) Now suppose we have two parametrizationsd — M
There are, however, various special classes of parametrizandy: V — M with overlapping images. That means on the
tions which have some of the same advantages. We say a s@pen subseW = x(U) N y(V) of M we have two dierent
face patch is orthogonalif x, L Xy, thatis ifF = (x,,x,y) =0  Systems of coordinates. Then the ngap= y*ox: x {(W) —
or equivalently ifg = (£ 2) is a diagonal matrix. An orthogo- Y ~*(W) is a difeomorphism between these open subsets of
nal parametrization isonformalif [x,| = |x,, thatis, ifE =G  andV (with inversep™ = x~! o y). Being a composition of
or equivalently ifg is a scalar multiple of the identity matrix. homeomorphismsp is a homeomorphism. But we also see
This means exactly that the mapU — R3 preserves angles thaty (and symmetrically,™*) is smooth.
between tangent vectors (or equivalently between curves). It If f: R" — M c R3 with f(a) = p then of coursd,f is a
is known that any surface admits a conformal parametrizalinear map fromR" to T,M c R®. Similarly, given a smooth
tion locally. (This is a version of the uniformization theo- map f: M — R" we get a diterentialD,f: T,M — R",
rem from complex analysis.) Conformal coordinates are als¢he restriction oDy f for any extensiorf. (Different exten-
called isothermal coordinates. sions will have diterent derivatives in the normal directiep
We have already mentioned the normal IgM spanned but not in tangent directions, since the derivative in any tan-
by xu X Xy. The parametrizatior has an implicit orientation ~gent direction can be computed as the derivative along a curve

which allows us to pick out anit normal vector in M, wheref = f is determined.)
Xy X Xy End of Lecture 11 May 2015
Vv = Vp = .
Xy % x|
Note that a dferent parametrization (likg(u,v) := X(v, u)) B3. The Gauss map and the shape operator

may give the opposite normal vecter Some surfaces are
globally nonorientable, meaning that no continuous choice of A key tool for studying curves was the unit tangent vector
v across the whole surface is possible. and its derivatives. A similar role for surfaces is played by the
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unit normalv. Given a smooth surfack!, the mapv: p — The first and second fundamental forms are emphasized in

vp € §? ¢ R3is called theGauss mapf the surfaceM, and  many textbooks because they are easiest to compute in coor-

is @ smooth map: M — S2. Note that the Gauss map 8  dinates. But the shape operay at a pointp € M is more

itself is the identity map. (Or the antipodal map, if we orienteddirectly meaningful. It encodes all thefidirent notions of cur-

S2 with the inward normal.) vature of the surfac®! at the pointp, capturing the second-
Going back to the general case, thfatiential of the Gauss order behavior of the surface, or more precisely, exactly those

map atp € M is a linear mapDyv: ToxM — TvaZ. But  parts which are independent of parametrization and invariant

these are the same plane — the plarn&3mith normaly. (Of  under rigid motion.

course any two planes are isomorphic vector spaces, but these

arenaturally isomorphic.) Thus we can vie®,v as a linear

operator onlp,M. lts negativeS, := ~Dpv: ToM — T,M is B4. Curvatures of a surface
called theshape operatofor Weingarten operator).

Recall that an operatoA: V — V on an inner product Recall a few facts about a self-adjoint linear operatam
spaceV is called self-adjointif (Av,w) = (v, Aw) for all an inner product spade lIts eigenvalues are all real; its eigen-
v,w € V. This is equivalent to saying that the bilinear form vectors are perpendicular (sinces, w) = (Av, w) = (v, Aw) =
(v,w) — (Av,w) is symmetric (and thus induces a quadratic(v, uw) implies{v,w) = 0 for A # ). That is, we can choose
formv — (Av,v)). Note that ifA is 2-dimensional with basis an orthonormal basis of eigenvectors, and tAds of course
{e, f} then it sufices to checKAe f) = (e Af). represented by a diagonal matrix. The largest and smallest

Proposition: The shape opera®s on T,M is self-adjoint. ~ eigenvalues are the minimum and maximum of the quadratic

Proof: Consider a parametrization U — M of a neigh-  form (Av,v) over the unit sphere . (Of course, ifvis a unit
borhood ofp and use(xy, X/} as a basis fof,M. The claim  eigenvector with eigenvaluethen(Av,v) = 1.) _
is that(Dpv(xu),xV> _ (Dpv(xv),xu . Write v, := Dyvx, and .EspeC|aIIy important are the ;ymmetrlc functions c_)f .the
v, := Dp¥(xy) for these partial derivatives ofo x (andxy for elgenvalges. (These are the flugents of the _characterlstlc
the mixed second partial of. Differentiating(v,x,) = 0 in polynomial det¢l — A), whose roots are the eigenvalues.) In

the x, direction gives(v, xu) = — (v, ), while differentiat- particular, thg prodqct of the eigenvalues is thHe_rminant
ing (v, xy) = 0 in thex, direction gives(vy, x,) = — (v, Xu). detA and their sum is th&racetr A. The average eigenvalue

Thus(vy, X) = (W, Xy), proving the claim. tr A/dimV is also the average qfv, v) over the whole unit

Given this proposition, the shape operafy defines a sphere.

quadratic formv — (Spv, v) onT,M, called thesecond funda- _Now let's consider the shape operag on TyM. lts
mental form | of M, often written using the Roman numeral eigenvalueg; andk; are called th@rincipal curvaturegof M

asll ,(v) := hy(v). Note that arguments as in the proof show &t p);_ the eigenvectors are thw_incipal curvature direction,s_
p(¥) p(V) g P forming two orthogonal lines iMfp,M. We can choose unit

eigenvectorse; ande, such that{e;, &, v} is an oriented or-
thonormal basis. We define ti&auss curvature

Thus the matrix of the second fundamental form w.r.t. the ba-
SiS{Xy, Xy} is

Vu, Xu) = =V, Xuw) » My, Xy) = =V, Xw) -

K := kik, = detS,,

and themean curvature
= (Vu, Xu) = (Vu, Xv)

S A v, Xuw) (¥, Xuv)
hp := (M N) o (_ v, Xy = (s Xv>) B ((V, Xvw) (v, va>) ' H:= kitke 1 trSp.

2 2

We see that to co_mpute the first and second fundamentﬂote thatK is independent of orientation, whild changes
forms of a parametrized surface, we start by computing the.~ ~. . ! ) oo
) . o ; Sign if we switch the sign o¥; more intrinsic is the mean
first and second partial derivatives,(Xy; Xuu, Xuvs Xw), then 3 =t (N lso th hors defi
compute the cross produxt x X, and its lengthx, x x,|. The cr:Jrvature VvectoH = ‘_"h( hote also that some z;\tlj_thors he ine
scalar products among the first derivatives give the mafyix ]E € mea2n Cl:jrvatgre ‘r’]‘”t the opposite sign/anavithout the
The scalar products of the second derivatives withc x,,  [@ctor ¥/2 —despite the name “mean”.)
divided by the length of this normal vector, give the malrjx End of Lecture 18 May 2015

As usual, it is easier to find the matrix for the bilin-  Aswe will see, the intrinsic local shape of the surface is de-
eayquadratic formh, than to find the matrix for the associ- termined by the Gauss curvatufgin particular, qualitatively
ated operator, the shape operaBy. (Since{xy,xy} is not  py its sign. We sap € M is anelliptic point if K(p) > 0 (that
generally orthonormal, it is easier to find the scalar productss, the principal curvatures have the same sign)lygerbolic
of v, with the basis elements than to find its expression in thgyoint if K(p) < 0 (... opposite signs). A point whekgp) = 0
basis.) But by linear algebra we kndw = g,Sp, or equiva- s called aparabolicpoint.

lently Sp = g“,lhp. Of course the inverse of ax22 matrix is A point wherek; = k; is called anumbilic point; in par-
easy to compute: ticular aplanar point hask; = k, = 0. (Nonplanar umbilic
L points are of course elliptic.) At umbilic points, the princi-
1 _(E F) " _ 1 G -F pal directions are not uniquely defined and the normal curva-
9 = (F G) T EG-=F2 (—F E ) ture defined below is constant. Note that many authors use

10
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“parabolic” to mean what we call “parabolic and nonplanar”; Thus we see that at any poipte M there is a uniquely
this no longer depends just ¢h determined paraboloiz & kyx? + koy? in the rotated coordi-
The Gauss curvatur& and the mean curvaturel are  nates) that has second-order contact Witht p. Two surfaces
smooth functions on any smooth surface. The principal curvatangent ap have second-order contact if and only if they have
turesk; andk, are the two root$l + VH2 — K of the charac- the same principal curvatures and directions there (i.e., have
teristic polynomiak? — 2Hk + K of the shape operator. These the same ocsulating paraboloid). Up to rigid motion, two sur-
are smooth functions only away from umbilic points (wherefaces agree to second order (at given points) if and only if they

they coincide because the square root vanishes). have the same Gauss and mean curvatures there.

For a unit tangent vectar € T,M, thenormal curvature Note: for curves we preferred to talk about osculating cir-
of M in directionw is hy(w) = (Spw,w). Note that for an cles (with constant curvatukg rather than osculating parabo-
arbitrary nonzero vectar € T,M, las (with constant acceleration vector). For surfaces, we might

want to use a surface with constant principal curvatures (or
A (Spw,w) _ hp(w) equivalently, constanK andH). But we will see later this
Piw) — wowy gp(w) happens only for spheres and planes and cylinders. (Similarly,

i ) , you will show in homework that spheres and planes are the
We can write any unit normal vector as= cosfe; +sinf&  only totally umbilic surfaces.) Although surfaces are in some
and we find the normal curvature & in this direction is  gengse determined by their curvatures, this is much more com-
cog 0k, + sirf 6 kp, a weighted average qf the principal cur- plicated than saying space curves are determined$yand
vatures. Of course, the mean curvature is the average normaly) - First there are compatibility conditions (PDE not ODE:

curvature over the whole circle of directions; the principal CUr-compatibility basically says,, = vw) and second there’s no
vatures are the minimum and maximum of the normal curvag;andard parametrization (like arclength).

wre. . , From the Taylor series or osculating paraboloid, we do see
The intersection oM with a normal plane ap —a plane ¢4 instance that near an elliptic poipt the surface is locally

spanned by, and some unit tangent vectar € ToM — i ¢onyex — it stays to one side of its tangent plane. This is not

acurvee with T = wandg = hp(W)v. Orienting this nor- e at 4 hyperbolic point; instedtyM cutsM locally in two

mal plane such thaw, v} is an oriented basis, we thus have ¢ res crossing at; their tangent vectors atare exactly the

hp(W) = «.: the normal curvature is the (signed) curvature of gjrections with vanishing normal curvature, calkesymptotic
the normal slicer. Later we will see how the normal curva- directions.

ture is the normal component of the curvature of an arbitrary \na could also consider the intersections with nearby par-

curve througkp in directionw. , _ allel planes (say at distances? to either side of the tangent
Let us now consider a surface given as a graflo; V) = plane). Unlesw is a planar point, these planes will intersect
(u,v, f(u,v)), in p_arncu!ar at a poinp where grad = 0so 4 approximately in the curvelgx? + koy? = +&2, which are
that the surface is horizontal there. We have= (1,0, fu),  geajed (bys) versions of theDupin indicatrix defined to be
xy = (0,1, f,) so that atp this is an orthonormal basis for ,q set ofiy e ToM such thaS,w,w) = +1. This is an el-
TpM, meaningg, = 1. Of coursevy = (0,0,1). Since the jinqe ot an elliptic point, a pair of hyperbolas (with common
normal (vertical) components of the second derivatives of asymptotes in the asymptotic directions) at a hyperbolic point,
are the second derivatives bfwe see that and a pair of parallel lines at a nonplanar parabolic point.

fuu f
ho = hesst :( uu fuv)' End of Lecture 21 May 2015
vu v
Of course, since we have an orthonormal basis, this is also B5. Curves on surfaces and the Darboux frame

the matrix of the shape operator. Thus we hkve f,,f,, —
f2,and H = tr(hessf) = f,, + f,, = Af. (In general, one
should think of mean curvature as a geometric version of thel.
Laplacian; in terms of the intrinsic Laplace—Beltrami operator
Am, we have for instanc&yx = 2ﬁ.)

Let's now consider an arbitrary curve on a surfaceM.
he Darboux framealong the curve i§T,n,v} whereT is
of course the unit tangent to, v is the surface normal, and
n :=vxT is called theconormal As for our other frames, the

If we start V\."t.h any pomlp on an arbitrary surfachl, we derivative (with respect to an arclength parameterdogives
can apply a rigid motion (or equivalently, choose new Eu-, skew-symmetric matrix:

clidean coordinates) to put it into a standard position as fol-
lows. First translate so that = 0 is the origin, then rotate TV 0 kg &n)(T

so thatv, = (0,0, 1) is vertical. Note that the surface is then n
locally a grapte = f(x,y) with gradf = 0 atp as above. Fi- v
nally, rotate around the vertical axis until tkeandy-axes are

principal directions. As above, with respect to the standargyt coyrsey depends only on the surfadd, and sov =

—Kn _Tg 0 v

basis forT,M = R?, the matrix forS, is hessf; this is now Do(T) = —-Sp(T). Comparing with the above, we find
the diagonal matrh(ko1 fz). This means the second-order Tay- x, = (Sp(T), Ty andrg = (Sp(T),n). Thusk, = hy(T) is
lor expansion off around 0 isf(x,y) = 0+ ki X% + koy? + - - -, the normal curvature df1 in the directionT. It is the normal
where the remainder terms are third-order. part of the curvatur@ = «gn + knv of @. The tangential part
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kg is called thegeodesic curvatuteThe remaining derivative Theorem: LetX be a smooth vector field od c R?. For

7, the twisting of the Darboux frame, is called theodesic  anyp € U there exists a neighborhodt> p, a time interval

torsion Like the normal curvature,, the geodesic torsion | = (-&,¢), and a smooth map: V x | — R? (called the

79 = hp(T,n) = hp(n, T) depends only oM (andT). Curves local flowof X) such that for each € V the curvet — a(g, t)

in M having tangenf at p differ (to second-order) only in is the integral curve oK throughg, meaningx(g,0) = g and

having diterent geodesic curvatures. (Walking in the moun-da(q, t)/dt = Xy(qy-

tains, we have a choice of turning left or right; whether we For fixedt € | the mapy — «(q,t) is called the flow oiX by

curve up or down is fixed by staying on the earth’s surface.) timet. Note that the uniqueness of integral curves implies that
Curvesa on M for which one of these quantities vanishes flowing by timesand then by timé is the same as flowing by

special. Curvature lines are curves for whigh= 0, meaning times+t,i.e.,a(a(q, 9),t) = a(q, s+ t) (whenever both sides

that T is always a principal direction. (This is no condition are defined). Taking = —t we see that the flow by timeis

at an umbilic point.) We have’ = —«,T, wherek, is one invertible: it is a difeormorphism fronV to its image inU.

of the principal curvatures. The Darboux frame is a paral=—g,q of Lecture 28 May 2015

lel (Bishop) frame along a curvature line. Curvature-line co- ] . .

ordinates are (necessarily orthogonal) coordinates for which Corollary: If X is a vector f|_eld orlJ andX, # 0 for some

the coordinate lines are curvature lines. Locally away fromP € U, then there exists a neighborhodd> p and a smooth

umbilic points, this happens exactly when both the first anJl;n)((:tL%rt] aa:dvf: (])R ev\\//2|rch ;]Sef;n(sstighﬂz?sg(gﬁgz gﬂ\évcgrlle
second fundamental forms have diagonal matrices in the bas ﬁst integral forx.) yw '
{Xu, Xv}. (The coordinates we used for surfaces of revolution Pf Agsume Without loss of generality that= (0,0) and
had this form.) This makes many computations much easier. ) . g y that= (0,
. T S Xp = (L,0). Lete:V x| — U be a local flow and con-
Asymptotic curves are those for whieh = 0, that is,T is der i tiony To th di ional .
always an asymptotic direction. (This of course requites sider its restrictiona to the two-dimensional cross-section

0.) The conormay is the principal normal of an asymptotic {I.J = 0} (”ar.‘s"‘?rse (Xp). Th's restrlct|ona(\_/, ) has non-
singular derivative at 0, so it locally has an inverse on some

line; the Darboux frame is the Frenet frame. Locally near pen neighborhood of (0), mapping this dieomorphically
a hyperbolic point, asymptotic coordinates always exist, an 5 SomeW > p. We can takef to be thev-coordinate of this

are characterized by the second fundamental form having an
off-diagonal matrixh = (§ M NVerse. , .
Geodesics are curve'\s/l foor. whieh = 0. Given a startin Definition: A (smooth)vector field Xon a surfaceM is
) : > for whiefj = 0. NJ 3 functionM — R3 such thatX, = X(p) € ToM for each
point p and a starting directioil, there is always a unique

; . B : : p € M. Note thatX, = a(p)xy + b(p)xy = Duwx(a, b) for
99.0‘?'95'0’ the SOI.Ut'On to the ODE = kyv. We W'" consu.jer. smooth real-valued functiorgs b on M. (Smoothness in these
this in more detail later. (The surface normal is the principal

coordinates is equivalent to smoothnes®i) We see that,
normaly = N and the curvature equals the normal curvature.

. ) . . . ust asDx gives a pointwise isomorphism betwe&p,y)R?
Any straight line contained in a surface (for instance, th andTp(M), it gives a one-to-one correspondance between vec-
rulings on a ruled surface) has constantand is both an

i 2
asymptotic line and a geodesic. (The geodesic torgj@ives tor fields onU ¢ R” and those on(U) M.

h 4 at which th ; [ and [ rot Thus all local results about vector fields hold also on sur-
ariusnpdefhe T‘m:') ich the surface normal and conormal rotatg, ..o (Literally just replace by M in the theorem or corol-

A f hich is al desic h lary above.) A stronger way to express the corollary is to say
curvat.ure Ine which Is also a geodesic has constantat around a point when¥, # O there are coordinates such

conormaly; equivalently it is the intersection d¥l with @ 505y (The restrictionx(v, t) gives a new parametriza-

plane meetingv perpendlcularly (like the generating CUrVes o of W in terms of coordinatesv(t); the functionf used

on a surface of revolution). above is ther coordinate and we renamasu to getX = x,.)

The surface normay is constant along a curvature line \ye can say: any nonzero vector field is locally constant in
which is also asymptotic; such a curve is the intersectidv of appropriate coordinates

with a plane always tangent td and consists of course of " thaorem: Suppos¥ and Y are two vector fields oM
parabolic points. (Example: top or bottom of round torus — or, hich are linearly indpendent at some pomt Then there
of tube around any plane curve.) exists a parametrization: U — M of some neighborhood
W 5 p such that,||X andx,||Y onW.
Note: It is too much to ask that, = X andx, = Y; coordi-
B6. \Vector fields and line fields nate vector fields always commute (in the sense that thettime-
flow alongX and the times flow alongY are commuting dif-
A (smooth)vector field Xon U c R? is a smooth map feomorphisms). But general vector fieldsindY do not have
U — R?interpreted ap — Xp € TpR? = R, Thatis, we this property.
think of X, as an arrow based @ A flow line (or integral Pf: Letu andv be first integrals ol and X (respectively)
curve or trajectory) ol is a curvea in U whose velocity is  on some neighborhood > p. The map ¢,v): V — R?
given by X, that is,a(t) = X, for all t. This is a system of has nonsingular flierential atp. (Sinceu = 0 only along
ODEs in the two variables andv. The standard theorems curves tangent t&X, while v = 0 only tangent tor,, these can
on ODEs say give not only existence and uniqueness of flomever both vanish.) Thus it locally has an inverse, the desired
lines, but also smooth dependence on the initial point. That igparametrization.
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Corollary: Anyp € M has a neighborhood with an orthog- ~ We find the velocity ofy is f = T +t& + O(t?), and hence
onal parametrization.

Pf: We just need to find a pair of orthogonal vector fields. g = [T + &P+ O(t?) = 1+ 2t(&, Ty + O(t?).
Start with an arbitrary parametrizationof some neighbor- .
hood ofp. SetX = Xy andY =Vp XXy _and apply t_he theorem. 'I_'herefored%L:0 lofl = (¢, T). Using lenf:) = fo laf| dswe
The new parametrization has coordinate lines in the (orthogdind
nal) X andY directions.

In the theorem, note that andY stay linearly indepen- E len() = E‘ fky“ds
dent (in particular nonvanishing) on the parametrized neigh- dti=o dth-o
borhood. The theoremm only depends on equivalence classes _ fﬂ' o/ ds = f@, T) ds
of X andY underX ~ fX (wheref is a nonvanishing scalar T J dtheo VT ’

function). These ardine fields(or direction fields). Note: o i o )
globally, a line field may be nonorientable. Locally, however, Here smoothness ju_stlfles interchanging the_derlvatwe and in-
we can always pick a consistent orientation for the lines, so thiégral. Next we can integrate by parts, recalling fiat & =
line fields always arises as above from a nonvanishing vectdf'\; 0Ur assumptions mean that the endpoint terms vanish. We
field. The theorem is really about a pair of (nowhere equalyind
line fields. (Line fields have unparametrized integral curves.) d
As further applications of the theorem, we can derive local d¢lenfa) = a’ len(ar) = - f(f, k) ds
existence of asymptotic and curvature-line coordinates. t=0
Cor: If p € M is a nonumbilic point, then some neighbor-  we can think of the right-hand side as the inner product on
hood ofp can be parametrized by curvature-line coordinates.| 2(|, R3) (the tangent space atto the space of curves, where
Pf: In a orientable neighborhood without umbilics, we canthe vector fields and® alonge live). Thus the formula can
distinguish the principal curvatures (sky < k). Then we  pe thought of as saying th&tis the negative gradient of the
get two line fields — along the eigenspacesKpandk; re-  |ength functional.
spectively. Then just apply the theorem. A curve is length-critical if no variation changes its length
Cor: If p € M is a hyperbolic point, then some neighbor- to first order. That is, we havé len = 0 for all &, which
hood ofp can be parametrized by asymptotic coordinates. happens if and only i€ = 0. Of course we know that straight
Pf: In an orientable neighborhood whelke< 0 we have  lines minimize length.
two asymptotic lines at each point, and can distinguish them \We see that (as claimed above) the derivativeen only
globally (one is to the left of the negative principal curvaturedepends o and not on the higher-order terms. Also, it is
direction). Thus we get two line fields and can apply the theindependent of the tangential parté#- if we keep the same
orem. family of curvesa; but change their parametrizations, that cor-
responds to changingby a tangential field but clearly has no
effect on (the derivative of) length. Any family of curves can
B7. Firstvariation of length be reparametrized so that the variation figid normal.
Note furthermore thad; len depends only the component
We want to understand the geometric meaning of the mea@f £ in the principal normal direction. The so-called Hasi-
curvatureH. In particular, if we consider variations of a sur- moto flow is the PDE = T x ¥ = «B for a moving curvey, in
face, we will see how to express the derivative of area in term&2, which physically is an approximation to smoke-ring flow.
of H. If a surface ha#l = 0 then it is a critical point for area, Since we move only in the binormal direction, this flow pre-
called aminimal surface serves length; indeed is it a so-called integrable system which
First we consider the simpler case of the length of a (comalso preserves a whole hierarchy of other invariants.
pact) curve. Suppose(s) is a smoothly varying family Curve-shortening flow is the PDg= & for a moving curve
of smooth curves irR". We assume thak(s) = ao(S) is @ whose length decreases as fast as possible, since we follow
parametrized by its arclength (But sis not arclength for the the (negative) gradient direction. It is one of the earliest ex-
other curvesy.) If a is not closed, we assume the variation amples of a geometric flow, and has interesting properties like
is supported on a compact region away from the endpointreserving embeddedness of plane curves.
(That is,a(s) is independent df for soutside this region.)
We can take a Taylor seriestimnd get
B8. Minimal surfaces
a(s) = a(s) + t&(9) + O(t?),
i o , ) We now want to do the similar calculation to find the first
where{ is a variation vector field along. We will see thatthe \ariation of surface area. A more sophisticated approach
derivative of length depends only on this infinitesimal varia- o 14 use the characterizatiofz= Aux and an intrisic ver-

tion, and not on the higher order terms we have omitted. (Ong; " it stokes’ theorem. We will take a more hands-on ap-
could think of the vector field as being a tangent vector to proach in coordinates.

the infinite dimensional space of curves at the "poiny Consider an initial surface with an orthogonal parametriza-
_End of Lecture 1 June 2015  tionx: U —» M. Lety: U — R have compact support d
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and describe a normal variation ®f. That is, we consider the B9. Isometries
family of surfaces<! := x + tpv. (Guided by our experience

with curves, we realize that nothing would change if we added \what do we mean when we talk abdntrinsic properties

tangential tttarms or higher-order termts.) of a surface, properties that only depend on the intrinsic ge-
We findx; = Xy + tovy + toyy andx, = xv + tovy +tewv.  ometry of the surface and not on how it sits in space? More
Recalling that we have assumed, x,) = 0, this gives precisely, these are properties that are the same for any two
(XL = (X Xu) + 2t (X, V) + O(tD), isometric surfaces. ' '
ooty o2 Def: Anisometryis a difeomorphismp: M — N between
(X Xy) = T (Xu, W) + g (X, V) + O(F), two surfaces which preserves the scalar product on tangent
LX) = (s Xy) + 2t (Xy, W) + O(t2). spaces. That s, for any € M and anyv,w € T,M, we have

) . (Dpe(v), Dpp(w)) = (v,w). It follows thaty preserves the

- 2

This can be written ag' = g - 2tgh + O(t )'E o length of curves: ler{o @) = len(a) for any curve inM.
Since in our orthogonal coordinatgs= (; ¢ ) is a diagonal Example: Ifg is a rigid motion ofR" then of course it re-

matrix, the di-diagonal entries are irrelevant for the first-order g4yicts to any surfac® to give an isometnM — oM. Less

H t it _ (L M i . .. . . . . .
calculation of deg’. Writing h = (; ) we get in fact trivially, Rx (-, ) is isometric to the unit cylinder i&3 with

detg! = (E - 2tyL)(G - 2tgN) + O(t?) one vertical line removed. (We see from this simple example
) that the mean curvatuie, for instance, is not an intrinsic no-
= EG-2tp(LG + NE) + O(t"). tion; the surprising result later will be thitis intrinsic.)
Taking the square root gives Note: If x: U — x(U) = M is a parametrization and
LG + NE oM - N_is a d'ffeomo_rph_ism then of coursg := ¢ o
Vdetg' = VEG(1 - tg————) + O(t%), x: U — N is a parametrization. We see that= y o x!

EG is an isometry if and only if, at corresponding points, the first
but we recognize the fractioh%\‘E = 2H as twice the mean fundamental forms fox andy have the same matrix with re-
curvature. Thus spect to the coordinate bases. Thatig, Xy) = (Yu, Yv), €tc.

d Def: We say surface®! and N are locally isometricif
6, vdetg = d_t‘t_ovdetgt = —2pH +/detg. each point in either surface has a neighborhood isometric to

! , L i . . an open subset of the other surface.
To find the first variation of area, we simply integrate this  Note: we can assume the neighborhoods are small enough

overU: to be parametrized patches. Then we test local isometry by
5, areag) = %f dA = 6“’[ Jdetg du dv finding paramstgzatlons with the same first fundamental form
M u gu.Vv) =g=(gg)
Example: The plane and the cylinder are locally isometric.
= L(% vdetg)du dv= L —2pH +/detgdudv Relaxing the condition of isometry, we can consider con-
formal (angle-preserving) mags M — N. Here the con-
= —2f eHdA dition is that there is a positive functionn M — R (called
M

the conformal factoy such that for anyw,w € T,M we have

We see that the mean curvature is the negative gradient f@Dyp(V), Dpg(W)) = A(p)? (v, W).
area - to save area one should move the surface in the directionWe have seen the sense in which two surfaces are locally
of the mean curvature vector. A surface is area-critical if andsometric if and only if they have the same first fundamental
only if 6, area is zero for every variatian that is, if and only ~ form g;;. A somewhat surprising result is that all surfaces are
if H = 0. Such a surface is called a minimal surface. Leastiocally conformal. (By transitivity, it sfiices to prove that any
area surfaces spanning a given boundary are known to existirface has conformal parametrizations. This is a PDE result
and be smooth; they are thus minimal surfaces. (It can alsthat we won't try to prove here.) The analog is not true for
be shown that, given a minimal surfaté, any sdficiently  higher-dimensional manifolds — only certain special metrics
small piece oM — indeed any piece which is a graph in someareconformally flat
direction — is the least-area way to span its boundary.)

Minimal surfaces have many interesting properties. For in-

stance the Gauss map M — S? is (anti)conformal, since B10. Covariant derivatives
its differential has matrix& ) in an orthonormal basis of
principal directions at a point with = —k?. One can check |t M is a surface, anil is a (vector-valued) function ok,

that in any conformal parametrization U — M of a mini-  then we know what the directional derivativeYohtp € M in

mal surface, the coordinate functions — or more generally alljjrectionw e T,M meansd,Y(p) = D,Y(w) is the derivative
height functiongx, u) : U — R for constanu € S* —are har-  of y along any curve (iM throughp) with velocity vectonw.
monic functions. Thus they can be thought of as the real partg gy supposé’: M — R3 s a tangent vector field (meaning
of complex holomorphic functions, leading to the so-calledy, ¢ T M for eachp). In general, its directional derivatives
Weierstrass representation. (Thinking@fas the Riemann 3 v will not be tangent taVl. Indeed, since the tangent spaces
sphereC, the Gauss map itself is a meromorphic function.)  change ap € M moves, a tangent vector is forced to change
_End of Lecture 4 June 2015  inthe normal direction just to stay tangent. We can make this
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precise using the second fundamental form — sifyce) = 0, fields in terms of the covariant derivatives of the coordinate
we get vector fields.

__End of Lecture 8 June 2015
If X andY are two vector fields oM, then in generaVxY

(OwY,v) = (DY(W),v) = =(Dv(W), Y) = (S(W). Y) = h(W.Y).

This normal change il is forced by the geometry dil. andVyX are unequal. The fierence is called thieie bracket
The intrinsic change irY is given by the tangential parts

of its directional derivatives, callecbvariant derivativesWe [X, Y] := VxY = VyX

write

A special property of coordinate vector fields is that they have
VY = @uwY)! = 0wY—={dwY,v)y = DpY(W)-h(w, Yp) € ToM.  vanishing Lie bracket: ¥, x,] = 0. To verify this, note that
Vy Xy is by definition the tangential part &fy. Thus Ky, x,] =

To defined, Y andV,,Y it of course not necessary thébe 0 is a trivial consequence of, = X.. Given two linearly
defined on a whole neighborhoodpfin M) —it sufices ifY  independent vector field$ andY, we discussed the fact that
is a vector field (tangent tM) along some curve: | - M we cannot always find coordinates with= x, andY = x,.
throughp with velocity (parallel toyw. If Y is defined along  |Indeed the conditionX, Y] = 0 is exactly what is needed —
sometimes we writg; Y := V;@Y for the tangential part of the  this is part of the Frobenius Theorem (covered next semester).
derivativeY = d%Y(a(t)). (Here again, when we talk abotit
derivatives ofY, we are really dterentiating the composition
Yoa.) B11. Christoffel symbols

If @ is parametrized at unit speed, th§p( = VrYis the
tangential part of’. In particular, choosingy = T and com-
paring with the Darboux equatiol’ = kgn + knv, we see that
V1T = kgn gives the geodesic curvature. The equakigs: O
for a geodesic can be writtey T = 0. (A curve satisfies
Vea = 0 if and only if it is a geodesic parametrized at con-
stant — not necessarily unit — speed.)

We say the vector fieltY is parallel along« if dZtY = 0.
GivenY, at any initial pointp = «(0), there is a unique way
to extend it to a parallel fiel&d along « (solving the ODE
V1Y = 0). Any curvee from pto q thus gives a mapp,M —

For ease of writing equations in coordinates, we will change
notation a bit: we writei, u?) := (u, v) and use the subscript
for a partial derivative with respect té, so for instance; :=
X4 = 0x/ou. Then we can write the entries of the matrices
for the first and second fundamental formsgas= (xi, X;)
andhij = <V,Xij> = —<Vi,Xj>.

We now want to explicitly calculate covariant derivatives in
coordinates. We start with the covariant derivati¥s; of
the coordinate vector fields; since these are tangent vectors,
T4M called parallel transport— taking an initial vector ap they can be expressed in terms of the coordinate basis. We in-

to the value afj of the parallel field alongv. It is important troduce theChristgfel symbols"ikj as their components. That
to note that this parallel transport fropto q does depend on IS, theT; are defined by
the choice ofr — it's not a natural identification of the distinct
tangent spaces. 2
Important properties are that a parallel vector field has con- Vi Xj =t Z 1":‘,- Xk = Tilj X1 + rizj X2.
stant length; a pair of parallel fields make constant angle; thus, k=1

parallel transport is an orthogonal mapM — TqM, a map I .
respecting the scalar products. This is easy to confirm: pat! "€ vamshmgk of the Lie bracket can now be expressed as

N i
allel fields have derivatives only in the normal directigrso 1€ Symmetniy; = I'5.) Since we already know the normal
LYY = (XYY + (X, Y) = 0. componenty; = (x;j, v) of x;j, we could write the equations
Given two vector fieldX andY on M, the covariant deriva- above as
tive VxY is defined at every point df1, giving a new vector

field. Note thatVxY is R-linear in each argument: Xij = 0x X} = TjjXq + Xz + hijv.
Viax Y = VXY + V.Y, Vx(Y +Y’) = VxY + VxY/, (This is called the Gauss formula.)
VuxY = avyY = VyaY, acR. At every point in the s_urfgce, we have a (nqnort_honormal)
frame{xy, X2, v}. The derivatives of expressed in this frame
If f: M — R is a smooth function, then of couré& means — and the normal components of the derivatives ofxhe
the vector field whose value @t € M is (fX), := f(p)Xp. are given by_the second fundamen_tal form and shape operator.
Since VxY at p depends only orX,, we find thatVexY = The tangential parts of the derivatives are new — given by

fVxY. But on the other hand, the Leibniz product rule gives the Christdiel symbols.
Of course, as we saw witB and h, when dealing with
Vx(fY) = (Vx )Y + fVxY, nonorthonormal bases, it is easier to compute scalar products
than components. Here we have
where we adopt the convention tHagf := dx f. Since any
vector field is a combinatiorix, + gxy, these formulas will Xjin X = (VX Xe) = <Z Fﬁx[, Xk> - Z Fﬁ O =: Tijk.
allow us to express covariant derivatives of arbitrary vector 7 7
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Here we multiply by the matrig = (g;;) to “lower an index”. B12. Compatability conditions
It is customary to write the inverse matrix as

Suppose we are given symmetric matriggsandh; vary-
ing smoothly on a given domaibd c R? Is there some
parametrizatiork: U — R3 with these as first and second
fundamental form, respectively? Of course frgrandh we
know the Christffel symbols and the matrix for the shape op-

i 1 (G -F
@ =0 g5 E)

Then multiplying byg™? “raises the index” again:F:‘j =

3¢ g“Tije. Of course we still have the symmetfy = L. erator. Thus we try to solve the Gapagingarten system
Suppose we writX andY in coordinates aX = 3’ a'x; and
Y = 3 B8'%; (for smooth functiong', 8'). Then by linearity and Xij = riljxl + rizj X2+ hijv, v = =S(x).

the product rule, we have
(Of course we also need thats the unit normal vector to the

VxY = Z a'Vy (B'%)) = Z a'(axiﬁk + ZB'T!‘] )Xk surface given by. As long as that holds at some initial point,
ij ik i the Gaus8Meingarten system is set up to ensure it stays true,
[ OBk ik since the scalar products efwith itself and with thex; will
= Zk:“ (F + Zﬂ rij)xk be constant.)
i i

Unlike for ODEs, solutions to PDEs exist only if compat-
ibility equations are satisfied. (The basic idea is that given
functionsg andh, the systent, = g, fy = h can have a solu-
tion f only if gy = f,y = fyx = hyx.) We will write down the
Oijk = 0xkGij = Ou(Xi, Xj) = (0kXis X)) + {OxeXj, Xi) cr?mpatibilitly ec|1uations for our system (equatig = Xix;);

vy v VR . these are clearly necessary.
= (i X} + X Xi) = Ty + Tl Using the notatiody := dy, = d/du* for partial derivatives,

This is a set of eight equations. We could write them outdifferentiating the Gauss formula gives
explicitly in the classical notation, getting, = 2111, etc.

But let’s just cyclically permute the equation above and use Xik = (Okhij)v + hijv + Z(akri[j Xe + T Xek.
the symmetry of the Chrisftel symbols: ¢

Now we consider derivatives of the dieients of the first
fundamental form:

Giik = Twij + Tji = Tiij + Djin The Gaus8Veingarten system shows us how to write the
right-hand side in the basiy, xo, v}. Eachxijjx = Xi; then
gives us three scalar compatibility equations; it turns out to
Oij = ki + Ljik = Tji + Tijk be enough to consider a few of these, since the rest are equiv-
alent by symmetries. First note that the normal component
9 ohij + X Ffj hs. The two cases of interest axg;o = X121

Oiki = Lij + L'ikj = Lij + Diij

Subtracting the top equation from the sum of the other tw

givesgici +gij ~ Gijk = 2lij. More important than the exact andx,z1 = X212, the normal parts give th@lainardi-)Codazzi

fortm of t?ItSh equatlop 'St Lhe'fact:.t thafl_'rt] c?glrg; the |kr)1tr||nS|c equations (evidently first discovered by Peterson), the first of
nature of the covariant derivative: The Chrigéb symbols, our compatibility conditions:

and thus all our formulas for covariant derivatives, can be ex-
E\r/:‘;‘i\(ljolr? eterms of the first fundamental form (and its deriva- d2hur + Thhgs + T2 hgp = 81has + Thhyg + T25hp,
e . . . 1 2 _ 1 2
After this excursion into very abstract notation, let's look 9102 + I'gphna + T55M0 = 02hna + T'pphia + N0,
concretely at these equations in more classical notation. We ¢ he Chrisfel bols should be Vi d
specialize to the case of an orthogonal parametrizagions{ ~ H1€r€ Of course, the Chrisiel symbols should be viewed as

0); this makes all the equations a bit simpler. The equationfnctions of theg;;. _
2Tij = Ojki + G — Gijx become: Recalling that the shape operator has magrih, we write

this in index notation ak/ := ¥, g*hy;, so thaty; = -S(x;) =

2111 = 11 = By, —2l'112 = 12 = Ey, -3 hijxj. This lets us express the component ofxy1, =
2121 = Q112 = Ey, 2120 =021 = Gy, X121. We get
—20221 = 021 = Gy, 2200 = Q222 = Gy

—h]_]_h% + (921—‘%1 + Z I“ill"fz = —hlzhi + (911—‘%2 + Z F‘izl"ﬁl.

Of course multiplying by the inverse of a diagonal matrix ¢ ¢
is easy, sd'j; = %, ¢“Tij, becomed’|; = I'j1/E andl}, = . .
Tij2/G. Thats, we get This can be written as
It = Ey/2E, rl,=E/2E T, =-Gy/2E 92l =0Tt T T4 T T 55T 1l T35, = huh3—hoih?.

I3, =-E,/2G, T1%,=G,/2G TI5%=G,/2G Expandinghy; = higy, + h2g1 andhyy = higys + h3gyy, the
right-hand side becomes

__End of Lecture 11 June 2015 g]_]_(hihg - hih%) =011 detS = g11K.
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Since the left-hand side is intrinsic (expressible in terms of thainspecified parametergives hardly any information about
first fundamental form alone), so is the Gauss curvakure the shape of the curve. Any arc of monotonic curvature can
That is, we have GaussBheorema Egregiunf‘'remarkable be parametrized by = t for instance.

theorem”): The Gauss curvatulkeis an intrinsic notion, re- What is the situation for surfaces? Two surfaces are lo-
maining unchanged under local isometries, as when a surfa@ally isometric (intrinsically equivalent, one might say) if and
is bent without stretching. only if they have the same first fundamental fognm corre-
The equation above in the form sponding coordinates. This implies that they have the same
Gauss curvaturi(u, v) in such coordinates. By Bonnet's the-
902, — 0112, + T2 12, + T2 12, — T2 —T2,12 = gnﬂ orem, two surfaces are related by a rigid motion (extrinsically

detg’ equivalent, one might say) if and only if they have the same
first and second fundamental forgs&ndh in corresponding
coordinates. This implies that they have the same Gauss and
mean curvatureK andH (or equivalently, the same principal

again with the understanding that the Chriigb symbols

should be expressed as functions of tieand their deriva-

tives, is theGauss equatiorthe last compatibility condition. ) .
. ; cf‘urvatures) in such coordinates.

Atheorem of Bonnet (basically using standard results abou Ifwe ask when surfaces with the saiteare isometric. then
first-order PDEs) now Says thes.e compatibility conditic_)ns ar(?/ve are faced with the same problem as for curves of r;ot know-
also stficient, If symmetric matrix functiong;; andry; (with ing what parametrization is being used to compare the curva-
g positive definite) satify the Gauss and Codazzi equatlons%”e functions. For instance, as long@ms M is not a critical

then there is a surface with these fundamental forms, unique_. . : . .

up to rigid motion. We will not go into the details of the proof. gsllri]rtg; })?((e:oﬂrj\rs]tcgr(:é] I;,n:jh\?vg 2;;?&%2??&023 oq:ésoﬁuaetigo

and write the intrinsic formula for Gauss curvature more ex-doonoer(ﬂggée\i;‘ne?erfﬁ:Iz:g;reanr?gg'ezsarﬂfgr?;eﬂ}i tﬂg?gfg&?}% %‘i‘s

plicitly. We get with constant Gauss curvature.

EK - 5 (Ev) 5 (Gu) N E.G, EG, . E2 G2 Suppose we have two isometric surfaces with the same
="M W 2EG 262 T 2EG T 262’ mean curvature (or equivalently the same principal curva-

tures). This does not always imply that that they are related by

or equivalently a rigid motion. What happens is that, even though the eigen-
5 values of the shape operator are the same on both surfaces,

—2EGK = Eyy — E\,_G\, +Gyy— % the eigenvectors (the principal directions) can rotate. An im-

G portant example is that of minimal surfaces: it turns out that

E.G. EG, E2 G? any minimal surface has an isometcienjugate minimal sur-
"2 Y726 "2EYt G face Here the curvature directions have become asymptotic
E G directions and vice versa. (In fact, these sit in a one-parameter
= ‘/E_G(av( \/EV_G) + au( \/EU_G» family of isometric minimal surfaces with all possible asymp-

totic directions.)
For conformal coordinates with conformal factbe € >
0 we haveE = G = 12 and the formula becomes
1 1 1 B13. Surfaces of constant curvature
K== (0(3) + o 2)) = -e *ag.
There are many interesting facts about surfaces with con-

, ) stant Gauss curvature or constant mean curvature. Our first
Bonnet’s theorem leaves many related open questions. O'?j‘oal is a thereom of Minding saying any two surfaces with

is the following: to what extent the compatibility conditions {he same constait = ¢ are locally isometric. Then we turn
determine the second fundamental form from the first fundagg, theorem of Liebmann that characterize the round sphere are

mental form? This is a rigidity question: when does a sure ynique closed surface of constirand the unique convex
face admit a unique isometric embedding iR Unlike hy- surface of constarti.

persurfaces in higher dimensions — see Kuhnel's book — sur- \ye il use one further special kind of parametrization:
faces can always be locally embedded in many ways. Glob- Def: An orthogonal parametrization: U — R3 gives
ally, however, there are often rigidity results (like for convex

: d oth bstract ; t be aloball nqeodesic parallel coordinatet |x,| = 1.
ts)u:jgczs)tan” \(;v er(a strac )tSL:LaCGS car;Pol te globally € “Using the notatiora = [x,|, we have in geodesic parallel
edaded at all. We may return to these results ater. coordinate€ = 1 andG = a?. Specializing our formula foK

__End of Lecture 15 June 2015  to this case gives2a’K = ajy(2aa,/a), that is,K = —a,/a.

For curves, of course, there is no intrinsic geometry — any Clearly, in geodesic parallel coordinates, tikeurves are
two curves are locally isometric, for instance by choosing arparametrized at unit speed: any paivafurves cut segements
clength parametrizations for both of them. Two plane curve®f equal length from all the-curves. We claim the&-curves
are related by a rigid motion if and only if they have the same(for each constant) are geodesics, so that tkeurves should
(extrinsic) curvature (as a function of arclength). Note, how- really be considered as parallel curves at constant distance
ever, that specifying curvature as a given functi¢t) of an  from each other. (The name “geodesic parallel coordinates”
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then comes from the fact that theandv-coordinate lines are Lemma: In curvature-line coordinates wigh= (5 ) and

geodesics and parallels, respectively.) h=(5Q), the Codazzi equations become
To check the claim, we must shdwy, x, = 0. This is equiv-
alenttol'’}, = 0= T2, ortol'13; = 0 = ['13,. Butin orthogoal Lv=HE,, Ny = HG,.

coordinates, we halty11 = E,/2 andl'12 = —E,/2.

Lemma: Any surface locally admits geodesic parallel COOr, equations can be written as

In terms of the principal curvatures, with= kK E, N = kG,

dinates.
Proof: In fact we can start with any curuév) in the surface 2Ed,k; 2GH ko
to be the curvel = 0. Then eachi-curvev = cis determined Ev= Ky — ki’ u= K — Ky

as the geodesic starting@fc) in the conormal direction. The
only thing that one needs to check is that the coordinates stay Proof: Dropping the terms involvinlg,,, the Codazzi equa-
orthogonal. But since thecurves are geodesics,, is anor-  tions are
mal vector, sdxyy, Xy) = 0. Thus
azhll + F%lhzg = rizh]_]_, alhgg + F%Zhll = Fizhzz.
0= Ey = dy (Xu, Xu) = 2{Xu, Xuy)

Substituting the values we computed for the Chifgosym-
= 2(<Xv’ Xuw) + (Xu, Xuv)) = 20y (Xu, Xv) = 2Fy. g b 4

bols in arbitrary orthogonal coordinates gives

This impliesF = 0 since we knowF vanishes along. L, — NE,/2G = LE,/2E, N, - LG,/2E = NG,/2G.
Note that the special case whateis itself a unit-speed

geodesic gives what are calléeérmi coordinateqalonga),  Recalling that the mean curvatureHs= L/2E + N/2G gives

often used in Lorenzian geometry for general relativitythe first form.

(choosingx to be the wordline of some patrticle). In this case, Now differentiating the equatioris= ki E, N = kG yields

not only is the first fundamental form the identity matrix along (6,k1)E + k;E, = L, = HE,, etc., which simplifies to the final

the whole starting curve, but also its derivative in the conor-equations in the statment.

mal direction vanishes, so all the Chri§t symbols vanish Lemma (Hilbert): Suppos@ is a nonumbilic point with

along that curve. (In particular our claimistiat = 0= G, ki > kp and suppos&; has a local maximum whilk, has a

alonga and this follows from calculations like the one above local minimum atp. ThenK(p) < 0.

for Fy, using the additional fact thatis a geodesic.) Fnd of L To 1 e 701

Thm (Minding): Two surfaces with the same constant proat. Choose curvature-line coordinates in a neighbor-

Gauss curvaturé are locally isometric. Indeed, give a point poqq4 ofp, By assumption, the and use the classical notation
in each surface and orthonormal frames at these points, the 18t (he 1ast lemma. We have = KE, N = kG. Differen-

cal isometry can be chosen to map the one frame to the othefting these equations and comparing the Codazzi equations
Pf: Construct Fermi coordinates in each surface, startingives ¢,k,)E + k,E, = L, = HE,, etc., that is,
with a unit-speed geodesic (through the given point in the di-
rection of the first frame vector). The first fundamental form E - 2Edkq _ 2Goyko
in these coordinates will be given hjfgag) and we have that VT k= kg YTk — ko
K = —ay,/awith a(0,v) = 1. This can be viewed as the (ordi-
nary!) differential equatiom,, = —Ka for a, which of course  But by assumption the derivatives of the principal curvatures
has a unique solution given the initial conditioa®) = 1,  vanish atp, so by the final formulas of the last lemnta, =
a,(0) = 0. Thusa is independent of and is the same on both 0 = Gy there. Dfferentiating these formulas (and dropping
surfaces. terms involving first derivatives d§ to evaluate ap), we find
Note that of course we can solve this ODE explicitly. Forthat
K = 0 we havea = 1 (as for the standard coordinatesih 2EH K 2G52 K
while for K > 0 we geta = cos(VKU), and forK < 0 we get Ew= T V‘Ll, w= 7 “1‘(2
a = cosh(V-Ku). 27 17"
Note that ordinary spherical coordinates (latitude, longi-at p. By assumption, ap we havek; > k, at p and also
tude) are Fermi coordinates (around the equator) for the roungb k; < 0 < 92 k.. ThusE, > 0 andG,, > O atp. The

sphere withK = 1. The pseudosphere is an example of a surGauss equation in orthogonal coordinates gave a nice formula

face withK = -1, but no such surface is complete. ~ for K involving VEG. At a point whereE, = 0 = G, itis
Lemma: Any closed surface iR® has at least one point easy to reduce this formula t2EGK = E,y + Gy.. It follows
(and hence an open set) whéte- 0. immediately thaK (p) < 0.

Proof: SinceM is compact, it is contained in some ball Note: Recall our earlier claim that the only surfaces with
around the origin. LeBg(0) be the smallest such ball. Its constantH andK (or equivalently, with constant principal cur-
boundary sphere (with normal curvaturedll must be tan- vatures) are planes, spheres and cylinderk; ¥ k, then we
gent toM. SinceM stays inside, its normal curvatures — in are in the totally umbilic case of planes or spheres. Otherwise,
particular both principal curvatures — are at legd IThus at ~ we can use the calculations above. We hagg; = 0 =
the point of tangencK > 1/R% > 0. Ew = 0 and similarlyG,, = 0, givingK = 0. Surfaces with
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K = 0 are calleddevelopablewe will study these later. Our choice ofg at the basepoint(0), there is a unique smooth an-
first few results will siffice to conclude that the developable gle function alongr. For consideration of the angle, we might

surfaces here with constatare round cylinders. as well assume that both vector fields have unit length.
Thm (Liebmann 1899): A smooth closed surfadec R® So suppos& is a unit parallel field along, meaningd%x =

with constant Gauss curvatufeis necessarily a round sphere. 0, andY is any unit field. Letj(t) be the angle fronX to Y
Proof: By the first lemmakK > 0O; the sphere we seek has at a(t). As we observed earlier, parallel transport preserves

radius ¥ VK. Denote the two principal curvatures ky> k,. ~ the angle between two vectors, 8ds constant ifY is also

By compactnesk; attains a maximum at songee M (where  parallel. In general, we claim that the rate of change in angle

ko has a minimum, sinckik, = K). If ki(p) = VK = ka(p), 0 measures the covariant derivative\of

the surface is totally umbilic — and as we have seen already, it Any unit'Y is perpendicular to its derivative. In particular,

is thus a piece of a sphere, indeed the whole sphere Mrise  the covariant derivative; Y, being perpendicular teas well,

closed. Thus we may assurke> k, at p. But then we are in is a scalar multiple ofx Y, the scalar being given by the triple

the situation of Hilbert's lemma, sé < 0, a contradiction. product(FY, v x Y) = (Y, ¥ x Y).

Thm (Liebmann 1900): A smooth closed surfddec R3 In terms of the parallel fielX, we can writeY = cosd X +
with K > 0 and constant mean curvatureis necessarily a  Siné (v x X). Taking the covariant derivative, we get
round sphere.

Proof: We proceed exactly as before, lettingattain its ZY = g(_ sing X + cosh (v x X)) =0(vxY).
maximum atp. Again we just need to rule out the nonumbilic dt

casek; > k. But here again Hilbert's lemma applies to give
the contradictiorkK < 0.

Note: One might ask if there are any other closed sur-
faces of constant mean curvature (CMC), perhaps even allow-
ing “immersed” surfaces with self-intersections. Heinz Hopf
(1955) conjectured not, and proved this in the case the surface
is simply connected (topologically a sphere). A.D. Alexan- Note: f_rom here on, these notes become more sketchy and
drov proved (1962) there are no embedded examples of arl§ss detailed. .
genus. It was a surprise then in 1986 when Henry Wente At the beginning of the semester, we mentioned the “the-
found an immersed CMC torus. Since then, general method@€m on turning tangents”, also known (even in English) as

for finding many examples have been developed. the Umlaufsatz: a simple closed plane curve (oriented with
the bounded region to its left) has turning number 1 (or equiv-

alently total signed curvaturer® This is actually the pla-
B14. More on geodesics nar case of the Gauss—Bonnet Theorem. The local version of
Gauss—Bonnet talks about a simple closed cyreaclosing
a diskR on a surfaceM, and says the total geodesic curva-
ture ofy in M equals 2 minus the total Gauss curvatureRf
WhenM = R? then of cours&K = 0 andkg = k., SO Gauss—
Bonnet does reduce to the Umlaufsatz; we use the Umlaufsatz
in our proof of Gauss—Bonnet.

Equivalently,d = (%Y, v x Y).

B15. The Umlaufsatz

We derived earlier the formula for the first variation of
length of a space curves; len(a) = —f(g, £y ds Of course,
if  lies on a surfacé, then this formula holds for all varia-
tions including those that keepon M. Their variation vector
fields¢ are tangent tdvl. As before, up to reparametrization,
we can assumgis normal toa. Thusé = ¢n is a varying mul- End of Lecture 22 June 2015
tiple of the conormal vectay. We gets; lena = — [¢kgds Hopf was not the first to prove the Umlaufsatz, but we will
Although only straight lines are length-critical with respect to sketch his proof. Let the curyebe parametrized at unit speed
all variations in space, we see that, considering only variaas anL-periodic mapy: R — R2. Shift the parameter if nec-
tions withinM, a curvex is length-critical if and only if it has essary, to ensure thaf0) is an extreme point on the convex

kg = 0, that s, if and only if it is a geodesic. hull. For convenience, rotate so th&0) is a point with lowest
Here are a few facts without proof. We will return to them y-coordinate along. ThenT (0) = y/(0) = e, is horizontal.
next semester for more general manifolds. Firsfliciently Now define thesecant map

short arcs of any geodesic are length-minimizing. On any sur-

face, we can define a metric by settidgp, q) to be the infi- f(s.t) = ¥(s) —y(t) st

mal length of paths fronp to q. (One shows that this infi- ' ||y(5) —'y(t)“ ’

mum never vanishes fqu # g and that the metric topology

coincides with the usual topology avl.) If the infimum is  Becausey has no self-intersections, this is well defined on

realized, that is, if a shortest path alokgfrom pto g exists  the diagonal strips < t < s+ L in the (s t)-plane. On the

then itis a geodesic. M is closed, then shortest paths always|ower boundarys = t it is extended smoothly by (s, s) =

exist. T(s), while on the upper boundary it is extended smoothly by
Now consider two nonvanishing vector fieldsandY, tan-  f(s s+ L) = —T(s). We will be interested irf restricted to

gent toM along some curver. As in our discussion of the the triangle

total curvature of plane curves, even though the afdbe-

tweenX andY is only defined up to multiples of given a A={(st):0<s<t<L})
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Just as we lifted th&*-valued mapr (s) to a real-valued an- 7 := 7 — 6; € (-, 7). The total signed curvature should be
gle functiond(s) when we defined turning number, here we replaced by}’ 6;; this will be 2r times the turning number.
can lift the mapf: A — S!to a mapd: A — R such that Of course, the fact thaX 6; = 2r (or equivalently,>. 6; =
f(st) = (coso(s 1), sind(s t)). (For smooth functions like we (n — 2)r for an n-gon) is standard in elementary geometry.
have here, this is easiest to do by considering what the derivdo prove it by induction starting from the known case of a
tives of must be. But such a lift exists for any continudys  triangle, we just need to cut a larger polygon into pieces. (The
as one learns in algebraic topology.) The lift is unique up toone nontrivial lemma is that any simple polygon has some
adding a constant multiple of”2 We choose the lift for which  diagonal that can be drawn without crossing any edges. In
0(0,0) = 0. fact one can always find an “ear”, such a diagonal that cuts
Along the diagonal, thig(s, s) is the lift of T, sod(L,L) is  of just a triangle. Note that this is also the key lemma for a
by definition 2r times the turning number: our goal is to show polygonal version of the Jordan curve theorem.)
6(L,L) = 27. Now consider the other sides of the triangle How about piecewise smooth curves? (Note: important to
A, recalling thaty(0) was chosen to be a lowest point on the have smooth orlosedsubintervals to get well-defined one-
curve. sided tangents.) Definitiorfk over smooth parts plus turning
Along the vertical sidef (0, t) must point upwards, that is, angles at junctions. But how do we choose the sign at cusps
it stays in the (closed) upper semicircle. Thus the angle funcwherer = +2? (Note: do Carmo’s definition here doesn't
tion 6(0,1), starting atd(0,0) = O must stay in the interval always work.) Right definition:+x if cusp points out from
[0,7]. When we reach = L, wheref(0,L) = —e; we know  bounded regionsr if cusp points into bounded region. From
6(0.L) is 7 (modulo Zr) so the only possibility in the interval now on, we will write; e [, z] for this turning angle at the
isH(0,L) = . ith corner (with the correct choice of sign at cusps).
Continuing along the horizontal sidé(s, L) always points To prove the Umlaufsatz in this generality, one could try
downwards, staying in the lower semicircle. Thus, startingt0 take a limit of smooth or polygonal approximations — but
até(0,L) = x, we see tha#(s, L) stays in the interald, 2x]. preserving embeddedness and controlling the limiting value
When we reactf(L, L), which must be a multiple of2 we  Of total curvature is quite tricky. Hopf does it as follows: the
see it must be2as desired. secant map on the open triangle still limits to the tangent di-
One basic idea here is that a continuous function with disf€ction on all smooth points of the diagonal. The lifted map
crete (integer) values is constant. This is a recurring them@ Will jump at the points ¢ ) corresponding to corners. We
in topology. Algebraic topology associates to any topologicalust need to show that the lifted map jumps by no more than
spaceX various algebraic objects (fundamental groups, hoZ at €ach corner — and that the sign is right where the jump
mology groups, etc.) and to any continuous nfapX — Y IS =7 (The sign that naturally comes up here is given by the
homomorphisms between the associated groups. For the cfrientation of a triangle consisting of the cusp and two nearby
cle S2, the fundamental group (or the first homology group)Points chosen such that the curve avoids the segment between
is the integers; a map: S* — St induces a homomorphism them. One can check that this is equivalent to our definition
f.: Z — Z — this must be given by multiplication by some above.)
d € Z, called thedegreeof f.
Given a smooth closed plane curygits tangent vector can
be viewed as a map: S* — S. The turning number of
is the degree of this map. For smooth maps like this, one can
also bypass the machinery of algebraic topology and define Now we want to turn towards Gauss—Bonnet. As a first
the degree via dlierential topology, as we did by lifting to the result for curves on surfaces, consider a parametrized surface
angle function. Equivalently, the degreefofan be computed pPatchx: U — M = x(U) and a simple closed (piecewise
by integrating the derivative df around the circle —just as we Smooth) curvey € M. Consider the angle that = y* makes
computed turning number % des with x,. Then we 'claim this changes byt 2s we go around
An alternative approach to degree is to note that almost ew- (Same convention as above for corners.).
ery value in the range of is a regular value, attained only at ~ Proof: pull everything back to. If the metricg were stan-
points where the dierential off is surjective. In particular, it dard, this would just be the Umlaufsatz. But we can con-
is attained only finitely many times, and each time has a wellfinuously deformg to the Euclidean metric (through convex
defined sign:1 depending on the orientation. The degree carfombinations) — an integer value must remain constant.
be computed at any regular value as the sum of these signs.” End of Lecture 25 June 2015
(Another possibly familiar example of degree is thieding Let us define the total geodesic curvatli@(y) of a piece-
numberused in Cor_npl_ex analysis. H#is a cloged curve in - wise smooth curve asfkgds+ > 7i, where the integral is
R {0}, then the winding number af around 0 is the degree taken over each smooth subarc. We have not yet formally de-

of a/lal: ST — St.) fined integrals over regions in a surface, but for any coordinate

We will want the Umlaufsatz not just for smooth curves butchartx(U) and any regio® c U, we have (just as for surface
for all piecewise smooth curves. As a warmup, consider whagrea)

it should say for polygons. The tangent veclois constant

along each side of a polygon but then jumps at each corner. _ oy
If the interior angle i®;, then theexterior or turning angleis X(D)K dA= b K ydetgdudv

B16. Gauss—Bonnet: local form
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and can check that this is independent of coordinates. The Interpretation in terms of holonomy of parallel transport.
local version of Gauss—Bonnet then says (for a piecewis&auss curvature as density — limit over small disks arqund

smooth curvey enclosing a disiR c M to its left): Special case of sphere — spherical polygons (esp. triangles).
So far we have Gauss—Bonnet in the local foﬁpK dA =
f K dA= 27 - TC(y). 2n—-TC(0R) for any diskR contained in an orthogonal coordi-
R nate patch and with peicewise smooth boundary. A comment

on orientation is in order. Of course any coordinate patch is or-
intable. If we switch orientation, thel is unchanged, so the

sumption thaR is contained in a orthogonally parametrized whole Gauss-Bonnet equation must be unchanged. Indeed,
P 9 yp our convention tha#R is oriented withR to the left depends

neighborhoodk(U). (The case of larger disks is then a SPE° 1 the surface normal, sb switches sign. That means how-

cial case of one of the global versions of Gauss—Bonnet.) W . .
write D = x-X(R) ¢ U and writea for the piecewise smooth gver that the conormaj is unchanged, so the total geodesic

boundary curve ob with y = X o a. curvature oBRis unchanged. A better way to express the ori-

Let us first examine the right hand side. By the extensionentatIon convention fafR might be to simply say the conor-

to the Umlaufsatz, 2is the total turning of the tangent vector maly should pointinwards toward2
relative tox, (with the appropriate convention at corners). By

definition, T Cis the total turning of the tangent vector relative B17.
to a parallel field (with the same convention at corners). Thus

2rn — TC is the total turning ok, relative to a parallel field.
Passing to the orthogonal unit vectess.= x,/ VE ande, :=
xv/ VG, we find that the rate of turning of, (relative to a
parallel field) is

Additivity under splitting a region.
Following do Carmo, we prove this directly under the as-

Global topology of surfaces

To consider the global forms of Gauss—Bonnet, we need
to discuss the topology of surfaces. régular region Ron
a smooth surface will mean a compact sublig&thich is the
closure of its interior and whose boundary is a finite disjoint

1 union (possibly empty) of simple closed, piecewise smooth
(Vren &) = \/_—<VTXU’ Xv)- curves. TopologicallyR is therefore a compact 2-manifold
EG with boundary, a compact Haustlspace locally homeomor-
With T = Ux, + WXy, we have phic to the closed half-planfx,y) : y > 0}. (That is, each
point p € R has a neighborhood homeomorphic either to the
(V1 Xy, Xy) = U112 + V120, plane or to the half-plane.)

_ ) One way to build such a topological space is to start with a
Butin orthogonal coordinates we compuled; = ~E,/2and finite collection of triangles and “zip” certain pairs of edges
122 = Gy/2. Thus the total turning, the integral of the rate of ogether. (Any edge that is not paired remains part of the

turning, Is boundary.) This is called &iangulation of the surface. A
G- El difficult theorem of Rad6 (1925) says that any topological 2-
IM dt. manifold with boundary can be triangulated. For our smooth

2VEG regionsR in space, this is not so fiicult. Although we skip

the details, the idea is that if we tilR® with a fine enough

On the other hand, using our formula fiér we get . ) .
¢ rweg cubic lattice — adjusted to be transvers&te then each small

cube contains just a single disk Bfwith piecewise smooth
fD KdA= ff; K VEG dudv boundary: a polygon. Of course it is easy to cutiagon into
E G n — 2 triangles. Given an atlas of coordinate charts for a sur-
= ff a(=—=) + du(—==) dudv face, note that we may assume the triangulation is fine enough
R 2VEG 2VEG that each triangle lies in one of the charts.
Now we recall Green’s theorem in the planePiandQ are End of L re 2 ne 201
two functions on a regioR bounded by a (piecewise smooth)  We now want to give a topological classification of regu-
curvee, then lar regionsR, that is, of compact 2-manifolds with boundary,

that is, of spaces obtainable by zipping triangles together. For
ff Q- 9,Pdudv= fP du+ Qdv= f(Pu + Qv)dt. this discussion, we use the wasdrfaceto mean such a topo-
R @ @ logical space (rather than a smooth surfac&$nas usual).
(This is a special case of Stokes’ Theorem, of course already/e follow the description by Francis and Weeks of Conway's

known to Gauss in other forms.) We apply Green’s theoremZ!P proof”.

: : Let us first describe the statement. To “perforate” a surface
th P = -E,/2VEGandQ = G,/2 VEG to give _ . . S
w vl Q=Gu/ g is to delete an open disk. (A sphere with one perforation is

—-E\u+Gyv a closed disk; a sphere with two perforations is an annulus —
fD KdA= L 2VEG dt. also called a cylinder.) To add a “handle” or “cross-handle”

to a surface is to perforate it twice, and then sew in an an-
This agrees with the expression we got above for I C, so  nulus connecting the new boundaries. (Or equivalently, then
we have proved the Gauss—Bonnet theorem. zip these boundaries to each other.) To add a “cross-cap” to a
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surface is to perforate it once and then sew in a Mobius bandum the Gauss—Bonnet relation over all triangles. Each edge
along the new boundary. (Or equivalently, then zip the twois used twice, with opposite orientations, so the tefm@ds

halves of the boundary together.) cancel out. Thug, K dAequals the sum over all triangles of

Adding a cross-handle is the same as adding two Crossg+ b + ¢ — 7, wherea, b, ¢ are the interior angles. This is the
caps. (The Klein bottle is the union of two Mdbius bands.)  sum ofall interior angles minugF. But grouping the angle

Thm: Any surface is a finite union of components, eaChsum around the vertices, it is¥?. Thus we get
being a sphere with a certain number of perforations, handles,
and cross-caps.

Pf: The starting collection of triangles is of this form. It
sufices to show that a single zipping (involving one or two
components) preserves this. First consider the case where en-An alternative way of doing the bookkeeping is to start with
tire boundary components are zipped together: either join twiotal charge 2y(M) by putting charges 2 at each vertex and
components or add a (cross-)handle. If the two edges to bé each face ane-2r on each edge. Then move the charges
zipped are instead the two halves of one boundary compd¥om the vertices and edges into the faces, based on angles and
nent, we add a cross-cap or remove a perforation. Finally, ifotal curvatures. We are left with charge in each face, equal
the edges to be zipped are just subarcs of the cases considefgd the local form of Gauss—Bonnet) foK.
so far, then thefeect is the same except that we are left with  For a general regioR, we do the same thing. But along
one or two more perforations. boundary edgesfkgds does not cancel out. Similarly, at

Note that adding a cross-cap (or a cross-handle) makeskpundary vertices, the sum of interior angles is nat &Iso
component non-orientable. An orientable component is thugE = 3F must be corrected by the number of boundary edges.
Tgk, @ sphere withg > 0 handles andk > 0 perforations.  Putting it all together, we get:

On a non-orientable component there is no way to distinguish

handles from cross-handles. Thus it is has the folim, a fK dA = 27y(R) - TC(OR).
sphere witth > 1 cross-caps ankl> 0 perforations. We can R

restate the classification as follows.

Thm: A connected surface has the folgy if orientable or
Nh if nonorientable.

Note that the closed nonorientable surfablgg cannot be
embedded iR, while all the other types can be.

The Euler numberof a triangulation isy := V — E + F.
This is clearly the sum of the Euler numbers of the compo-
nents. For a single triangle = 1. Zipping a pair of edges
leavesF unchanged and decreadedy one; the &ect onV e If there are two closed geodesics on a surface ith
varies. But tracing through the cases considered above shows 0, then they intersect (because otherwise they would

that the Euler number depends only on the topology. Indeed bound an annulus wity = 0). (Note that Lyusternik

f K dA = 27(V - F/2) = 21y(M).
M

This is the most general form of Gauss—Bonnet, with the pre-
vious versions (for disks and closed surfaces) as special cases.
There are several immediate applications.

e Any closed surface i3 with K > 0 hasy > 0 so it is
homeomorphic to a sphere or a projective plane; if it is
embedded it must be a sphere.

X(Zgk) = 2 - 29 — kwhile y(Nnk) = 2 - h - k. When thought and Shnirelman proved that any sphere has at least three
of as an invariant of a topological spageis called theEuler different simple closed geodesics.)
characteristic

Note that the topological type of a connected surface is thus e A simple closed geodesic on a surface whthk 0 can-
determined by its orientability, its Euler numbgr and its not bound a disk to either side (because such a disk has
numberk of boundary components. fK = 27).

e There is no geodesic 1-gon or 2-gon (disk) on a surface
B18. Gauss—Bonnet: global forms with K < 0 (because geodesics that are tangent coin-
cide, so the exterior angles are mdbut strictly less).

Recall that a regular regidR on a smooth surface in R® e The angle excess of a geodesic triangle has the same

is compact with piecewise smooth boundary. Every poi in sign as the average (or total) Gauss curvature in the tri-
has a neighborhood with an orthogonal parametrization, and angle.

R can be triangulated by triangles, each containted in such a
parametrized neighborhood. To integrate a funcfi@verR,

we sum over the triangles: B19. The Gauss image and total absolute curvature

fR fdA= ZfT fdA= Z ﬁl(T) f vdetgy duc dvk. The Gauss—Bonnet theorem shows tas a density — im-
k Tk

portant is its integral over a region. There is also an extrinsic
Note that our local form of Gauss—Bonnet applies to each triinterpretation.
angle:fT KdA= 27— TC(T). Near any pointp € M whereK # 0 the Gauss map is
Consider first a closed surfad® = M. Counting edges locally an immersiorM — S? — orientation-preserving i >
of triangles gives B = 3F, soxy(M) = V — F/2. Now we 0 and orientation-reversing i€ < 0. Its Jacobian determinant
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K = detDv gives the factor by which area is stretched — herewhereP is, say, a Cantor sekR); and the example of two
we mean an “algebraic” signed area. (Think about curvatureeones wher@ is a single line at which the ruling is Lipschitz

line coordinates.)

We can sayfR K dA equals the signed area ofR) c S2.
(And we can recoveK(p) as the limit of are@v(R))/ areaR)
as the regiorR shrinks down to the poinp.)

Using the appropriate notion of area with multiplicities, we
can sayfR K dA = areay|r) for any regionR c M.

End of Lecture 6 July 2015

Consider a closed surfadd c R3. An analog of the Jor-

but notC? as in Kiihnel.)

We follow a paper of Massey, as summarized in do Carmo’s
book.

At eachp € U there is a unique asymptotic direction. Inte-
grating these, we foliate) by a unique family of asymptotic
lines. The first claim is that these curves are straight lines in
space. Of course, along these asymptotic curves which are
also lines of curvature, the surface normas constant. (But
compare top curve of round torus — asymptetiarvature line

dan curve theorem says that it divides space into one boundd parabolic points, but not straight — need to know conormal
and one unbounded region; we can orient it with the outwardlerivative ofK vanishes.)

unit normal (pointing into the unbounded region). Thvds
necessarily an orientable surface of some genu®.

By Gauss—Bonnet, the area of the Gauss imgly) in S2
equals Zy = 4x(1 - g). That is, the Gauss map covers the
sphere 1- g times (in an oriented sense) — tdegreeof the
Gauss map is + g. By degree theory, almost every point
w e S? has finitely many preimages,-1g of them if counted
with signs. That is, if there arle preimages wittK > 0 then
there ar&k + g — 1 withK < 0.

(Note that the points with normad = +w are exactly the
critical points of the functiod-,w) : M — R.)

Now consider bringing a plane with given normvale S?
in from infinity until it first touchesM. Any point of contact
p € M hask > 0, sinceM stays stays to one side of the plane.
This means every point € S? has at least one preimage with
K > 0. (Thatisk > 1 in the counts above.) L&.. denote the
regions wheretK > 0. Then we havgwI+ KdA > 4r. With

Gauss—Bonnet, this givqa_ K dA < —4rg. Subtracting these
gives [, IK|dA> 4r(1 + g).

Equality holds in these last three inequalities if and only if

all pointsp € M with K > 0 are extreme on the convex hull.
Such a surface is calleiibht. An interesting theory of tight

surfaces characterizes them, for instance, as exactly those s

faces having théwo-piece propertpf being cut into no more
than two pieces by any plane.

Now consider the case thigt> 0 holds on all ofM. (So by
Gauss—BonnetM is a sphere and KdA = [|K|dA = 4r.)
The Gauss map is bijective, indeed &ebmorphismM —
S2. Each pointp € M is an extreme point on the convex hull,
that is,M is globally convex (as we mentioned before.

The results on total absolute curvature do not hold for ab-

stract surfaces. For instanck2/Z2 is a torus with a flat

(K = 0) metric. An abstract surface of gengs> 1 can be

given ahyperbolicmetric withK = —1. By Gauss—Bonnet its
areais then-2ry = 4n(g - 1).

B20. Developable Surfaces

We now want to consider a surfadé c R® with K = 0.
Each point orM is parabolic — a closed subgetc M consists
of planar points; the open complemént:= M \ P consists

Proof: Locally onU we can use curvature-line coordinates
where, say, the-curves are the asymptotics. Theis a func-
tion of v alone. Now consider the real-valued functicv)
onU. Sincex, L v andvy, = 0, its u-derivative vanishes,
so it is a also function of alone: (x,v) = ¢(v). Differenti-
ating gives(x,w) = ¢’(v). Note thatv, # 0 since we are at
nonplanar points; of coursg (like v) is constant along each
asymptotic curve. Thus each of these equations is the equa-
tion of some plane in space (dependingWnthe planes are
orthogonal. Thel-curvev = const. lies in the intersection line
of these planes.

We next claim that we may assumsés the arclength pa-
rameter along eadhcurve (asymptotic line).

Proof: Recall that in curvature-line coordinates with=

E2)andh = (§3), the Codazzi equations becorhg =
HE, andN, = HG,. Here we havé = 0, soE, = 0, meaning
that E is a function ofu alone. Thus defining = f VE du
(independent o¥), this is arclength along eachcurve. Then
(s,v) are equally valid curvature-line coordinates, whegre
(59)andnh = (9).

The conditionE = 1 means that the new coordinates are
not only curvature-line coordinates but also simultaneously

eodesic parallel coordinates. As before we weite= a’
af\?ith a = |x]) and haveK = —-a,,/a. Thus herea,, = 0,
meaning thag is a linear function along each asymptotic line
(that is, for eachv).

Now consider again the Codazzi equatiNp = HG, =
2Haa,, where the mean curvature satisfidd 2 N/G =
N/a?. Combining these gives
No_ 2y
N a’
meaning that for each(i.e., along each asymptotic curvéy,
is a constant multiple ad. That isN = c(v)a. Finally consider
the principal radius of curvature= % = aWZ = T‘\‘,) in thexy
direction. This (likea andN) is a linear function along each
asymptotic line.

Lemma: An asymptotic line through a poipte U, even if
extended indefinitely, never reaches

Proof: The mean curvatuid is continuous orM. It van-
ishes orP but along any asymptotic line id is the (nowhere
vanishing) reciprocal of a linear function.

of nonumbilic points. (Note the example of a triangle joined Prop: The boundargU = dP c M is a union of open line
to three cylinders as in do Carmo; the example of a cylindesegments. (Note: might be uncountable union!)
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Proof: Consider a boundary poiptand some neighbor-
hoodV parametrized as a graph ovByM. The setU NV is
foliated by lines, which in the projection do not cross. Thus in
a smaller neighborhood’ of p their directions are given by a
Lipschitz function. Thus (consider the lingg through points
in U NV’ approachingp) there is a a well-defined limiting
direction atp. Any point inU along the resulting liné, is a
limit of points along the/, and in particular is irdU.

Thm: A complete surface witl = 0 is a cylinder over
some plane curve.

Proof: First we claim that the direction of the asymptotic
lines is locally constant ok). Along any line, the radius of
curvature is a linear function, which can never vanish on a
smooth surface. Thusis constant on each line. It follows
from the equations above (in local coordinates) that x|
is also constant, implying that, is constant along each line.
That is, 0= Xy, = Xuw. Thusxy (which we know is constant
along each line, of course) is locally constant as claimed.

At points of 90U we defined lines whose direction was a
limit; using the Lipschitz condition, we find the direction is
actually locally constant ol U dU. (We don't get, say, a
Cantor function!)

Finally consider the interioP~\ dU of P. It consists of open
pieces of planes, bounded by complete lines. Each such piece
must then be an infinite strip, bounded by two parallel lines.
We can foliate it by further parallel lines.

Thus, as claimed, all dl is foliated in this way by parallel
lines.
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