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A. MANIFOLDS

This course is about manifolds. Anm-manifold is a space
that looks locally like Euclidean spaceRm.

Examples of manifolds include a circleS1, a sphereS2 or
a torusT2 = S1×S1 or any surface inR3. These generalize
for instance to anm-sphereSm ⊂ Rm+1 or anm-torusTm =

S1 × · · · × S1.

In multivariable calculus, one studies (smooth)m-sub-
manifolds ofRn; these have several equivalent characteri-
zations (locally being level sets or images of smooth func-
tions). These are the motivating examples of (smooth)
manifolds. Indeed, we will see any manifold can be em-
bedded as a submanifold of some (high-dimensional)Rn.
But it is important to give an abstract definition of mani-
folds, since they usually don’t arise as submanifolds.

The idea of manifolds is that they are spaces on which one
can do analysis (derivatives, integrals, etc.). This means
we are talking here not simply about topological mani-
folds, but about smooth (differentiable) manifolds. This
is a distinction we explain soon.

A1. Topological manifolds

Definition A1.1. A topologyon a setX is a collectionU
of subsets ofX (called theopensubsets) such that

• ∅,X ∈ U,

• U,V ∈ U =⇒ U ∩ V ∈ U,

• {Uα} ⊂ U =⇒
⋃
α Uα ∈ U.

All other topological notions are defined in terms of open
sets.

Definition A1.2. A subsetA ⊂ X is closed if its com-
plementX r A is open. Any subsetY ⊂ X naturally
becomes a topological space with thesubspace topology:
{U ∪ Y : U ⊂ X open}. That is, the open sets inY are
exactly the interestions ofY with open sets inX.

Definition A1.3. A spaceX is connectedif ∅ andX are
the only subsets that are both open and closed. A space
is compactif every open cover has a finite subcover. (If
we talk about a subsetY ⊂ X being connected or compact,
etc., we mean with respect to the subspace topology.)

Definition A1.4. A map f : X → Y between topological
spaces iscontinuousif the preimage of any open set inY
is open inX. A continuous bijectionf : X → Y whose
inverse is also continuous is called ahomeomorphism– an
equivalence of topological spaces.

Definition A1.5. Usually, one specifies a topology not by
listing all open sets, but by giving abaseB. This is a col-
lection of “basic” open sets sufficient to generate the topol-
ogy: an arbitraryU ⊂ X is defined to be open if and only
if it is a union of sets fromB. The requirements onB to
form a base are (1) thatB coversX and (2) that intersec-
tions B1 ∩ B2 of two basic open sets are open, that is, for
anyx ∈ B1∩B2, there existsB3 ∈ Bwith x ∈ B3 ⊂ B1∩B2.

These conditions are familiar from metric spaces (X,d),
where the open ballsBε(x) := {y : d(x, y) < ε} form a base
for the metric topology. The topological spaces that will
arise for us are all metrizable, meaning the topology arises
from some metric. In particular, the standard topology
on Rn comes, of course, from the Euclidean inner prod-
uct (scalar product)〈x, y〉 = x · y =

∑
xiyi via the metric

d(x, y) = |x− y| =
√
〈x− y, x− y〉.

Definition A1.6. A spaceX is Hausdorff if any two dis-
tinct pointsx , y ∈ X have disjoint (open) neighborhoods.
It is regular if given a nonempty closed setA ⊂ X and a
point x ∈ X r A, there are disjoint (open) neighborhoods
of A and x. (These are just two examples of the many
“separation axioms” in point-set topology.) A spaceX is
second countableif there is a countable base for the topol-
ogy.

Metric spaces are Hausdorff and regular (take metric
neighborhoods of radiusd(x,A)/2). Eucldiean space is
second countable (take balls with rational centers and
radii). The importance of these notions is clear from the
Urysohn metrization theorem, which says thatX is separa-
ble (that is, has a countable dense subset) and metrizable if
and only if it is Hausdorff, regular and second countable.

Definition A1.7. We say a spaceM is locally homeomor-
phic to Rm if each p ∈ M has an open neighborhoodU
that is homeomorphic to some open subset ofRm. If
ϕ : U → ϕ(U) ⊂ Rm denotes such a homeomorphism,
then we call (U, ϕ) a (coordinate) chartfor M. An atlas
for M is a collection

{
(Uα, ϕα)

}
of coordinate charts which

coversM, in the sense that
⋃

Uα = M.

Clearly we can rephrase the definition to sayM is locally
homeomorphic toRm if and only if it has an atlas of charts.
Less obvious (but an easy exercise) is that it is equivalent to
require eachp ∈ M to have a neighborhood homeomorphic
toRm.

Although one might expect this to be a good topological
definition of an abstract manifold, it turns out that there are
some pathological examples that we would like to rule out.
Certain properties from point-set topology are not auto-
matically inherited. For instance, examples like the lineR
with the origin doubled (or with allx ≥ 0 doubled) fail
to be Hausdorff. The “long line” (obtained by gluing un-
countably many unit intervals) fails to be second countable
– it is sequentially compact but not compact. The “Prüfer
surface” is separable but not second countable. (Note there
are also much weirder examples, for instance in papers of
Alexandre Gabard.) For technical reasons, we also prefer
manifolds to have at most countably many components, as
is guaranteed by second countability.

Thus we are led to the following:

Definition A1.8. A topological m-manifoldis a second-
countable Hausdorff spaceM = Mm that is locally homeo-
morphic toRm.

Regularity then follows, ensuring that our manifolds are
metrizable spaces. Indeed, we will later put a (Rieman-
nian) metric on any (smooth) manifold. It is also straight-
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forward to check various other local properties: A topo-
logical manifoldM is locally connected, locally compact,
normal and paracompact (defined later when we need it).
Being separable and locally compact, it is also globally the
union of countably many compact subsets.

Note: Form , n, it is easy to see there is no diffeomor-
phismRm→ Rn It is also true that there is no homeomor-
phism, but this requires the tools of algebraic topology like
homology theory. AnyRm is contractible, so they all have
the same (trivial) homology. The trick is to first remove
a point. ThenRm r {0} contracts toSm−1, and spheres of
different dimension have different homology. This was the
start of topological dimension theory, and shows that every
(nonempty) manifold has a well-defined dimension.

ExamplesA1.9.

• Rm is anm-manifold (with a single chart).

• An open subsetU ⊂ Mm of anm-manifold is itself
anm-manifold (restricting charts toU).

• Any smooth surfaceM2 ⊂ R3 is a 2-manifold. (Get
a chart aroundp ∈ M by projecting orthogonally to
TpM.)

• Other surfaces – like polyhedral surfaces – are also
topological manifolds.

• More generally, any smoothm-submanifold inRn is
anm-manifold. (We will consider such examples in
general later.)

• RPm := Sm/± = {lines through 0 inRm+1} is anm-
manifold called real projective space.

• Mm × Nn is an (m + n)-manifold (using product
charts).

• For any smooth surfaceM2 ⊂ R3, the tangent bundle
T M = {(p, v) : p ∈ M, v ∈ TpM} is a 4-manifold

One of our first tasks will be to defineTpM for an abstract
smooth manifoldMm; in general we will find that it is am-
dimensional vector space and that these can be put together
to form a 2m-manifold, the tangent bundle.

In some cases it is important to consider also manifolds
with boundary, modeled on the halfspace

Hm :=
{
(x1, x2, . . . , xm) ∈ Rm : x1 ≤ 0

}
,

whose boundary is∂Hm = {x1 = 0} � Rm−1.

Definition A1.10. An m-manifold with boundaryis then a
second-countable Hausdorff space locally homeomorphic
to Hm. If a point p ∈ M is mapped to the boundary in
one chart, then this is true in every chart. Such points form
the boundary∂M ⊂ M of M; it is an (m − 1)-manifold
(without boundary, and perhaps empty). The complement
Mr∂M is called theinterior and is anm-manifold (without
boundary).

We will use manifolds with boundary later when we study
integration and Stokes’ theorem. Until then, we will ba-
sically neglect them, with the understanding that all our
theory extends in the “obvious” way. The following ter-
minology is standard even if confusing at first: aclosed
manifoldis a compact manifold without boundary.

Let us look at the lowest dimensions. A 0-manifold is a
countable discrete set. Equivalently, we can say a con-
nected 0-manifold is a point. In general, of course, any
manifold is a countable union of connected components,
so it makes sense to classify connected manifolds. It is
not hard to show that any connected 1-manifold is (home-
omorphic to) eitherR1 or S1. If we allow manifolds with
boundary, there are just two more examples: the compact
interval, and the ray or half-open interval.

While the complete classification of noncompact surfaces
is known, we will only consider the compact case. We have
seen the examplesS2, T2 andRP2. It turns out that any
connected closed surface is a connect sum of these: either
an orientable surfaceΣg of genusg or a nonorientable sur-
faceNh. (And if we allow compact surfaces with boundary,
then all we get are these examples with some numberk of
open disks removed, denotedΣg,k or Nh,k.)

The uniformization theorem, a classical result in complex
analysis and Riemann surface theory, implies that any sur-
face admits a metric of constant Gauss curvature. Indeed,
the sphere and the projective plane have spherical (K ≡ 1)
metrics, the torus and Klein bottle have euclidean (flat,
K ≡ 0) metrics, and all other closed surfaces have hyper-
bolic (K ≡ −1) metrics.

Guided by this, Bill Thurston conjectured a method to
understand compact 3-manifolds (with boundary). In
2003, Grigory Perelman proved this “geometrization con-
jecture”, establishing that any 3-manifold can be cut into
pieces, each of which admits one of eight standard geome-
tries. There is interesting work remaining to be done to
better understand the case of hyperbolic 3-manifolds.

In dimensions four and higher, there is in some sense no
hope of classifying manifolds. Given any finite group
presentation, one can build a closed 4-manifold with that
fundamental group. Since the word problem is known
to be undecidable, it is impossible in general to decide
whether 4-manifolds are homeomorphic. Much interest-
ing research thus restricts attention to the case of simply
connected manifolds (with trivial fundamental group).

In certain other ways, higher dimensions are easier to un-
derstand. One reason is that two generic 2-disks will have
empty intersection in dimensions five and above. Thus, for
instance, the Poincaré conjecture was first proved in these
dimensions.

A2. Smooth structures

If (U, ϕ) and (V, ψ) are two charts for a manifoldMm, then

ψ ◦ ϕ−1 : ϕ(U ∩ V)→ ψ(U ∩ V)

is a homeomorphism between open sets inRm, called a
change of coordinatesor transition function. The inverse
homeomorphism is of courseϕ ◦ ψ−1.

Since the transition functions are maps between Euclidean
spaces, we know how to test how smooth they are. Sup-
poseU ⊂ Rm is open andf : U → Rn. To say f is C0

just means that it is continous. Iff is differentiable at each
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p ∈ U, then its derivative is a functionD f : U → Rn×m.
We say f is C1 if D f is continuous. By induction, we say
f is Cr if D f is Cr−1, that is, ifDr f is continuous. Iff has
(continuous) derivatives of all orders, we say it isC∞. If
aC∞ map f is real analytic, meaning that its Taylor series
around anyp ∈ U converges tof , then we sayf is Cω.

Definition A2.1. Fix r ∈ {0,1,2, . . . ,∞, ω}. We say
two charts (U, ϕ) and (V, ψ) for a manifold Mm are Cr -
compatibleif the transition functionsψ ◦ ϕ−1 andϕ ◦ ψ−1

areCr maps. (They are then inverseCr diffeomorphisms.)
A Cr -atlas for M is a collection ofCr -compatible coor-
dinate charts which coversM. A Cr -structureon M is a
maximal Cr -atlas, that is an atlasU =

{
(Uα, ϕα)

}
such that

any coordinate chart (V, ψ) which is compatible with all
the (Uα, ϕα) is already contained inU. A Cr -manifoldis a
topological manifoldMm with a choice ofCr -structure. A
chart for a smooth manifold will mean a chart in the given
smooth structure (unless we explicitly refer to a “topolog-
ical chart”).

Of course the caser = 0 is trivial: any atlas isC0 and the
C0-structure is the set of all possible topological charts. (In
this case, of course, one should use the term “homeomor-
phism” instead of “C0-diffeomorphism”.)

This course is about smooth manifolds, where we use the
word “smooth” to meanC∞. When we say “manifold”
we will mean smooth manifold unless we explicitly say
otherwise. Of course many of our results will be valid even
for lower degrees of smoothness (usuallyC1 or C2 or C3

would suffice) but we will not attempt to keep track of this.

Lemma A2.2. Any Cr -atlas is contained in a unique max-
imal one.

Proof. Given an atlasU =
{
(Uα, ϕα)

}
, let V be the col-

lection of all charts (V, ψ) that are compatible with every
(Uα, ϕα). We just need to show thatV is aCr -atlas, that
is that any charts (V1, ψ1) and (V2, ψ2) are compatible with
each other. But anyp ∈ V1 ∩ V2 is contained in someUα,
and onψ1

(
V1 ∩ V2 ∩ Uα

)
we can write

ψ2 ◦ ψ
−1
1 =

(
ψ2 ◦ ϕ

−1
α

)
◦
(
ϕα ◦ ψ

−1
1

)
. �

At the end of this proof, we implicitly use three properties:

• The composition of twoCr functions isCr .

• The restriction of aCr function to an open subset is
Cr .

• A map that isCr is some neighborhood of each point
in U is Cr onU.

Without getting into formal details, these properties mean
that the class ofCr diffeomorphisms form apseudogroup
(of homeomorphisms on the topological spaceRm).

Although we have only definedCr structures, other kinds
of structures on manifolds arise from other pseudogroups.
For instance, aprojectiveor Möbiusstructure onM arises
from an atlas where the transtion functions are all projec-
tive or Möbius transformations (respectively). Anorienta-
tion on M arises from an atlas where all transition func-
tions are orientation-preserving. (We will return to this

later. Note that it is easy to tell if a diffeomorphism is
orientation-preserving; forC0 manifolds one needs homol-
ogy theory.)

Given aCr -structure on any manifold, for anys≤ r, by the
lemma it extends to a uniqueCs-structure. On the man-
ifold Rm, the standardCr structure arises from the atlas{
(Rm, id)

}
consisting of a single chart. If we letUr denote

the collection of all chartsCr -compatible with this one,
then we have

U0 ⊃ U1 ⊃ U2 ⊃ · · · ⊃ U∞ ⊃ Uω.

End of Lecture 12 Oct 2015

The point of a smooth structure is to know which mappings
are smooth. Supposef : Mm → Nn is a (continuous) map
between two smooth manifolds. Givenp ∈ M, we can find
(smooth) charts (U, ϕ) aroundp ∈ M and (V, ψ) around
f (p) ∈ N. Then the composition

ψ ◦ f ◦ ϕ−1 : ϕ
(
U ∩ f −1(V)

)
→ Rn

is called the expression off in these coordinates. (Writ-
ing (x1, . . . , xm) for a typical point inϕ(U) ⊂ Rm and
(y1, . . . , yn) for a typical point inψ(V) ⊂ Rn, then we can
think of ψ ◦ f ◦ ϕ−1 very explicitly asn real-valued func-
tions, giving they j as a function of (x1, . . . , xm).)

Now it is easy to define smoothness:

Definition A2.3. The mapf is smoothif for eachp we can
find charts (U, ϕ) and (V, ψ) as above such thatψ ◦ f ◦ ϕ−1,
the expression off in these coordinates, is smooth (as a
map between euclidean spaces). (IfM andN are onlyCr -
manifolds, then it makes sense to ask iff : M → N is Cs

for s≤ r but not fors> r.) A diffeomorphism f: M → N
between two smooth manifolds is a homeomorphism such
that bothf and f −1 are smooth. The set of all smooth maps
M → N is denoted byC∞(M,N); we write C∞(M) :=
C∞(M,R).

ExerciseA2.4. If f : Mm → Nn is smooth, then its ex-
pressionψ ◦ f ◦ ϕ−1 in any (smooth) coordinate charts is
smooth.

Note two special cases: ifM = Rm (of course with the
standard smooth structure), then we can takeϕ = id and
thus considerψ ◦ f ; if N = Rn then we can takeψ =
id and considerf ◦ ϕ−1. For a mapf : Rm → Rn, we
takeϕ = id andψ = id and see that our new definition of
smoothness agrees with the one we started with for maps
between euclidean spaces.

The basic constructions of new manifolds from old – open
subsets and products – can be adapted to the smooth set-
ting.

If U ⊂ Mm is an open subset of a smooth manifold, then we
can restrict the smooth structure onM to a smooth struc-
ture onU (which we already know is a topological man-
ifold). In particular, each chart (V, ψ) for M gives a chart
(V∩U, ψ|V∩U) for U. (If we talk about a smooth map on an
open subsetU of a smooth manifoldM, then we implic-
itly mean smooth with respect to this restricted structure.)
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Suppose we have a cover
{
Uα

}
of M and a mapf : M → N.

Then f is smooth if and only if its restriction to eachUα

is smooth. (This is a version of the pseudogroup property
above.)

If Mm andNn are smooth manifolds, then it is a straight-
forward exercise to put a smooth structure on the manifold
M × N. (Hint: Use only product charts (U × V, ϕ × ψ)
obtained fromsmoothcharts (U, ϕ) and (V, ψ).)

A3. Exotic smooth structures

Supposeh: Mm → Nm is a homeomorphism between
topological manifolds (so thatM and N are really the
“same” topological manifold). Thenh can be used to
move other structures betweenM andN. A trivial exam-
ple would be a real-valued functionf : N → R; it can be
“pulled back” to give the real-valued functionf ◦ h on M.

Of interest to us is the case of aCr -structureU on N (a
maximal atlas). We can use the homeomorphismh to pull
it back to give aCr -structureh∗(U) on M: the pull-back of
a chart (U, ϕ) ∈ U is the chart

(
h−1(U), ϕ◦h

)
for M. Almost

by definition, h: M → N is then aCr -diffeomorphism
from

(
M,h∗(U)

)
to (N,U).

SinceM andN are homeomorphic, they are really the same
topological manifold, and we might as well be considering
self-homeomorphismsh: M → M. If h = id then clearly
h∗(U) = U; more generally this is true any timeh is a dif-
feomorphism from the smooth manifold (M,U) to itself.

But supposeh is a homeomorphism that is not a diffeo-
morphism. Thenh∗(U) is a distinct smooth structure on
the manifoldM. Consider a couple of examples on the
line M = R, starting with its standard smooth structure
U; the pull-back structureh∗(U) is the one generated by
the single coordinate chart (R,h). If h: x 7→ x3 thenh is
smooth but its inverse is not, so with respect toh∗(U) it is
easier for maps intoM to be smooth, but harder for maps
from M to be smooth. (The reverse is true of course if we
start withx 7→ 3

√
x.) If on the other handh: x 7→ 2x+ |x|,

then neitherh nor its inverse is smooth. (Note that in all
these examples, the meaning of smoothness changes only
near 0.)

Such examples are weird, but in fact they are all trivial.
As we noted above,h is always a diffeomorphism from(
M,h∗(U)

)
to (M,U). Thus the two smooth manifolds

are diffeomorphic to each other – really the same smooth
manifold. We have merely put on strange eyeglasses – the
maph – to relabel the points ofM.

More interesting is the question of existence of “exotic”
smooth structures – can two different (nondiffeomorphic)
smooth manifolds have a homeomorphism between them
(meaning that their underlying topological manifolds are
the same). There are still many interesting open questions
here, especially in dimension 4. The following facts are
known:

• Up to diffeomorphism, there is a unique smooth
structure on any topological manifoldMm in dimen-
sionm≤ 3. Up to diffeomorphism, there is a unique

smooth structure onRm for m, 4.

• The Hauptvermutung(known by that name even
in English) of geometric topology (formulated 100
years ago) suggested that every topological manifold
should have a unique piecewise linear (PL) structure
– essentially given combinatorially by a triangula-
tion – and a unique smooth structure. This is now
known to be false.

• Every smooth manifold has a (PL) triangulation. For
every dimensionm ≥ 4, there are topologicalm-
manifolds that admit no triangulation – and in par-
ticular no PL or smooth structures. (Form = 4 this
has been known since the 1980s, but form > 4 it
was just proven in 2013!)

• There are uncountably many different smooth struc-
tures onR4. It is unknown if there is any exotic
smooth structure onS4.

• In higher dimensions, some things get easier. In
dimensionsm ≥ 7, for instance, there are exotic
spheresSm, but these form a well-understood finite
group (e.g., there are 28 form = 7). In general, the
differences between smooth and PL manifolds (and
to some extent between PL and topological mani-
folds) can be analyzed form ≥ 5 by means of alge-
braic topology.

• For compact, simply connected topological 4-mani-
folds, Freedman showed how to use invariants from
algebraic topology to check when they are homeo-
morphic. In most (but not all) cases we know which
of these topological manifolds admit smooth struc-
tures; it is not known how to classify the smooth
structures when they do exist.

Especially since we know there are exotic spheres in cer-
tain dimensions, it is important to say what we mean by
the standard sphereSm as a smooth manifold. The “right”
answer is that it inherits a smooth structure as a smooth
submanifold ofRm+1, but since we haven’t developed that
theory yet, we use explicit charts. Any “obvious” atlas will
give the same standard smooth sphere, for instance the two
charts of stereographic projection:

U± = S
m r {±em+1}, ϕ±(x, z) =

x
1∓ z

, x ∈ Rm, z ∈ R,

or the 2m+ 2 charts of orthogonal projection:

U± j =
{
x ∈ Sm ⊂ Rm+1 : sgnx j = ±1

}
,

ϕ± j(x) =
(
x1, . . . , x̂ j , . . . , xm+1).

It is a good exercise to check that all these charts areC∞-
compatible.

With our basic constructions, we then get many further
examples of smooth manifolds, like them-torus Tm =

S1 × · · · × S1 (a product of circles) or then2-dimensional
matrix groupGLnR ⊂ R

n×n (an open subset).
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A4. Smooth maps, rank, immersions

Supposef : Mm→ Nn is smooth, andg = ψ ◦ f ◦ϕ−1 is its
expression in some local coordinates (U, ϕ) aroundp ∈ M
and (V, ψ) aroundf (p) ∈ N. Then we define therank of f
at p to be the rank ofg at x = ϕ(p), that is, the rank of the
Jacobian derivative matrix (∂g j/∂xi) there.

That this is well-defined (independent of coordinates) fol-
lows from the chain rule: a change of coordinates (on one
side or the other) would multiply the Jacobian by an in-
vertible square matrix (on one side or the other), leaving
the rank unchanged. Note that the rank can be at most
min(m,n).

The rank theorem from multivariable calculus can be re-
stated most nicely for smooth manifolds. (When stated for
Euclidean spaces it needs to mention diffeomorphisms.)

Theorem A4.1 (Rank Theorem). Suppose f: Mm→ Nn

is a smooth map of constant rank k. Then for each p∈ M
there are coordinate neighborhoods(U, ϕ) of p and(V, ψ)
of f(p) such thatψ ◦ f ◦ ϕ−1 is the orthogonal projection
map

(x1, . . . , xm) 7→ (x1, . . . , xk,0, . . . ,0),

where of course there are n− k zeros at the right. (Note:
if we want, we can require thatϕ(U) = B1(0) andψ(V) =
B1(0).)

In particular, maps of maximum rank are important. We
say f is a submersionif f has constant rankn ≤ m. We
say f is an immersionif f has constant rankm ≤ n. For
m = n these notions coincide. A mapf : Mm → Nm is a
diffeomorphism if and only if it is bijective and has con-
stant rankm.

Now recall that smooth functions (unlike analytic func-
tions) are quite flexible. Starting with a function like

h: R→ R, h(x) =

0, x ≤ 0,
e−1/x, x > 0,

we can use it to give a smoothed step function (0 forx ≤ 0
and 1 for x ≥ 1), and then a smoothed bump function,
which can also be rotated into higher dimensions.

For the next proof, we thus fix a smooth functiong onRm

with g(x) ≡ 1 for |x| ≤ 1 andg(x) ≡ 0 for |x| ≥ 2.

Theorem A4.2. Suppose F and K are disjoint closed sub-
sets of a (smooth) manifold Mm, with K compact. Then
there is a smooth functionσ : M → R with values in[0,1]
such thatσ ≡ 0 on F andσ ≡ 1 on K.

Proof. Each pointp ∈ K has a coordinate neighborhood
Up ⊂ M r F such thatϕ(p) = 0 andϕp(Up) = B3(0) ⊂
Rm. Then we can define a smooth functiongp : M → R
by gp := g ◦ ϕp on Up, extending it to be 0 outsideUp.
The open setsVp := ϕ−1

p
(
B1(0)

)
coverK ⊂ M r F (since

there is one for eachp ∈ K). By compactness, we get
a finite subcover

{
Vp1, . . . ,Vpk

}
. Then if we defineσ :=

1−
∏k

i=1
(
1−gpi

)
, it is easy to checkσ ≡ 1 onK andσ ≡ 0

on F. �

Corollary A4.3. Suppose U⊂ Mm is open, f: U → R is
smooth and p∈ U is given. Then there is a neighborhood
V ⊂ U of p and a smooth map g: M → R such that g≡ f
on V and g≡ 0 outside U.

Proof. SinceM is locally compact, we can choose neigh-
borhoods

p ∈ V1 ⊂ V1 ⊂ V2 ⊂ V2 ⊂ U

with Vi compact. (Quite explicitly, we can take any coordi-
nate neighborhood (V3, ϕ) with p ∈ V3 ⊂ U andϕ(p) = 0
andϕ(V3) = B3(0); then we setVi := ϕ−1(Bi(0)

)
.) Use the

theorem to findσ with σ ≡ 1 onV1 andσ ≡ 0 outsideV2.
Then defineg to equalσ f on U and to be 0 outsideV2.
(Each of these is a smooth function on an open set; they
agree on the intersection. Thus they define a smoothg on
the union, which is all ofM.) �

A5. Tangent vectors and tangent spaces

We know that the tangent spaceTpR
n at a pointp ∈ Rn is

a copy of the vector spaceRn; a vectorv ∈ TpR
n can be

viewed intuitively as an arrow fromp to p+v. (Technically,
of course, a tangent vector knows where it is based, so we
could setTpR

n =
{
(p, v) : v ∈ Rn}, but usually we write

justv for (p, v).)

If γ is a curve throughp := γ(0) in Rn, then its velocity
γ′(0) is best viewed as a vector inTpR

n. If Mm is anm-
submanifold throughp ∈ Rn, then the tangent spaceTpMm

is anm-dimensional linear subspace ofTpR
n, consisting of

all velocity vectors to curves lying inM.

For an abstract manifoldMm, its tangent spaceTpMm

should still be the collection of velocity vectors to curves
through p ∈ M. But of course, there are always many
curves with the same tangent vector. One approach would
be to define tangent vectors as equivalence classes of
curves, but when are two curves equivalent? One could
say: “when they agree to first order”, but this begs the
question.

A good approach is to think about what we use tangent
vectors for: to take directional derivatives! Ifg: Rn → R
is a real-valued function, andγ is a curve throughp = γ(0)
with velocity v = γ′(0) there, then the directional deriva-
tive of g is the derivative alongγ:

∂vg = Dpg(v) =
d
dt

∣∣∣∣
t=0

(g ◦ γ).

Let us think about∂v as a map takingg to the real number
∂vg ∈ R. This is linear:

∂v(g+ λh) = ∂vg+ λ∂vh

and satisfies the Leibniz product rule:

∂v(gh) = (∂vg)h(p) + (∂vh)g(p).

Such a map is called aderivation. Furthermore, it is local
in the sense that∂vg only depends on values ofg in an

5
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arbitrarily small neighborhood ofp. A fact we will check
later is that there are no other local derivations atp ∈ Rn

besides these directional derivatives. Thus we can use this
as the definition of tangent vector.

So fix a pointp in a (smooth) manifoldMm. What is the
right domain for a derivation (think of a directional deriva-
tive) at p ∈ M? Consider the class

C =
⋃
U3p

C∞(U)

of all real-valued functionsg defined on some open neigh-
borhood ofp. If two functions agree on some neighbor-
hood, then they must have the same derivatives atp, so we
consider them to be equivalent. More precisely,g: U → R
is equivalentto h: V → R if there is some openW 3 p
(with W ⊂ U ∩ V) such thatg|W = h|W. An equivalence
class is called agerm(of a smooth function) atp. The set
of germs atp is the quotient spaceC/∼ =: C∞(p). If g is a
function on a neighborhood ofp, we often write simplyg
for its germ (which might more properly be called [g]).

Note that ifg ∈ C∞(p) is a germ, we can talk about its
valueg(p) ∈ R at p, but not about its value at any other
point. (ForM = Rm, a germg at p also encodes all dervia-
tives atp – that is, the Taylor series ofg – but also much
more information, sinceg is not necessarily analytic.)

The setC∞(p) of germs is an (infinite dimensional) algebra
overR, that is, a vector space with multiplication. (Exer-
cise: check that multiplication of germs makes sense, etc.)
We now define atangent vector Xp at p ∈ M to be a deriva-
tion on this algebra. That is,Xp : C∞(p) → R is a linear
functional:

Xp(g+ λh) = Xpg+ λXph

satisfying the Leibniz rule:

Xp(gh) = (Xpg)h(p) + (Xph)g(p).

We letTpM denote thetangent spaceto M at p, that is, the
set of all such tangent vectorsXp.

End of Lecture 19 October 2015

ClearlyTpM is a vector space, with the obvious operations

(Xp + λYp) f := Xp f + λYp f .

(In fact, this is just exhibitingTpM as a linear subspace
within the abstract dual vector spaceC∞(p)∗ of all linear
functionals onC∞(p).

Note that ifU ⊂ M is open withp ∈ U, thenTpU = TpM
since the setC∞(p) of germs is the same whether we start
with M or U.

Now supposef : Mm→ Nn is a smooth map of manifolds
and consider a pointp ∈ M and its imageq := f (p) ∈ N.
If g is a germ atq, theng ◦ f is a germ atp. (Here of
course, we really composef with any of the functions in
the equivalence classg.) This gives a map

f ∗ : C∞(q)→ C∞(p), f ∗(g) := g ◦ f

between these algebras of germs, which we claim is linear,
indeed an algebra homomorphism. (Note that the upper

star is used to indicate a “pull-back”, a map associated tof
acting in the opposite direction.)

Like any linear map between vector spaces,f ∗ induces a
dual map between the dual spaces; here we claim this re-
stricts to a mapf∗ : TpM → TqN. Working out what the
dual map means, we find that forXp ∈ TpM andg ∈ C∞(q)
we have (

f∗(Xp)
)
(g) = Xp

(
f ∗(g)

)
= Xp(g ◦ f ).

This linear mapf∗ is called thedifferential of f at p and
we will usually write it asDp f . (Other common notations
includedp f or simply f ′.)

Theorem A5.1. Given a smooth map f: Mm → Nn of
manifolds and a point p∈ M, the construction above in-
duces a linear map f∗ = Dp f : TpM → T f (p)N, the differ-
ential of f .

Proof. The many claims we made during the construction
are all routine to check. We gives just two examples. To
see thatf∗(Xp) is actually a tangent vector atq := f (p), we
need to check the Leibniz rule:

f∗(Xp)(gh) = Xp
(
(gh) ◦ f

)
= Xp

(
(g ◦ f )(h ◦ f )

)
=

(
Xp(g ◦ f )

)(
h(q)

)
+

(
Xp(h ◦ f )

)(
g(q)

)
=

(
f∗(Xp)g

)
h(q) +

(
f∗(Xp)h

)
g(q).

To see thatf∗ is linear, we compute:

f∗(Xp + λYp)(g) = (Xp + λYp)(g ◦ f )

= Xp(g ◦ f ) + λYp(g ◦ f )

=
(
f∗(Xp) + λ f∗(Yp)

)
(g).

�

It is now a straightforward exercise to check the “functori-
ality” of the operationf 7→ f∗, that is, the following two
properties:

• For f = id : M → M, the mapsf ∗ and f∗ are also
the identity maps.

• If h = g ◦ f (for maps between appropriate mani-
folds), thenh∗ = f ∗ ◦ g∗ andh∗ = g∗ ◦ f∗.

(The second of these is of course the chain rule from cal-
culus.)

Corollary A5.2. If f : M → N is a diffeomorphism, then
for any p ∈ M, the map Dp f : TpM → T f (p)N is an iso-
morphism. In particular, if(U, ϕ) is a coordinate chart
for Mm, thenϕ∗ : TpM → Tϕ(p)R

m is an isomorphism

Of course, this refers toTqR
m in the sense we have just de-

fined for abstract manifolds. It is time to go back and prove
the claim we made early on, that there are no derivations
onRm other than the usual directional derivatives, that is,
thatTpR

m � Rm.

We know we have a mapRm→ TpR
m which associates to

eachv ∈ Rm the directional derivative∂v at p. This map is
clearly linear and is easily seen to be injective. Indeed, if
πi : Rm → R denotes the projectionp 7→ pi , then∂vπ

i =

6
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vi = πi(v); now two distinct vectorsv , w must differ in
some componentvi , wi , meaning∂vπ

i , ∂wπ
i , so∂v ,

∂w. The claim that now remains is just that this map is
surjective – there are no other derivations.

Lemma A5.3. Suppose Xp ∈ TpR
m and g ∈ C∞(p) is

constant (in some neighborhood of p). Then Xpg = 0.

Proof. By linearity of Xp it suffices to considerg ≡ 1. By
the Leibniz rule,

Xp(1) = Xp(1 · 1) = Xp(1) · 1+ Xp(1) · 1 = 2Xp(1)

which clearly impliesXp(1) = 0. �

Our next lemma can be thought of as a version of Taylor’s
theorem. (Note that one could letB be an arbitrary star-
shaped region aroundp.)

Lemma A5.4. Let B := Bε(p) where p∈ Rm andε > 0.
For any g∈ C∞(B), we can find a collection of m functions
hi ∈ C∞(B) with hi(p) = ∂g

∂xi (p), such that on B we have

g(x) = g(p) +
∑

i

(xi − pi)hi(x).

Proof. If we set

hi(x) :=
∫ 1

0

∂g
∂xi

(
p+ t(x− p)

)
dt

then the desired properties follow from the fundamental
theorem of calculus in the form

g(x) = g(p) +
∫ 1

0

d
dt

g
(
p+ t(x− p)

)
dt,

noting that thist-derivative is the directional derivative of
g in directionx− p. �

Theorem A5.5. The map v7→ ∂v is a (natural) isomor-
phismRm→ TpR

m.

Proof. As noted above, all that remains is to prove surjec-
tivity. Given Xp ∈ TpR

m, definev ∈ Rm by vi := Xp(πi).
We claim∂v = Xp. By definition, these agree on (the germs
of) the projectionsπi . Now supposeg ∈ C∞(p) is any
germ. Finding a representativeg ∈ C∞

(
Bε(p)

)
for some

ε > 0, we can use the second lemma to write

g = g(p) +
∑

i

(πi − pi)hi .

Then by the definition of derivation,

Xpg = Xp
(
g(p)

)
+

∑(
Xpπ

i − Xppi)(hi(p)
)

+
∑

(Xphi)
(
πi(p) − pi).

Here the last sum (which would seem to involve second
derivatives ofg) vanishes simply becauseπi(p) = pi . And
the termsXppi and Xp

(
g(p)

)
vanish by the first lemma.

Thus we are left with

Xpg =
∑

i

(Xpπ
i)
(
hi(p)

)
=

∑
vi ∂g
∂xi

(p) = ∂v(g)

as desired. �

Note that if {ei} is the standard basis ofRm (so thatv =∑
viei), then

{
∂ei =

∂
∂xi

}
is the corresponding standard ba-

sis of TpR
m. Recall that, given a coordinate chart (U, ϕ)

around p ∈ Mm, the differential Dpϕ = ϕ∗ : TpM →

Tϕ(p)R
m � Rm is an isomorphism. Under this isomor-

phism, the ∂
∂xi correspond to the elements of a basis for

TpM, which we write as

∂i = ∂i,p := ϕ−1
∗

(
∂

∂xi

)
.

Suppose a functionf ∈ C∞(U) has coordinate expression
f ◦ ϕ−1 : ϕ(U)→ R, then atp ∈ U we get

∂i f = ϕ
−1
∗

(
∂

∂xi

)
( f ) =

∂

∂xi

(
f ◦ ϕ−1

)
.

In particular, if we consider the individual components
x j = π j ◦ ϕ of the coordinatesϕ as real-valued functions,
we find ∂i

(
π j ◦ ϕ) = ∂π j/∂xi = δ

j
i . We can express any

Xp ∈ TpM in terms of our basis{∂i} as follows:

Xp =

m∑
i=1

(
Xp(πi ◦ ϕ)

)
∂i

Consider a smooth mapf : Mm→ Nn between manifolds,
and choose local coordinates (U, ϕ) around p ∈ M and
(V, ψ) aroundq := f (p) ∈ N. (We write xi = πi ◦ ϕ and
y j = π j ◦ ψ.) In these coordinates,f is represented by the
mapψ ◦ f ◦ ϕ−1 of Euclidean spaces, or more explicitly as
functionsy j = f j(x1, . . . , xm). Here the derivative is given
by the Jacobian matrix

J =

(
∂y j

∂xi

)
=

(
∂ f j

∂xi

)
.

Let us write{∂i} as usual for the coordinate frame ofTpM,
where∂i = ϕ−1

∗

(
∂/∂xi). For TqN, we use the notation

∂̃ j = ψ
−1
∗

(
∂/∂y j). We find thatJ is the matrix ofDp f with

respect to these bases. That is,

Dp f
(
∂i,p) =

∑
j

(
∂y j

∂xi

)
ϕ(p)

∂̃ j,q,

or equivalently, ifXp =
∑

vi∂i,p and f∗(Xp) =
∑

w j ∂̃ j,q,
then we have

w j =
∑

i

vi

(
∂y j

∂xi

)
ϕ(p)

.

We should have waited until now to define the rank atp ∈
M of a map f : Mm → Nn. It is simply the rank of the
linear mapDp f : TpM → T f (p)N. In coordinates this is,
of course, the rank of the Jacobian matrix above, as we
defined before.

One special case is whenf = idM is the identity map. That
is, we have overlapping coordinate charts (U, ϕ) and (V, ψ)
for Mm. At any point p ∈ U ∩ V, we have two different
coordinate bases forTpM, which we write as{∂i} (with
respect toϕ) and{∂̃i} (with respect toψ). Then the change-
of-basis matrix is just the Jacobian matrix of the coordinate
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expression of idM, which here is just the transition function
ψ◦ϕ−1. (This is the basis for a definition of tangent vectors
still popular among physicists: a tangent vector “is” its ex-
pression in a coordinate base, with the rules for changing
this “covariantly” when we change coordinates.)

As usual, we also consider the special cases where one of
the manifoldsM or N is (a submanifold of)R. ForR of
course we use the standard chart (the identity map), and we
write ∂t for the corresponding basis vector for the tangent
space toR at any point.

A mapγ : (a,b) → Mm is acurvein M. Its tangent vector
at p := γ(t) ∈ M is γ′(t) := Dtγ(∂t) ∈ TpM.

The opposite case is a real-valued functionf ∈ C∞(M).
For X ∈ TpM, we have

(
Dp f

)
(X) ∈ T f (p)R, so

(
Dp f

)
(X) =

λ∂t for someλ ∈ R. Of course, thisλ is just the direc-
tional derivativeX f . For instance, in local coordinates,
(Dp f )(∂i) = (∂i f )∂t. We writed f = dp f : TpM → R for
the linear mapX 7→ X f . The dual vector spaceT∗pM is
called thecotangent spaceand its elements arecotangent
vectors(or covectorsfor short). Thusdp f ∈ T∗pM is the
covector given byd f(X) := X f ; this is just another way to
view the differential since we haveDp f (X) = dp f (X)∂t.

A6. The tangent bundle

Definition A6.1. The tangent bundle T M= T(M) to
a smooth manifoldMm is, as a set, the (disjoint) union
T M :=

⋃
p∈M TpM of all tangent spaces toM; there is

obviously a projectionπ : T M → M with π−1{p} = TpM.
We can equipT M in a natural way with the structure of a
smooth 2m-manifold. Start with a (smooth) atlas forM.
Over any coordinate chart (U, ϕ), there is a a bijection
Dϕ : TU → ϕ(U) × Rm ⊂ R2m sending

∑
i vi∂i ∈ TpU =

TpM to
(
ϕ(p), v

)
. We define the topology onT M by speci-

fying that these mapsDϕ are homeomorphisms; they then
form an atlas forT M as a topological 2m-manifold.

ExerciseA6.2. These charts forT M areC∞-compatible,
and thus define a smooth structure onT M.

Note thatT M is an example of a vector bundle, which is
a special kind of fiber bundle to be defined later. Without
going into details, afiber bundlewith baseB and fiberF is
a certain kind of spaceE with projectionπ : E → B such
that the preimage of any pointb ∈ B is isomorphic toF.
A trivial bundle is E = F × B projecting to the second
factor. Any fiber bundle is required to be locally trivial in
the sense thatB is covered by open setsU over which the
bundle is trivial (F × U). A sectionof a bundleπ : E→ B
is a continuous choice of point in each fiber, that is, a map
σ : B→ E such thatπ ◦ σ = idB.

Definition A6.3. A (smooth)vector field Xon a manifold
Mm is a smooth choice of a vectorXp ∈ TpM for each
point p ∈ M. That is,X is a (smooth)sectionof the bundle
π : T M → M, meaning a smooth mapX : M → T M such
thatπ ◦X = idM. We writeX = X(M) = Γ(T M) for the set
of all vector fields.

We define addition of vector fields pointwise: (X + Y)p =

Xp+Yp. Similarly, we can multiply a vector fieldX ∈ X(M)

by a smooth functionf ∈ C∞(M) pointwise: (f X)p =

f (p)Xp. That is, the vector fieldsX(M) form not just a real
vector space, but in fact a module over the ringC∞(M) of
smooth functions.

Given a vector fieldX and a functionf , we can also define
X f ∈ C∞(M) by (X f)(p) := Xp f ∈ R. Note the distinc-
tion between the vector fieldf X (given by pointwise scalar
multiplication) and the functionX f (given by directional
derivatives off ).

ExerciseA6.4. Each of the following conditions is equiv-
alent to the smoothness of a vector fieldX as a section
X : M → T M:

• For each f ∈ C∞(M), the function X f is also
smooth.

• If we write X|U =:
∑

vi∂i in a coordinate chart
(U, ϕ), then the componentsvi : U → R are smooth.

End of Lecture 26 October 2015

A7. Submanifolds

The canonical example of anm-dimensional submanifold
of ann-manifold isRm × 0 ⊂ Rn, the set of vectors whose
lastn−m components vanish.

Definition A7.1. Given a manifoldNn, we say a subset
M ⊂ N is anm-submanifoldif around each pointp ∈ M
there is a coordinate chart (U, ϕ) for N in which M looks
like Rm × 0 ⊂ Rn. That is, in such apreferred chartwe
have

ϕ(M ∩ U) = ϕ(U) ∩ (Rm × 0).

It is straightforward then to check thatM (with the sub-
space topology) is anm-manifold. Indeed, the preferred
charts form aC∞ atlas forMm.

Two alternative local characterizations – as for submani-
folds inRn – are then immediate. A submanifoldMm ⊂ Nn

can be described locally (that is, in some neighborhood
U ⊂ N of any pointp ∈ M) as

1. the zero level set of a submersionNn → Rn−m (here
ϕ composed with projection onto the lastn − m co-
ordinates), or

2. the image of an immersionRm→ Nn (here the stan-
dard inclusionRm ↪→ Rn composed withϕ−1).

We now want to consider in more detail the description
of submanifolds via immersions. Immersions fromRm are
also known asregular parametrizations. Recall that last
semester we used such regular parametrizations to describe
curves and surfaces inR3. It is of course important that the
parametrization be an immersion, in order to be sure that
the image is a smooth submanifold.

ExamplesA7.2. Consider the following examples of im-
mersions based on smooth plane curves.

8
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1. t 7→ (cos 2πt, sin 2πt) is a periodic parametrization
of a simple closed curve, a 1-submanifold. This im-
mersion is not injective, but becomes injective if we
consider the domain to be the circleR/Z � S1.

2. If r : R→ (1,2) is strictly monotonic, then

t 7→
(
r(t) cos 2πt, r(t) sin 2πt

)
is an injective immersion whose image is a submani-
fold, a spiral curve in the plane. Note that this image
is not a closed subset ofR2 (because the immersion
is not “proper”).

3. t 7→ (cos 2πt, sin 4πt) is again a closed curve, this
time a figure-eight. It descends again to the quotient
cirleR/Z, but is not injective even there. The image
is not a submanifold.

4. If we restrict this last example to the open interval
(−1/4,3/4), which of course is diffeomorphic toR,
we get an injective immersion whose image is still
the whole figure-eight curve, not a submanifold.

5. One can build an injective immersion whose image
is not even locally connected. For instance, join the
“topologist’s sine curve”, the curvet 7→ (1/t, sint)
for t ≥ 2, to a downward ray in they-axis, the curve
t 7→ (0, t) for t ≤ 1, via a smooth intermediate arc
for t ∈ [1,2].

6. For any slopeα ∈ R, we can project the linet 7→
(t, αt) of slopeα from R2 to the quotient torusT2 =

R2/Z2. Forα = p/q ∈ Q, this gives a periodic curve,
that is, a circle submanifold inT2 called a (p,q)-
torus knot. For irrationalα on the other hand, the
immersion is injective but its imageX is dense inT2

and thus is not a submanifold (in our sense).

In some other contexts, mainly that of Lie groups, exam-
ples like this last one can be considered as submanifolds. A
Lie group is smooth manifold with the structure of an alge-
braic group, where the group operations are smooth maps;
we will discuss these later. The torusT2 is an example of a
(compact, 2-dimensional) Lie group (under addition). The
dense subsetX – consisting of points of the form (t, αt) –
is a subgroup; from the point of view of Lie groups this
is a 1-dimensional Lie subgroup. Of courseX ⊂ T2 with
the subset topology is not a manifold. Instead we simply
use the bijective immersionR → X to transfer the stan-
dard smooth manifold structure fromR to X. (Indeed, any
time we have an injective immersionf : Mm → Nn, it is
a bijection onto its image, and could be used to transfer
the topology and smooth structure fromM to that image,
making f by definition a diffeormorphism, though not to a
subspace ofN.)

Definition A7.3. A continuous injectionf : X → Y of
topological spaces is a topologicalembeddingif it is a
homeomorphism onto its imagef (X). A (smooth)embed-
ding f : Mm → Nn of manifolds is an immersion that is a
topological embedding.

We will show that the image of a smooth embedding is a
submanifold (and vice versa); the embedding is then not
merely a homeomorphism but indeed a diffeomorphism
onto its image.

Above we saw many examples of injective immersions of
manifolds which were not embeddings. However, there is
one standard result from point-set topology which guaran-
tees that this never happens whenM is compact.

Proposition A7.4. If X is compact and Y is Hausdorff,
then any continuous bijection f: X → Y is a homeomor-
phism.

For the proof, recall that a mapf : X → Y is openif the
image of every open setU ⊂ X is open inY, and f is closed
if the image of every closed setA ⊂ X is closed inY. If f
is a bijection, then these notions are equiavalent, and also
equivalent tof −1 being continuous.

Proof. We need to showf −1 is continuous, or equivalently
that f is a closed map. So supposeA ⊂ X is closed; we
need to showf (A) is closed inY. SinceX is compact,
A is also compact. Sincef is continuous,f (A) is then
compact. But a compact subset of the Hausdorff spaceY
is necessarily closed. �

Two examples related to the quotient mapI → S1 (where
I = [0,1] and the quotient identifies the endpoints{0,1} to
a single point) show why the two conditions are necessary.
First, we can get a bijection by restricting this map to the
noncompact interval [0,1). Second, we can get a bijection
by replacingS1 by a non-Hausdorff circle with a doubled
basepoint (like our line with doubled origin).

Corollary A7.5. If X is compact and Y is Hausdorff, then
any (continuous) injection f: X → Y is a topological em-
bedding.

Corollary A7.6. If M is a compact manifold, then any in-
jective immersion f: Mm→ Nn is a smooth embedding.

Now we show that the concepts of smooth embedding and
submanifold coincide in the following sense:

Theorem A7.7. If f : Mm → Nn is an embedding, then
f (M) ⊂ N is a submanifold and f: M → f (M) is a dif-
feomorphism. If Mm ⊂ Nn is any submanifold, then the
inclusion i: M ↪→ N is an embedding.

Proof. For the first statement, consider a pointp ∈ M and
its imageq = f (p) ∈ f (M) ⊂ N. Becausef has constant
rankm ≤ n, by the rank theorem, we can find coordinates
(U, ϕ) aroundp ∈ M and (V, ψ) aroundq ∈ N in which f
looks like the embeddingRm ↪→ Rn. It is tempting to hope
that (V, ψ) is the preferred chart we seek in the definition
of submanifold – but we have not yet used the fact that
f is an embedding and the problem is that other parts of
f (M) might enterV, while we want f (U) = f (M) ∩ V.
But since f is an embedding,f (U) is open in f (M) – in
the subspace topology fromN. By definition of subspace
topology, this means there is an open subsetW ⊂ N such
that f (U) = W ∩ f (M). Now we simply restrict (V, ψ) to

9
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W∩V and we find these are preferred coordinates showing
f (M) as a submanifold ofN (aroundq).

We essentially proved the second statement when we put a
smooth structure on the submanifoldM ⊂ N: we remarked
then that the manifold topology onM was the subspace
topology fromN, which exactly means the inclusion is a
topological embedding. The fact that it is an immersion is
also obvious in a preferred coordinate chart. �

SupposeMm ⊂ Nn is a submanifold. Then at anyp ∈ M
we can viewTpM ⊂ TpN in a natural way as a vector
subspace (using the injective differentialDpi of the inclu-
sion mapi). More generally, ifM is described (locally)
as the image of a regular parameterization, an immersion
Rm ⊃ U → N, then TpM is the image of its differen-
tial. If insteadM is (locally) the zero set of a submersion
f : N→ Rn−m, thenTpM is the kernel ofDp f .

A8. Vector fields and their flows

Supposef : Mm → Nn is a smooth map andX is a vector
field on M. For any pointp ∈ M, we can usef∗ = Dp f
to push a vectorXp ∈ TpM to a vector atf (p) ∈ N. If
there exists a vector fieldY on N such that for eachp ∈ M
we haveYf (p) = Dp f (Xp), then we sayY is f -relatedto X.
Of course, whenf is not injective, it might be impossible
to find an f -related vector field; whenf is not surjective,
Y is not uniquely determined away fromf (M). But when
f is a diffeomorphism, there clearly is a uniqueY that is
f -related to any givenX, and then we writeY = f∗(X).

If f : M → M is a diffeomorphism it can happen that a
vector fieldX is f -related to itself:X = f∗(X). In this case,
we sayX is f -invariant. As a simple example, consider
the radial fieldXp = p on Rm. It is invariant under any
homothety f : p 7→ λp. This may seem like a very spe-
cial situation, but in fact our goal now, given an arbritrary
vector fieldX, is to construct a one-parameter family of
diffeomorphismsθt : M → M under whichX is invariant.

Recall that ifG is an algebraic group andX is any set, then
anactionθ of G onX is a mapθ : G×X→ X, often written
as

(g, x) 7→ g · x := θg(x),

satisfying the following properties:

θe = idX, θgh = θg ◦ θh.

(That is, in the typical group theory notation,e · x = x and
(gh) · x = g · (h · x).) Eachθg : X → X is a bijection (with
inverseθg−1). The actionθ partitions the setX into orbits

G · x := {g · x : g ∈ G},

which are the equivalence classes under the equivalence
relationx ∼ g · x.

We are interested in smooth actions of the (1-dimensional
Lie) group (R,+) on a smooth manifoldMm. Such an ac-
tion is a smooth mapθ : R × M → M, again written as
(t, p) 7→ θt(p), satisfying

θ0 = idM , θs ◦ θt = θs+t.

It follows that eachθt : M → M is a diffeomorphism, with
inverseθ−t. Note that sinceR is an abelian group (s+ t =
t + s), these diffeomorphisms all commute:

θt ◦ θs = θs+t = θs ◦ θt.

This is often simply called aone-parameter group action
or a(global) flowon M.

Definition A8.1. We say a vector fieldX is invariantunder
the action if it is invariant under eachθt, that is, if

(
θt
)
∗X =

X for all t.

This may seem like a very special situation, but we will see
it is quite natural.

Our notationθt(p) := θ(t, p) emphasizes the diffeomor-
phismsθt obtained by fixingt ∈ R. If instead, we fix a
point p ∈ M, we of course get a curveγp : R→ M defined
by γp(t) := θt(p). The trace of this curve is the orbit of
p ∈ M under the actionθ. It is helpful to rewrite the defin-
ing propertyθs ◦ θt = θs+t of a flow in terms of these flow
curves. For any pointq := γp(s) = θs(p) alongγp, we find
that the curveγq is just a reparametrization ofγp; indeed

γq(t) = θt(q) = θt
(
θs(p)

)
= θt+s(p) = γp(s+ t).

Equivalently,γq = θs ◦ γp:

γq(t) = θs
(
θt(p)

)
= θs

(
γp(t)

)
.

Definition A8.2. The infinitesimal generatorof the flow
θ is the vector fieldX on M defined byXp := γ′p(0), the
velocity vector of the curveγp at p = γp(0).

End of Lecture 2 November 2015

An equivalent way to define the infinitesimal generatorX
comes from looking at a standard “vertical” vector field on
R × M, defined by

T(t,p)(R × M) = TtR × TpM 3 (∂t,0) =: V(t,p).

Then it is easy to check thatXp =
(
D(0,p)θ

)
(V).

Theorem A8.3. Supposeθ is a flow on M with infinitesi-
mal generator X. Then X isθ-invariant. That is, for any
s ∈ R and p∈ M we have(

θs
)
∗(Xp) = Xθsp.

Proof. Write q = θs(p) so thatXp = γ
′
p(0) andXq = γ

′
q(0).

Then the desired formula follows immediately from the
observation above thatγq = θs ◦ γp. �

Corollary A8.4. If Xp = 0 then the curveγp is the con-
stant mapγp(t) ≡ p. If Xp , 0, then the curveγp is an
immersion. If it is not injective onR then it is s-periodic
and injective onR/sZ for some s> 0.

Proof. First note that

γ′p(t) = Xγp(t) =
(
θt
)
∗Xp.

Sinceθt∗ is a linear isomorphism, these vectors either re-
main zero or remain nonzero. Finally, if we have a non-
injective curve withγp(t + s) = γp(t) for somes and t,
then the same holds for thiss and everyt, that is,γp is
s-periodic. �
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Recall that these curves are theorbits of the flow θ and
form a partition ofM. (Each orbit is topologically an open
arc or a closed loop or a single point.)

Note also that the vector fieldX is θ-related to the vector
field V = (∂t,0) onR × M since

Xθ(t,p) = D(t,p)θ
(
V(t,p)

)
.

As we have seen, any flowθ has an infinitesimal genera-
tor X. What if we start with a vector fieldX on M: does it
generate a flow? We will see that the answer is always yes
when M is compact; in general the flow might exist only
for smallt (depending onp).

Definition A8.5. Given a vector fieldX on a manifoldM,
a curveγ : J → M (whereJ ⊂ R is some open interval) is
called anintegral curveof X if γ′(t) = Xγ(t) for all t ∈ J.

As we have seen, anyR-actionθ has an infinitesimal gen-
eratorX. Then each orbitγp(t) = θt(p) is an integral curve
of X, defined onJ = R. In other cases, the integral curve
does not exist for all time, since it flows out ofM in finite
time. For instance, consider the flowθt(x) = x+ te1 onRm,
whose infinitesimal generator isX = ∂1. If we replaceRm

by an open subset (likeRn r {0} or Rn r B1(0)) then we
sometimes leave this open subset in finite time.

Think for a minute about dimensionm = 1. Up to dif-
feomorphism, there is no difference between reaching the
“end” of a finite open interval like (0,1) and reaching∞.
A classical example is the flow oft2∂t on R, that is, the
solution of the ODEdu/dt = u2, which blows up in finite
time. So it is too much to hope for a global solution in
general. But of course, standard theorems on ODEs guar-
antee local existence and uniqueness of solutions, which
can be viewed as integral curves of a vector field. (In an
ODE course, you might learn about minimal smoothness
conditions for existence and for uniqueness; certainlyC∞

or evenC1 suffices for both.)

Theorem A8.6. Suppose U⊂ Rm is open and f: U → Rm

is smooth. Then for each p∈ U, there is a unique solution
to the equation dx/dt = f (x) with initial condition x(0) =
p; it is smooth and is defined on some maximal open time
interval (ap,bp) 3 0.

A proof of this basic result (using the Banach fixed-
point theorem for contraction mappings) can be found in
Boothby. Somewhat more subtle is the “smooth depen-
dence on parameters” as given in the next theorem. (See
Conlon’s textbook for a proof.) In our version, there are no
parameters other than the initial pointp.

Theorem A8.7. Suppose U⊂ Rm is open and f: U → Rm

is a smooth function. For any point p∈ U there exists
ε > 0, a neighborhood V⊂ U of p, and a smooth map

x: (−ε, ε) × V → U

satisfying

∂x
∂t

(t,q) = f
(
x(t,q)

)
, x(0,q) = q

for all t ∈ (−ε, ε) and q∈ V.

Like any local result, this can be transferred immediately to
the context of an arbitrary manifold, where its restatement
has a more geometric flavor.

Definition A8.8. A local flowaroundp ∈ M is a map

θ : (−ε, ε) × V → M

(for someε > 0 and some openV 3 p) such thatθ0(q) = q
for all q ∈ V, and

θt
(
θs(q)

)
= θt+s(q)

whenever both sides are defined. Theflow linesare the
curvesγq(t) := θt(q); theinfinitesimal generatoris the vec-
tor field Xq = γ

′
q(0) tangent to the flow lines.

Theorem A8.9. Any vector field X on a manifold M has a
local flow around any point p∈ M.

Note that if we prove this theorem by appealing to the pre-
vious theorem onRm, then the neighborhoodV we con-
struct (and even the values ofθ) will be in some coordinate
chart aroundp. But this doesn’t affect the statement of the
theorem.

Theorem A8.10. On a compact manifold Mm, any vector
field X has a global flow.

Proof. For any p ∈ M we have a local flow, defined on
some (−εp, εp)×Vp. By compactness, finitely many of the
Vp suffice to coverM. Let ε > 0 be the minimum of the
corresponding (finitely many)εp. Then we know that the
flow of X exists everywhere for a uniform timet ∈ (−ε, ε).
But then, for instance usingθnt = θt ◦ · · · ◦ θt, we can
construct flows for arbitrary times. �

A9. Lie brackets and Lie derivatives

Definition A9.1. A Lie algebrais a vector spaceL with
an antisymmetric (or skew-symmetric) product

L × L → L, (v,w) 7→ [v,w] = −[w, v]

that is bilinear (i.e., linear inv and inw, where it suffices
to check one of these:

[λv+ v′,w] = λ[v,w] + [v′,w],

noting this could also be called a distrubutive law) and sat-
isfies theJacobi identity[

u, [v,w]
]
+

[
v, [w,u]

]
+

[
w, [u, v]

]
= 0.

A trivial example is any vector space with the zero prod-
uct [v,w] := 0. The Jacobi identity may not at first seem
intuitive, but in fact there are some familiar nontrivial ex-
amples.

ExampleA9.2. Three-spaceR3 with the usual vector cross
product [v,w] := v× w = v∧ w is a Lie algebra.

11
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ExampleA9.3. The ordinary matrix product onRn×n is bi-
linear but neither symmetric nor antisymmetric. But the
matrix commutator [A, B] := AB− BA is clearly antisym-
metric. To check the Jacobi identity, we compute[

A, [B,C]
]
= ABC− ACB− BCA+CBA

and then cyclically permute. The bracket notation for Lie
algebras comes from this earlier use of brackets for com-
mutators.

ExampleA9.4. More generally (and more abstractly), sup-
poseV is any vector space, and consider the set End(V) :=
L(V,V) of linear endomorphisms (self-maps) onV. Then
the commutator

[A, B] := A ◦ B− B ◦ A

is again a Lie product.

Now consider the setX(M) of smooth vector fields on a
manifold Mm. As we have observed, this is an (infinite-
dimensional) vector space overR and indeed a module
overC∞(M), where forX,Y ∈ X and f ∈ C∞ the vector
field f X + Y is defined pointwise:

( f X + Y)p = f (p)Xp + Yp.

But we also recall that a vector fieldX ∈ X gives (or indeed
can be viewed as) a mapC∞(M) → C∞(M) via f 7→ X f ,
taking directional derivatives off in the directionsXp.
That is, we can view vector fields as endomorphisms of
C∞(M):

X(M) ⊂ End
(
C∞M

)
.

As Lie observed, the commutator product on End(C∞M)
in fact restricts to the subspaceX:

Theorem A9.5. The space of vector fieldsX(M) is a Lie
algebra with the Lie bracket

[X,Y] f := X(Y f) − Y(X f).

Note that the ordinary composition product does not re-
strict: the mappingf 7→ X(Y f) is an endomorphism of
C∞(M) which should be thought of as taking a second
derivative of f in particular directions; this does not cor-
respond to a vector field, because second derivatives do
not satisfy the Leibniz product rule. But partial derivative
commute; in the commutator above the second-order terms
cancel, leaving only first-order terms, that is, a vector field
[X,Y]. To understand why there can be first-order terms
remaining, recall the formula for the second derivative of a
function f along a curveγ in Rn passing throughγ(0) = p
with velocityγ′(0) = v and accelerationγ′′(0) = a:

d2

dt2

∣∣∣∣∣∣
t=0

f
(
γ(t)

)
= D2

p f (v, v) + Dp f (a).

Proof. We need to check that the endomorphism

[X,Y] : C∞(M)→ C∞(M)

is a vector field, that is, that it is local and satisfies the
Leibniz product rule. But locality – the fact that the value
of [X,Y] f at p depends only on the germ off at p and not
on its values elsewhere – is clear, giving

[X,Y]p : C∞(p)→ R, f 7→ Xp(Y f) − Yp(X f).

To show [X,Y]p ∈ TpM we now check the Leibniz rule:

[X,Y]p( f g) = Xp
(
Y( f g)

)
− Yp

(
X( f g)

)
= Xp

(
f Yg+ gY f

)
− Yp

(
f Xg+ gX f

)
= (Xp f )(Ypg) + f (p)Xp(Yg)

+ (Xpg)(Yp f ) + g(p)Xp(Y f)

− (Yp f )(Xpg) − f (p)Yp(Xg)

− (Ypg)(Xp f ) − g(p)Yp(X f)

= f (p)[X,Y]pg+ g(p)[X,Y]p f �

ExerciseA9.6. Of course the Lie bracket [X,Y] is R-
bilinear, but it is notC∞(M)-bilinear. Instead we have

[ f X,gY] = f g[X,Y] + f (Xg)Y− g(Y f)X.

(Hint: consider first the case [f X,Y] = f [X,Y] − (Y f)X
and then use that twice, with the antisymmetry.)

Lemma A9.7. Let ∂i ∈ X(U) denote as usual the coordi-
nate basis vector fields on a chart(U, ϕ). Then their Lie
brackets vanish:[∂i , ∂ j ] = 0 for all i , j = 1, . . . ,m.

Proof. Let f be a germ atp ∈ U, and write f̂ for the
germ f ◦ ϕ−1 at ϕ(p) ∈ Rm. By definition of∂i , we have
(∂i f )(p) =

(
∂ f̂ /∂xi)(ϕ(p)

)
. Then for the Lie bracket we

get:

[∂i , ∂ j ]p f = ∂i(∂ j f )(p) − ∂ j(∂i f )(p)

=
∂2 f̂

dxi dxj

(
ϕ(p)

)
−

∂2 f̂
dxj dxi

(
ϕ(p)

)
= 0,

using the fact that the mixed partials commute. �

ExerciseA9.8. Using this lemma and the result of the pre-
vious exercise, compute the formula for the Lie bracket
[X,Y] in coordinates, ifX =

∑
αi∂i andY =

∑
βi∂i in a

chart (U, ϕ).

Of course, vector fields are used to take derivatives of func-
tions. If X ∈ X(M) and f ∈ C∞(M) then (X f)(p) = Xp f is
a directional derivative off . If γ is an integral curve ofX
throughp andθ its (local) flow, then

Xp f =
d
dt

∣∣∣∣∣
t=0

f
(
γp(t)

)
=

d
dt

∣∣∣∣∣
t=0

f
(
θt(p)

)
.

Now suppose we want to take a derivative of a vector
field Y along a curveγ. The problem is that for each
q = γ(t), the vectorYq lives in a different tangent space
Tq(M). So we cannot compare these vectors or ask for
their rate of change alongγ without some sort of addi-
tional information. Later in the course, we will introduce
the notion of a “connection” (for instance coming from a
Riemannian metric), which does allow us to differentiate
a vector field along a curve. But Lie suggested a different

12
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approach. Suppose we have not just one (integral) curve
γp but a whole vector fieldX and its associated local flow
aroundp. Then we can use

Dpθt = θt∗ : TpM → Tθt pM

to identify the tangent spaces along the integral curveγp.
In particular, for eacht (in the interval (−ε, ε) of definition)
we haveθ−t∗

(
Yθt p

)
∈ TpM.

Definition A9.9. If X,Y ∈ X(M) then theLie derivative
LXY of Y with respect toX is the vector field defined by(

LXY)p :=
d
dt

∣∣∣∣∣
t=0
θ−t∗

(
Yθt p

)
∈ TpM.

It would be straightforward but tedious to check in coor-
dinates that this is a smooth vector field. For us, that will
follow from the theorem below, saying that the Lie deriva-
tive is nothing other than the Lie bracket:

LXY = [X,Y] = −[Y,X] = −LYX.

For this we first need the following lemma, a modification
of the Taylor-type lemma we used to proveTpR

m � Rm.

Lemma A9.10. Suppose a vector field X∈ X(M) has local
flow θ : (−ε, ε) × V → M around p∈ M. Given any f∈
C∞(M), there exists a smooth function g: (−ε, ε)×V → R,
which we write as(t,q) 7→ gt(q), such that

f
(
θt(q)

)
= f (q) + tgt(q), Xq f = g0(q).

Proof. First we defineht(q) := d
dt f

(
θt(q)

)
= Xθtq f , and

then we setgt(q) :=
∫ 1

s=0
hst(q) ds. For t = 0 this clearly

meansg0(q) = h0(q) = Xq f . Using a change of variables
and the fundamental theorem of calculus, for arbitraryt we
gettgt(q) = f

(
θt(q)

)
− f (q) as desired. �

Theorem A9.11. For any vector fields X,Y on M, the Lie
derivative and Lie bracket coincide, that is, we have LXY =
[X,Y].

Proof. Supposef ∈ C∞(p) is a germ atp ∈ M. We want
to show

(
LXY

)
p f = [X,Y]p f . Choose a representative

f ∈ C∞(U) for the germ and use the lemma (applied to the
manifoldU) to findgt such thatg0 = X f and f ◦θt = f+tgt,
or negatingt as we will, f ◦ θ−t = f − tg−t. Then starting
from the definition ofLXY we find(

LXY
)

p f = lim
t→0

1
t

((
θ−t∗Yθt p

)
f − Yp f

)
= lim

t→0

1
t

(
Yθt p

(
f ◦ θ−t

)
− Yp f

)
= lim

t→0

1
t

(
Yθt p

(
f − tg−t

)
− Yp f

)
=

d
dt

∣∣∣∣∣
t=0

(
Yθt p f

)
− lim

t→0
Yθt pg−t

=
d
dt

∣∣∣∣∣
t=0

(
Y f

)(
θt(p)

)
− Ypg0

= Xp(Y f) − Yp(X f) = [X,Y]p f �

ExerciseA9.12. Supposef : Mm → Nn is a smooth map
andY ∈ X(N) is f -related toX ∈ X(M) while Y′ is f -
related toX′. Then [Y,Y′] is f -related to [X,X′].

End of Lecture 9 Nov 2015

A10. Vector bundles

When we defined the tangent bundleT M of a manifold
Mm, we mentioned that it is a specific example of a smooth
vector bundle overM, with fibers the tangent spacesTpM.
In general, a bundle over abase space Mconsists of atotal
space Ewith a projectionπ : E → M. When there is no
confusion, we often refer toE as the bundle. Thefiberover
p ∈ M is simply the preimageEp := π−1{p}. If S ⊂ M, we
write ES for the restriction of E to S, that is, the bundle
π|S : ES = π−1(S) → S. If π : E → M andπ′ : E′ → M
are two bundles, thenϕ : E → E′ is fiber-preservingif
π′ ◦ ϕ = π, that is, ifϕ(Ep) ⊂ E′p for eachp.

Of course, we only callπ : E→ M a bundle if the fibers are
all isomorphic (in an appropriate sense, to someF); and if
E is locally trivial, locally looking like a product withF.
We now give a precise definition for the case of interest
here.

Definition A10.1. A (smooth) vector bundleof rank k is a
mapπ : Em+k → Mm of manifolds such that

• each fiber is a vector space of dimensionk,

• each point inM has atrivializing neighborhood U,
meaning there is a fiber-preserving diffeomorphism
EU → U ×Rk that is a vector space isomorphism on
each fiber.

ExerciseA10.2. If Mm ⊂ Nn is a submanifold andπ : E→
N is a vector bundle of rankk over N, then the restriction
EM is a vector bundle of rankk overM.

RemarkA10.3. The tangent bundleT M is a rank-m bun-
dle overMm. Any coordinate chart (U, ϕ) is a trivializing
neighborhood where the fiber-preserving diffeomorphism
is

(π,Dϕ) : Xp 7→
(
p,Dpϕ(Xp)

)
.

The restrictionDpϕ : TpM → Rm to each fiber is indeed
linear.

Supposeπ : E → M is a vector bundle. We can coverM
by open setsU that are (small enough to be) both coordi-
nate charts for the manifoldM and trivializing neighbor-
hoods for the bundleE. That is, we have diffeomorphisms
ϕ : U → ϕ(U) ⊂ Rm andψ : EU → U ×Rk, the latter being
fiber-preserving and linear on each fiber. Composing these
gives a diffeomorphism

(ϕ, id) ◦ ψ : EU → ϕ(U) × Rk ⊂ Rm+k,

which is a coordinate chart for the manifoldE.

Definition A10.4. A sectionof a vector bundleπ : E→ M
is a smooth mapσ : M → E such thatπ◦σ = idM, meaning
σ(p) ∈ Ep for eachp ∈ M. The space of all (smooth)
sections is denotedΓ(E).

Vector fields, for example, are simply sections of the tan-
gent bundle:X(M) = Γ(T M). As in that example,Γ(E)
is always a module overC∞(M), using pointwise addition

13
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and scalar multiplication: ifσ, τ ∈ Γ(E) and f ∈ C∞M,
thenσ + f τ is defined pointwise by

(σ + f τ)p = σp + f (p)τp ∈ Ep.

Sometimes we talk about local sectionsσ ∈ Γ(EU) that
are not defined globally on all ofM but only on a subset
U ⊂ M. A trivialization of E over U is equivalent to a
frame, that is, a set ofk sectionsσi ∈ Γ(EU) such that at
eachp ∈ U, theσi(p) form a basis forEp.

Operations on vector spaces yield corresponding opera-
tions (acting fiberwise) on vector bundles. For instance,
if E → M andF → M are two vector bundles overM (of
ranksk andl, respectively) then theirdirect sum(or Whit-
ney sum) E⊕F → M is a vector bundle of rankk+ l, where
we have (E⊕ F)p = Ep⊕ Fp fiberwise. Any neighborhood
which trivializes bothE andF will trivialize their sum.

A11. Dual spaces and one-forms

We next turn to various constructions on a single vector
spaceV. Even though much of what we say could extend
to arbitrary spaces, we assumeV is a real vector space of
finite dimensionk; later it will be a tangent space to a man-
ifold.

Thedual space V∗ := L(V,R) is defined to be the space of
all linear functionalsV → R (also calledcovectors). The
dual spaceV∗ is alsok-dimensional.

As we have mentioned before, a linear mapL : V → W
induces a dual linear mapL∗ : W∗ → V∗ in the opposite
direction, defined naturally by (L∗σ)(v) = σ(Lv). This
construction is functorial in the sense that id∗ = id and(
L ◦ L′

)∗
= (L′)∗ ◦ L∗. One can check thatL is surjective if

and only ifL∗ is injective, and vice versa.

While there is no natural isomorphismV → V∗, any ba-
sis {e1, . . . ,ek} for V determines adual basis{ω1, . . . , ωk}

for V∗ by setting

ωi(ej) = δ
i
j =

0, i , j,

1, i = j.

The covectorωi is the functional that gives theith compo-
nent of a vector in the basis{ei}, that is,v =

∑
ωi(v)ei ,

which we could also write asvi = ωi(v). Similarly,
σ =

∑
σ(ei)ωi .

There is a natural isomorphismV → V∗∗, wherev ∈ V
induces the linear functionalσ 7→ σ(v) on V∗. Given a
linear mapL : V →W, we haveL∗∗ = L.

Applying duality to each fiberEp of a vector bundle gives
the dual bundle E∗ with (E∗)p = (Ep)∗. It is trivialized
over any trivializing neighborhood forE, as one sees by
choosing a frame and taking the dual frame.

Applying duality toTpM gives thecotangent space T∗pM
to M at p. These fit together to form thecotangent bundle,
which (just like the tangent bundle) is trivialized over any
coordinate neighborhood.

A (smooth) sectionω of the cotangent bundle is called a
covector fieldor more often a(differential) one-form. We

write Ω1(M) = Γ(T∗M) for the space of all sections. A
one-formω ∈ Ω1(M) acts on a vector fieldX ∈ X(M)
to give a smooth functionω(X) ∈ C∞(M) via (ωX)(p) =
ωp(Xp) ∈ R. In a coordinate chart (U, ϕ) we have the ba-
sis vector fields∂i ; taking the dual basis pointwise we get
the basis one-formsdxi satisfyingdxi(∂ j) = δi

j . Any one-

formσ ∈ Ω1(U) can be written asσ =
∑
σidxi , where the

componentsσi = σ(∂i) ∈ C∞U are smooth functions.

An important way to construct one-forms is as the differen-
tials of functions. If f ∈ C∞M thenDp f : TpM → T f (p)R,
under the identificationTtR � R, can be thought of as a
covectord fp at p. If X ∈ X(M) is a vector field, then
d f(X) = X f , meaningd fp(Xp) = Xp f for eachp ∈ M.
While Xp f depends on the germ off at p, it only depends
on d f at p: the covectord fp encodes exactly all the direc-
tional derivatives off at p.

Note that the notationdxi we used above for the coordinate
basis one-forms in a coordinate chart (U, ϕ) is consistent:
these are indeed the differentials of the coordinate compo-
nent functionsxi := πi ◦ ϕ : U → R. In coordinates, we
haved f =

∑
(∂i f )dxi , where we recall that∂i f is the ith

partial derivative of the coordinate expressionf ◦ϕ−1 of f .

An interesting example of a one-form is the formdθ onS1.
We coverS1 with coordinate charts of the form

(cosθ, sinθ) 7→ θ ∈ (θ0, θ0 + 2π).

On each such chart, we writedθ for the coordinate basis
one-form (which would also be calleddx1); then we note
that on the overlaps, these formsdθ agree (independent of
the omitted pointθ0).

Unlike for most manifolds, the tangent bundleTS1 is
(globally) trivial; thusT∗S1 is also trivial. Any one-form
is written asf dθ for some smooth functionf . The formdθ
can be thought of as dual to the vector field (− sinθ, cosθ)
onS1, which is∂1 in any of the charts above.

The notationdθ is slightly confusing, since this one-form
is not globally the differential of any smooth function
on S1. Thus onS1, this is a one-form which is “closed”
but not “exact”, meaning thatdθ looks like a differential
locally but not globally. This shows, in a sense we may
explore later, that the spaceS1 has nontrivial “first coho-
mology”, that is, that it has a one-dimensional loop.

One forms are in some sense similar to vector fields, but
we will see later how they (as well as differential forms of
higher degree) are often more convenient. This is mainly
because, while a mapf : M → N does not in general act
on vector fields, it can be used to pull one-forms onN back
to M. To see this, note that

f∗ = Dp f : TpM → T f (p)N

at eachp ∈ M induces a dual map

f ∗ := (Dp f )∗ : T∗f (p)N→ T∗pM.

Givenω ∈ Ω1(N), we definef ∗ω ∈ Ω1(M) by ( f ∗ω)p =

f ∗(ω f (p)) ∈ T∗pM.

A special case is the restrictionω|M of a formω ∈ Ω1N
to a submanifoldMm ⊂ Nn, which is simply the pullback
under the inclusion map. For anyXp ∈ TpM ⊂ TpN at any
p ∈ M ⊂ N we of course simply haveω|M(Xp) = ω(Xp).
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A12. Bilinear forms and Riemannian metrics

A bilinear mapb: V × V → R is called abilinear form
on V. If {e1, . . . ,ek} is a basis forV, then b is given
by bi j = b(ei ,ej): if v =

∑
viei and w =

∑
wiei then

b(v,w) =
∑

i, j bi j viw j . The bilinear formb is calledsym-
metric if b(w, v) = b(v,w) (i.e., if bi j = b ji ) and an-
tisymmetricor alternating if b(w, v) = −b(v,w) (i.e., if
bi j = −b ji ). Any bilinear formb can be uniquely decom-
posedb = b+ + b− into a symmetric partb+ and an anti-
symmetric partb−, defined by 2b±(v,w) = b(v,w)±b(w, v).
Given a linear mapL : V → W, we can pull back any bi-
linear formb onW to a bilinear formL∗b onV, defined by
(L∗b)(v, v′) = b(Lv, Lv′).

We will consider antisymmetric differential forms later.
For now we restrict attention to symmetric bilinear forms
on V. These are in one-to-one correspondance with
quadratic formsq: V → R: of courseq(v) := b(v, v) de-
pends only on the symmetric part ofb and we can recoverb
from q via the formula

2b(v,w) := q(v+ w) − q(v) − q(w).

(Note that much of our discussion would fail for vector
spaces over fields of characteristic 2, where 2= 0.)

A symmetric bilinear formb (or the associated quadratic
form q) is calledpositive semidefiniteif q(v) = b(v, v) ≥ 0
for all v ∈ V. It is calledpositive definiteif q(v) = b(v, v) >
0 for all v , 0. A positive definite form onV is also
called aninner product(or scalar product) onV. An inner
product is what we need to define the geometric notions of
length(or norm) ‖v‖ :=

√
b(v, v) andangle

∠(v,w) := arccos
b(v,w)
‖v‖ ‖w‖

between vectors inV. The pullbackL∗b of a positive defi-
nite form is always positive semidefinite, but it is positive
definite if and only ifL is injective.

Of course the standard example of an inner product is the
Euclidean inner productb(v,w) =

∑
viwi onRm.

The quadratic forms onV form a vector spaceQ(V) of
dimension

(
m+1

2

)
. The positive definite forms form an open

convex cone in this vector space, whose closure consists
of all positive semidefinite forms. (A convex cone is a set
closed under taking positive linear combinations.)

Again, we can apply this construction to the fibers of any
vector bundleE. If E has rankk, then Q(E) has rank(
k+1
2

)
. In case of the tangent bundleT M, we get a vec-

tor bundleQ(T M) of rank
(
m+1

2

)
. A positive definite sec-

tion g ∈ Γ
(
Q(T M)

)
is called aRiemannian metricon M.

It consists of an inner product
〈
Xp,Yp

〉
:= gp(Xp,Yp) on

each tangent spaceTpM, which lets us measure length and
angles between tangent vectors at anyp ∈ M.

In a coordinate chart (U, ϕ), the metricg is given by com-
ponentsgi j := g(∂i , ∂ j) ∈ C∞U so that

g
(∑

αi∂i ,
∑

β j∂ j

)
=

∑
i, j

gi jα
iβ j .

The matrix (gi j ) is of course symmetric and positive defi-
nite at eachp ∈ U.

The standard Riemannian metricg on the manifoldRm

comes from putting the standard Euclidean inner product
on eachTpR

m = Rm. That is, in the standard chart (Rm, id)
we havegi j = δi j .

If f : Mm → Nn is a smooth map, then we can pull back
sections ofQ(T N) to sections ofQ(T M) in the natural
way:

( f ∗g)(Xp,Yp) := g( f∗Xp, f∗Yp).

If g is a Riemannian metric, then of coursef ∗g will be
positive semidefinite at eachp ∈ M, but it will be a Rie-
mannian metric if and only iff is an immersion (meaning
that Dp f is injective for everyp ∈ M, and in particular
m≤ n). Again, an important special case of this pull-back
metric is whenf is the inclusion map of a submanifold;
then we speak of restricting the Riemannian metricg on N
to g|M on the submanifoldM ⊂ N.

In particular, the standard metric onRn restricts to give a
Riemannian metric on any submanifoldMm ⊂ Rn. Last
semester, we studied the casem= 2, n = 3, and called this
metricg(v,w) = 〈v,w〉 the first fundamental form.

End of Lecture 16 Nov 2015

A13. Partitions of unity

The sections of any vector bundleE → M form a vec-
tor space. In particular, there is always the zero section
σp = 0 ∈ Ep. An interesting question is whether there is
a nowhere vanishing section. A trivial bundleM × Rr of
course has constant nonzero sections. Sometimes it turns
out that the tangent bundleT M is trivial – this happens for
instance forS1 or more generally them-torusTm. Other
times, there is no nonvanishing section ofT M. For in-
stance the Hopf index theorem shows this is the case for
any closed orientable surfaceM2 other than the torusT2.
OverS1 there is also a nontrivial line bundle, whose total
space is topologically a Möbius strip. This bundle has no
nonvanishing section.

From this point of view, it might be surprising that the
bundleQ(T M) has nonvanishing sections for any mani-
fold Mm, indeed sections which are positive definite ev-
erywhere. In other words, any manifoldM can be given
a Riemannian metric. This follows from the fact that any
manifold can be embedded inRn for sufficiently largen,
or can be proven more directly by taking convex combi-
nations of standard metrics in different coordinate charts.
Either of these approaches requires the technical tool of a
partition of unity, a collection of locally supported func-
tions whose sum is everywhere one. This gives a general
method for smoothly interpolating between different local
definitions. We do not want to get into questions of sum-
ming infinite sequences; thus we impose a local finiteness
condition.

Definition A13.1. A collection {Sα} of subsets of a topo-
logical spaceX is calledlocally finite if eachp ∈ X has a
neighborhood that intersects only finitely many of theSα.
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Definition A13.2. The support suppf of a function
f : X→ Rn is the closure of the set wheref , 0.

Lemma A13.3. If fα : M → R are smooth functions such
that {suppfα} is locally finite, then

∑
fα defines a smooth

function M→ R.

Proof. The local finiteness means that eachp ∈ M has a
neighborhoodU which meets only a finite number of the
suppfα. OnU, the sum

∑
fα is thus a sum of a fixed finite

collection of smooth functions, hence smooth. �

Note that saying the collection of supports suppfα is lo-
cally finite is stronger than saying eachp ∈ M is contained
in finitely many suppfα, which in turn is stronger than say-
ing only finitely manyfα are positive at eachp ∈ M. This
would suffice to evaluate

∑
fα(p) as a finite sum at eachp.

The stronger conditions ensure that the sum is a smooth
function.

Definition A13.4. A (smooth)partition of unityon a man-
ifold M is a collection of functionsψα : M → R such that

• ψα ≥ 0,

• {suppψα} is locally finite,

•
∑
ψα ≡ 1.

A trivial example is the single constant function 1. The
interest in partitions of unity comes from examples where
the support of eachψα is “small” in some prescribed sense.

Definition A13.5. Given an open cover{Uα}, a partition
of unity {ψβ} is subordinateto the cover{Uα} if for each
β there existsα = α(β) such that the support suppψβ is
contained inUα.

Note that if we want, we can then define a new partition
of unity {ψ̄α} also subordinate to{Uα} and now indexed by
the same index set. Simply setψ̄α to be the sum of those
ψβ for whichα = α(β). (Note that this is not the sum of all
ψβ supported inUα.)

To give the flavor of results about partitions of unity,
we start with the easy case of a compact manifold. All
manifolds have a related property called paracompactness,
which will be enough to extend this result.

Proposition A13.6. Given any open cover{Uα} of a com-
pact manifold Mm, there exists a partition of unity subor-
dinate to this cover.

Proof. For eachp ∈ M, we have p ∈ Uα for some
α = α(p), and we can choose a smooth nonnegative func-
tion fp supported inUα with fp > 0 on some neighbor-
hoodVp 3 p. SinceM is compact, a finite subcollection{
Vp1, . . . ,Vpk

}
coversM. Then f :=

∑
i fpi is a positive

smooth function onM, so we can define a finite collec-
tion of smooth functionsψi := fpi/ f . These form a (finite)
partition of unity, subordinate to the given cover. �

Definition A13.7. An open cover{Vβ} is a refinementof
another open cover{Uα} if eachVβ is contained in some
Uα. A spaceX is paracompactif every open cover has a
locally finite refinement.

ExampleA13.8. The cover
{
(−n,n) : n ∈ N+

}
of R is not

locally finite, but any covering ofR by bounded open sets
is a refinement, so for instance

{
(k − 1, k + 1) : k ∈ Z

}
is a

locally finite refinement.

A standard result in point set topology says that any sec-
ond countable, locally compact Hausdorff space is para-
compact. It is also true that any metric space is paracom-
pact. Some authors replace “second countable” by “para-
compact” in the definition of manifold, which makes no
difference except for allowing uncountably many compo-
nents. (The long line, for instance, is not paracompact.)
It is known that a topological spaceX admits a continu-
ous partition of unity subordinate to any given open cover
if and only if X is paracompact and Hausdorff. We will,
however, explicitly prove what we need for manifolds.

Lemma A13.9. Every manifold M has a countable base
consisting of coordinate neighborhoods with compact clo-
sure.

Proof. Start with any countable base{Bi} and letB be the
subcollection of thoseBi that are contained in some co-
ordinate neighborhood and have compact closure. Now
suppose we are given an open subsetW ⊂ M and a point
p ∈ W. Choose a coordinate chart (U, ϕ) aroundp such
that

U ⊂W, ϕ(p) = 0, B2(0) ⊂ ϕ(U)

and setV := ϕ−1(B1(0)
)
. ThenV has compact closure.

Since{Bi} is a base, we havep ∈ Bi ⊂ V ⊂ U for somei.
But then thisBi is also contained with compact closure
in the coordinate neighborhoodU; thusBi ∈ B. Sincep
andU were arbitrary, this showsB is a base. �

Lemma A13.10. Every manifold M has a “compact ex-
haustion”, indeed a nested family of subsets

∅ ,W1 ⊂W1 ⊂W2 ⊂W2 ⊂ · · ·

with Wk open andWk compact, whose union is M.

Proof. Choose a countable base{Bi} as in the last lemma.
We will choose 1= i1 < i2 < · · · and setWk :=

⋃ik
i=1 Bi .

These automatically have compact closure and are nested.
We just need to choose eachik large enough thatWk ⊃

Wk−1. But this is possible, sinceWk−1 is compact and thus
covered by some finite collection of theBis. Finally, since
ik ≥ k we have thatWk ⊃ Bk so

⋃
Wk ⊃

⋃
Bk = M. �

Corollary A13.11. Given a manifold M, we can find
countable families of subsets Ki ⊂ Oi ⊂ M, for i ∈ N+,
with Ki compact, Oi open,

⋃
Ki = M, and {Oi} locally

finite.

Proof. Using the nestedWi from the lemma, simply set
Ki := Wi rWi−1 andOi := Wi+1 rWi−2 (where we take
W0 = ∅ =W−1). The local finiteness follows from the fact
that anyp is contained in someWj+1 rW j−1, which meets
only four of theOi . �

Corollary A13.12. Any manifold M is paracompact.
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Proof. Suppose{Uα} is an open cover. ChooseOi andKi

as in the last corollary. For eachi, the compact setKi is
covered by the setsOi ∩ Uα, and thus by a finite subcol-
lection, which we nameO j

i for j = 1, . . . , ki . The union of
these finite collections, over alli, is a locally finite refine-
ment. �

We are now set up to adapt the construction of partitions
of unity from the compact case to the general case.

Theorem A13.13. Given any covering{Uα} of a manifold
M, there exists a partition of unity{ψi} subordinate to this
covering.

Proof. Find Ki ⊂ Oi as above. Fixingi, for eachp ∈ Ki we
havep ∈ Uα ∩ Oi for someα = α(p). Choose a smooth
nonnegativefp with support inUα ∩ Oi such thatfp > 0
on some neighborhoodVp 3 p. Finitely many of these
neighborhoods cover the compact setKi . Now letting i
vary, we have a countable family of bump functionsf j

i ,
whose supports form a locally finite family. Thus dividing
by their well-defined, positive, smooth sum gives a parti-
tion of unity. �

Note that ifK ⊂ M is compact, then for any partition of
unity {ψi} for M, only finitely manyψi have support meet-
ing K. (Each p ∈ K has a neighborhood meeting only
finitely many suppψi ; by compactness finitely many such
neighborhoods coverK.)

Now we turn to some applications of these ideas. Note that
if {ψα} is a partition of unity subordinate to a cover{Uα}

and we have functionsfα ∈ C∞(Uα), thenψα fα defines
a smooth function onM supported inUα. Then

∑
ψα fα

makes sense as a locally finite sum of smooth functions.
The same works for sections of any vector bundleE→ M:
local sectionsσα ∈ Γ

(
EUα

)
can be combined to get a global

section
∑
ψασα ∈ Γ(E).

Theorem A13.14.Any manifold Mm admits a Riemannian
metric.

Proof. Let g0 denote the standard (flat) Riemannian metric
on Rm. Let

{
(Uα, ϕα)

}
be an atlas forM. In each chart

the pullbackgα := ϕ∗α(g0) is a Riemannian metric onUα.
Now let {ψα} be a partition of unity subordinate to{Uα}.
We can consider eachψαgα as a global section ofQ(T M),
supported of course inUα. Then

∑
ψαgα is a Riemannian

metric on M, since locally near any point it is a convex
combination of finitely many Riemannian metricsgα. �

An alternative proof of the existence of Riemannian met-
rics simply uses the fact that any manifoldMm can be em-
bedded inRn for large enoughn.

It is not too hard to show thatn = 2m+1 actually suffices –
a generic projection from higher dimensions to dimension
2m + 1 will still give an embedding – but we omit such
discussions. Harder is theWhitney trickused to get down
to n = 2m. Most manifolds actually embed inR2m−1 –
the only exceptions (besidesS1) are closed nonorientable
manifolds of dimensionm = 2k, like closed nonorientable
surfaces.

We will restrict to compact manifolds and not attempt to
get an optimaln. Rather than using a partition of unity
directly, we will repeat the easy proof of the compact case,
using some of the functions involved in the construction
directly.

The theorems are also true in the noncompact case; the
proof uses decompositions like theKi andOi above but re-
quires knowing that each compact piece can be embedded
in the same dimension, say inR2m+1.

Theorem A13.15. Any compact manifold Mm can be em-
bedded in some Euclidean spaceRn.

Proof. For each pointp ∈ M, find a nonnegative function
fp : M → R with f ≡ 1 in some neighborhoodVp 3 p and
with support in a coordinate chart (Up, ϕp). By compact-
ness, a finite number of theVp suffice to coverM. Call
these pointsp1, . . . , pk and simply use the indices 1, . . . k
for the associated objects. Define a mapg: M → Rk(m+1)

as follows:

g(p) :=
(
f1(p)ϕ1(p), . . . , fk(p)ϕk(p), f1(p), . . . , fk(p)

)
.

OnVi we havefi ≡ 1, so theith “block” in g equalsϕi , with
injective differential. Thusg is an immersion on eachVi ,
thus on all ofM. By compactness, it only remains to show
thatg is injective. Ifg(p) = g(q) then in particular we have
fi(p) = fi(q) for all i. Choosei such thatp ∈ Vi ⊂ Ui .
Then fi(q) = 1 impliesq ∈ Ui . But then we also have

ϕi(p) = fi(p)ϕi(p) = fi(q)ϕi(q) = ϕi(q).

Sinceϕi is injective onUi , it follows thatp = q. �

A14. Riemannian manifolds as metric spaces

We fix a Riemmanian manifold (M,g), that is, a smooth
manifold Mm with a fixed Riemannian metricg. Where
convenient, we write

〈
Xp,Yp

〉
:= gp(Xp,Yp) for the inner

product and‖Xp‖ :=
√〈

Xp,Xp
〉

for the length of a tangent
vector.

Definition A14.1. Supposeγ : [a,b] → M is a piecewise
smooth curve. Thelengthof γ (with respect to the Riem-
manian metricg) is

len(γ) :=
∫ b

a
‖γ′(t)‖dt.

Note that by the chain rule, this length is invariant under
reparametrization. The arclength function alongγ is

s(t) := len
(
γ|[a,t]

)
=

∫ t

a
‖γ′(t)‖dt.

and – assumingγ is a piecewise immersion – we can
reparametrizeγ by arclength so that‖γ′‖ ≡ 1.

Note that if the standard Riemannian metric onRn is re-
stricted to a submanifoldMm, then the length of a curveγ
in M as defined above is the same as its length inRn as
considered last semester.
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Definition A14.2. Thedistancebetween two pointsp,q ∈
M is the infimal length

d(p,q) := inf
γ

len(γ)

taken over all piecewise smooth curvesγ in M from p to q.

Note that we could easily apply our definition of length
to more general curves, say to all rectifiable or Lipschitz
curves. Since any curve can be smoothed, in the infimum
definingd it is not important whether we allow all rectifi-
able curves or restrict to smooth curves. We have chosen
an option in the middle.

End of Lecture 23 Nov 2015

Note that (no matter which smoothness class is chosen) the
infimum is not always realized, as one sees for instance if
M = R2 r {0}.

The theorem below will show that (M,d) is a metric space
compatible with the given topology onM. Of course when
M is not connected, pointsp andq in different components
are not connected by any path, sod(p,q) = +∞ by the
above definition. It is easiest to use a definition of metric
spaces that allows infinite distance. If this is not desired,
the following discussion should be restricted to connected
manifolds. Note that a connected component of a man-
ifold is automatically path-connected; any pair of points
can actually be joined by a smooth path, whose length is
necessarily finite.

A few properties ofd are immediate. The constant path
showsd(p, p) = 0. The inverse path showsd(p,q) =
d(q, p). Concatenating paths gives the triangle inequality
d(p, r) ≤ d(p,q) + d(q, r). (This is one reason we chose to
allow piecewise smooth paths.) That is, we see easily that
d is a pseudometric, and to see it is a metric we just need
to show thatd(p,q) = 0 holds only forp = q.

Lemma A14.3. ConsiderRm with the standard Rieman-
nian metric. Then d(p,q) = ‖p− q‖.

Proof. Since both sides are clearly translation invariant, it
suffices to considerq = 0. It is easy to compute the length
of the straight path fromp to 0 as‖p‖. We must show no
other path has less length (and may assumep , 0). So
supposeγ(0) = p andγ(1) = 0. We may assumeγ(t) , 0
for t < 1, since otherwise we replaceγ by γ|[0,t] , which is
not longer. Thus fort < 1 we can writeγ(t) = r(t)β(t)
where‖β(t)‖ = 1 andr(t) > 0. We haver(0) = ‖p‖ and
r(t) → 0 ast → 1. Since〈β, β〉 ≡ 1, we get〈β, β′〉 ≡ 0.
The product ruleγ′ = r ′β + rβ′ then gives

‖γ′‖2 = |r ′|2‖β‖2 + r2‖β′‖2 ≥ |r ′|2.

Thus∫ 1

0
‖γ′‖dt ≥

∫ 1

0
|r ′|dt ≥

∣∣∣∣∣∫ 1

0
r ′ dt

∣∣∣∣∣ = r(0)− r(1) = ‖p‖

as desired. �

Two norms on a vector space induce the same topology if
and only if they are equivalent in the sense that they differ

by at most a constant factor. For finite dimensional vector
spaces, all norms are equivalent. We sketch a proof of the
case we need.

Lemma A14.4. Any two inner products onRm induce
equivalent norms.

Proof. Let ‖v‖ denote the standard Euclidean norm, and
let

∑
gi j viw j denote an arbitrary inner product onRm. On

the compact unit sphereSm−1 = {v : ‖v‖ = 1} the other
norm

√∑
gi j viv j achieves its minimumc > 0 and its max-

imumC. Then by homogeneity, we have

c‖v‖ ≤
√∑

gi j viv j ≤ C‖v‖

for all v, as desired. We note that the optimal constants
depend smoothly ong. �

Corollary A14.5. Suppose g is a Riemannian metric on
an open set U⊂ Rm and K ⊂ U is compact. Then there
exist constants0 < c ≤ C such that

c‖v‖ ≤
√

g(v, v) ≤ C‖v‖

for all p ∈ K and all v∈ TpU = TpR
m � Rm. In particular,

for any curveγ in K from p to q we have

c‖p− q‖ ≤ c len0 γ ≤ leng γ ≤ C len0 γ,

wherelen0 is the length relative to the standard Euclidean
metric andleng is the length relative to g.

Proof. For eachp ∈ K the lemma gives uscp ≤ Cp. As-
suming we choose the optimal constants at each point, they
depend smoothly ongp thus smoothly onp. By compact-
ness we can setc := minK cp andC := maxK Cp. Integrat-
ing the bounds for tangent vectors gives the final statement
for any curveγ. �

This corollary gives the key uniformity needed for the fol-
lowing theorem.

Theorem A14.6. Let (M,g) be a Riemannian manifold.
With the distance function d above, it is a metric space
(M,d). The metric topology agrees with the given manifold
topology on M.

Proof. We have noted thatd is symmetric and satisfies the
triangle inequality. We must proved(p,q) = 0 =⇒ p = q
and show that the topologies agree.

Let D denote the closed unit ball inRm. Given p , q
in M, we can find coordinates (U, ϕ) aroundp such that
ϕ(p) = 0, ϕ(U) ⊃ D andq < ϕ−1(D). On D use the last
corollary to getc,C comparing (ϕ−1)∗g with the standard
metric. Any path fromp to q must first leaveϕ−1D. Its g-
length is at least theg-length of this initial piece, which is
theϕ−1∗g-length of its imageα. Sinceα connects 0 to∂D,
it has Euclidean length at least 1, soϕ−1∗g-length at leastc.
Since this is true for anyγ, we findd(p,q) ≥ c > 0.

We have just seen that a Euclidean ball in a coordinate
chart contains a small metric ball. Thus open sets in the
manifold topology are open in the metric topology. To
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get the converse, consider again coordinates aroundp with
D ⊂ ϕ(U), and findC as in the corollary. Ifϕ(q) is in the
ε-ball around 0= ϕ(p), then they can be joined by a path
of Euclidean length less thanε < 1. Thusp andq can be
joined by a path ofg-length less thanεC. �
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B. DIFFERENTIAL FORMS

We have already seen one-forms (covector fields) on a
manifold. In general, ak-form is a field of alternatingk-
linear forms on the tangent spaces of a manifold. Forms
are the natural objects for integration: ak-form can be in-
tegrated over an orientedk-submanifold. We start with ten-
sor products and the exterior algebra of multivectors.

B1. Tensor products

Recall that, ifV, W andX are vector spaces, then a map
b: V ×W→ X is calledbilinear if

b(v+ v′,w) = b(v,w) + b(v′,w),

b(v,w+ w′) = b(v,w) + b(v,w′),

b(av,w) = ab(v,w) = b(v,aw).

The functionb is defined on the setV ×W. This Cartesian
product of two vector spaces can be given the structure of
a vector spaceV ⊕W, the direct sum. But a bilinear map
b: V ×W → X is completely different from a linear map
V ⊕W→ X.

The tensor product spaceV⊗W is a vector space designed
exactly so that a bilinear mapb: V ×W → X becomes a
linear mapV ⊗W→ X. More precisely, it can be charac-
terized abstractly by the following “universal property”.

Definition B1.1. The tensor productof vector spacesV
andW is a vector spaceV ⊗W with a natural bilinear map
V ×W → V ⊗W, written (v,w) 7→ v ⊗ w, with the prop-
erty that any bilinear mapb: V ×W→ X factors uniquely
throughV ⊗ W. That means there exists a unique linear
mapL : V ⊗W→ X such thatb(v,w) = L(v⊗ w).

This does not yet show that the tensor product exists, but
uniqueness is clear: ifX andY were both tensor products,
then each defining bilinear map would factor through the
other – we get inverse linear maps betweenX andY, show-
ing they are isomorphic.

Note that the elements of the formv⊗w must spanV ⊗W,
since otherwiseL would not be unique. If{ei} is a basis
for V and{ f j} a basis forW then bilinearity gives(∑

i

viei

)
⊗

(∑
j

w j f j

)
=

∑
i, j

viw j ei ⊗ f j .

Clearly then{ei ⊗ f j} spansV ⊗W – indeed one can check
that it is a basis. This is a valid construction for the space
V ⊗W – as the span of theei ⊗ f j – but it does depend on
the chosen bases. If dimV = m and dimW = n then we
note dimV ⊗W = mn.

A much more abstract construction ofV⊗W goes through
a huge infinite dimensional space. Given any setS, thefree
vector spaceonS is the set of all formal finite linear com-
binations

∑
ai si with ai ∈ R andsi ∈ S. (This can equally

well be thought of as the set of all real-valued functions
on the setS which vanish outside some finite subset.) For

instance, ifS hask elements this gives ak-dimensional
vector space withS as basis.

Given vector spacesV and W, let F be the free vector
space over the setV ×W. (This consists of formal sums∑

ai(vi ,wi) but ignores all the structure we have on the set
V ×W.) Now letR⊂ F be the linear subspace spanned by
all elements of the form:

(v+ v′,w) − (v,w) − (v′,w),

(v,w+ w′) − (v,w) − (v,w′),

(av,w) − a(v,w), (v,aw) − a(v,w).

These correspond of course to the bilinearity conditions
we started with. The quotient vector spaceF/Rwill be the
tensor productV ⊗W. We have started with all possible
v⊗ w as generators and thrown in just enough relations to
make the map (v,w) 7→ v⊗ w be bilinear.

The tensor product is commutative: there is a natural linear
isomorphismV⊗W→W⊗V such thatv⊗w 7→ w⊗v. (This
is easiest to verify using the universal property – simply
factor the bilinear map (v,w) 7→ w ⊗ v throughV ⊗W to
give the desired isomorphism.)

Similarly, the tensor product is associative: there is a natu-
ral linear isomorphismV ⊗ (W⊗ X)→ (V ⊗W) ⊗ X. Note
that any trilinear map fromV ×W× X factors through this
triple tensor productV ⊗W⊗ X.

Of special interest are thetensor powersof a single vector
spaceV. We writeV⊗k := V ⊗ · · · ⊗ V. If {ei} is a basis
for V, then

{
ei1 ⊗ · · · ⊗ eik

}
is a basis forV⊗k. In particular

if V has dimensionm, thenV⊗k has dimensionmk. There
is a naturalk-linear mapVk → V⊗k and anyk-linear map
Vk →W factors uniquely throughV⊗k.

One can check that the dual of a tensor product is the tensor
product of duals: (V ⊗ W)∗ = V∗ ⊗ W∗. In particular,
we have (V∗)⊗k = (V⊗k)∗. The latter is of course the set
of linear functionalsV⊗k → R, which as we have seen is
exactly the set ofk-linear mapsVk → R.

Definition B1.2. A graded algebrais a vector spaceA de-
composed asA =

⊕∞

k=0 Ak together with an associative
bilinear multiplication operationA × A→ A that respects
the grading in the sense that the productω · η of elements
ω ∈ Ak andη ∈ A` is an element ofAk+`. Often we consider
graded algebras that are either commutative or anticommu-
tative. Hereanticommutativehas a special meaning: for
ω ∈ Ak andη ∈ A` as above, we haveω · η = (−1)k` η · ω.

ExampleB1.3. Thetensor algebraof a vector spaceV is

⊗∗V :=
∞⊕

k=0

V⊗k.

Here of courseV⊗1 � V andV⊗0 � R. Note that the tensor
product is graded, but is neither commutative nor anticom-
mutative.

B2. Exterior algebra

We now want to focus on antisymmetric tensors, to de-
velop the so-calledexterior algebraor Grassmann algebra
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of the vector spaceV.

Just as we constructedV⊗V = V⊗2 as a quotient of a huge
vector space, adding relators corresponding to the rules for
bilinearity, we construct the exterior powerV ∧ V = Λ2V
as a further quotient. In particular, lettingS ⊂ V⊗V denote
span of the elementsv ⊗ v for all v ∈ V, we setV ∧ V :=
(V⊗V)/S. We writev∧w for the image ofv⊗w under the
quotient map. Thusv∧ v = 0 for anyv. From

(v+ w) ∧ (v+ w) = 0

it then follows thatv∧ w = −w∧ v. If {ei : 1 ≤ i ≤ m} is a
basis forV, then

{ei ∧ ej : 1 ≤ i < j ≤ m}

is a basis forV ∧ V.

Higher exterior powers ofV can be constructed in the same
way, but formally, it is easiest to construct the wholeex-
terior algebraΛ∗V =

⊕
ΛkV at once, as a quotient of

the tensor algebra⊗∗V, this time by the two-sided ideal
generated by the same setS = {v ⊗ v} ⊂ V ⊗ V ⊂ ⊗∗V.
This means the span not just of the elements ofS but also
of their products (on the left and right) by arbitrary other
tensors. Elements ofΛ∗V are calledmultivectorsand ele-
ments ofΛkV are more specificallyk-vectors.

End of Lecture 30 Nov 2015

Again we use∧ to denote the product on the resulting (still
graded) quotient algebra. This product is called thewedge
productor more formally theexterior product. We again
getv∧ w = −w∧ v for v,w ∈ V. More generally, for any
v1, . . . , vk ∈ V and any permutationσ ∈ Σk of {1, . . . , k},
this implies

vσ1 ∧ · · · ∧ vσk = (sgnσ) v1 ∧ · · · ∧ vk.

A special case is the product of ak-vectorα with an `-
vectorβ where we use a cyclic permutation to get the anti-
commutative lawα ∧ β = (−1)k`β ∧ α.

If {ei : 1 ≤ i ≤ m} is a basis forV, then

{ei1···ik := ei1 ∧ · · · ∧ eik : 1 ≤ i1 < · · · < ik ≤ m}

is a basis forΛkV. In particular, dimΛkV =
(
m
k

)
; we have

Λ0V = R but alsoΛmV � R, spanned bye12···m. Fork > m
there are no antisymmetric tensors:ΛkV = 0. The exterior
algebra has dimΛ∗V =

∑m
k=0

(
m
k

)
= 2m. Thedeterminant

has a natural definition in terms of the exterior algebra: if
we havem vectorsv j ∈ V given in terms of the basis{ei}

asv j =
∑

i vi
jei then

v1 ∧ · · · ∧ vm = det
(
vi

j
)
e12···m.

(The components of the wedge product ofk vectorsvi are
given by the variousk×k minor determinants of the matrix(
vi

j

)
.)

The exterior powers ofV with the naturalk-linear maps
Vk → ΛkV are also characterized by the following univer-
sal property. Given any alternatingk-linear mapVk → X to
any vector spaceX, it factors uniquely throughΛkV. That

is, alternatingk-linear maps fromVk correspond to linear
maps fromΛkV. (One can also phrase the universality for
all k together in terms of homomorphisms of anticommu-
tative graded algebras.)

So far we have developed everything abstractly and alge-
braically. But there is a natural geometric picture of howk-
vectors inΛkV correspond tok-planes (k-dimensional lin-
ear subspaces) inV. More precisely, we should talk about
simple k-vectors here: those that can be written in the form
v1∧· · ·∧vk. We will see that, for instance,e12+e34 ∈ Λ2R

4

is not simple.

A nonzero vectorv ∈ V lies in a unique oriented 1-plane
(line) in V; two vectors represent the same oriented line if
and only if they are positive multiples of each other. Now
suppose we have vectorsv1, . . . , vk ∈ V. They are linearly
independent if and only if 0, v1 ∧ · · · ∧ vk ∈ ΛkV. Two
linearly independentk-tuples (v1, . . . , vk) and (w1, . . . ,wk)
represent the same orientedk-plane if and only if the
wedge productsv1 ∧ · · · ∧ vk andw1 ∧ · · · ∧ wk are pos-
itive multiples of each other, that is, if they lie in the same
ray in ΛkV. (Indeed, the multiple here is the ratio ofk-
areas of the parallelepipeds spanned by the twok-tuples,
given as the determinant of the change-of-basis matrix for
thek-plane.)

We let Gk(V) denote the set of orientedk-planes inV,
called the(oriented) Grassmannian. Then the set of simple
k-vectors inΛkV can be viewed as the cone overGk(V). (If
we pick a norm onΛkV, say induced by an inner product
on V, then we can think ofGk(V) as the set of “unit” sim-
ple k-vectors, say those arising from an orthonormal basis
for somek-plane.)

(Often, especially in algebraic geometry, one prefers to
work with the unorientedGrassmannianGk(V)/±. It is
most naturally viewed as lying in the projective space

P(V) :=
(
V r {0}

)
/
(
R r {0}

)
.

In algebraic geometry one typically also replacesR by C
throughout.)

If we give V an inner product, then anyk-plane has a
unique orthogonal (m− k)-plane. This induces an isomor-
phism betweenGkV and Gm−kV. It extends to a linear,
norm-preserving isomorphism

? : ΛkV → Λm−kV

called the Hodge star operator. (Recall that both these
spaces have the same dimension

(
m
k

)
.) If v is a simplek-

vector, then?v is a simple (m− k)-vector representing the
orthogonal complement. In particular, if{ei} is an oriented
orthonormal basis forV, then

?
(
e1 ∧ · · · ∧ ek

)
= ek+1 ∧ · · · ∧ em

and similarly each other vector in our standard basis for
ΛkV maps to a basis vector forΛm−kV, possibly with a
minus sign.

Classical vector calculus in three dimensions uses the
Hodge star implicitly: instead of talking about bivectors
and trivectors, we introduce the cross product and triple
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product:

v×w := ?(v∧w), [u, v,w] := 〈u, v× w〉 = ?(u∧ v∧w).

But even physicists noticed that such vectors and scalars
transform differently (say under reflection) than ordinary
vectors and scalars, and thus refer to them as pseudovec-
tors and pseudoscalars.

For dimV = m, we can use these terms as follows:

• scalarsare elements ofR = Λ0V,

• vectorsare elements ofV = Λ1V,

• pseudovectorsare elements of?V = Λm−1V, and

• pseudoscalarsare elements of?R = ΛmV.

Of course, these are in a sense the easy cases. For thesek,
any k-vector is simple. We can identify bothG1V and
Gm−1V as the unit sphere inV = Λ1V � Λm−1V. For
2 ≤ k ≤ m − 2 on the other hand, not allk-vectors are
simple, andGkV has lower dimension than the unit sphere
in ΛkV. Indeed, it can be shown that the set of simplek-
vectors (the cone overGkV) is given as the solutions to a
certain set of quadratic equations called the Grassmann–
Plücker relations. For instance

∑
ai j ei j ∈ Λ2R

4 is a simple
2-vector if and only if

a12a34 − a13a24 + a14a23 = 0.

This shows thatG2R
4 is a smooth 4-submanifold in the

unit sphereS5 ⊂ Λ2R
4.

If we choose an inner product onV, then thinking about
how oriented orthonormal bases for ak-plane and its or-
thogonal complement fit together, we see that we can iden-
tify GkV = S O(m)/

(
S O(k) × S O(m− k)

)
. In particular, it

is a smooth manifold of dimensionk(m− k).

B3. Differential forms

Many textbooks omit discussion of multivectors and con-
sider only the dual spaces. (This is presumably because the
abstract definition of tensor powers and then exterior pow-
ers as quotient spaces seems difficult.) Recall that vector
subspaces and quotient spaces are dual operations, in the
sense that ifY ⊂ X is a subspace, then the dual (X/Y)∗

of the quotient can be naturally identified with a subspace
of X∗, namely with theannihilator Yo of X∗, consisting of
those linear functionals onX that vanish onY:

(X/Y)∗ � Yo ⊂ X∗.

Using this, we find that

ΛkV := (ΛkV)∗ ⊂
(
V⊗k)∗

is the subspace of thosek-linear mapsVk → R that are
alternating.

While it is easy to construct the wedge product on multi-
vectors as the image of the tensor product under the quo-
tient map, the dual wedge product onΛ∗V requires con-
structing a map to the alternating subspace. Forω, η ∈

Λ1V = V∗ we set

ω ∧ η := ω ⊗ η − η ⊗ ω.

More generally, forω ∈ ΛkV and η ∈ Λ`V we use an
alternating sum over all permutationsσ ∈ Σk+`:

(ω ∧ η)(v1, . . . , vk+`) :=

1
k!`!

∑
σ

(sgnσ)ω(vσ1, . . . , vσk) η(vσ(k+1), . . . , vσ(k+`)).

The factor is chosen so that if{ei} is a basis forV and{ωi}

is the dual basis forΛ1V = V∗ then{
ωi1···ik := ωi1 ∧ · · · ∧ ωik}

is the basis ofΛkV dual to the basis{ei1···ik} for ΛkV.

Putting these spaces together, we get an anticommutative
graded algebra

Λ∗V :=
m⊕

k=0

ΛkV.

Again the dimension of each summand is
(
m
k

)
so the whole

algebra has dimension 2m.

If L : V → W is a linear map, then for eachk we get an
induced mapL∗ : ΛkW→ ΛkV defined naturally by

L∗ω(v1, . . . , vk) = ω(Lv1, . . . , Lvk).

Of course, we have introduced these ideas in order to apply
them to the tangent spacesTpM to a manifoldMm. We get
dual bundlesΛkT M andΛkT M of rank

(
m
k

)
.

Definition B3.1. A (differential) k-formon a manifoldMm

is a (smooth) section of the bundleΛkT M. We write
ΩkM = Γ(ΛkT M) for the space of allk-forms, which
is a module overC∞M = Ω0M. Similarly we write
Ω∗M = Γ(Λ∗T M) =

⊕
ΩkM for the exterior algebra

of M.

If ω ∈ ΩkM is a k-form, then at each pointp ∈ M the
valueωp ∈ Λ

kTpM is an alternatingk-linear form onTpM
or equivalently a linear functional onΛkTpM. That is, for
anyk vectorsX1, . . . ,Xk ∈ TpM we can evaluate

ωp(X1, . . . ,Xk) = ω(X1 ∧ · · · ∧ Xk) ∈ R.

In particular,ωp naturally takes values on (weighted)k-
planes inTpM; as we have mentioned,k-forms are the nat-
ural objects to integrate overk-dimensional submanifolds
in M.

If f : Mm→ Nn is a smooth map andω ∈ ΩkN is ak-form,
then we can pull backω to get ak-form f ∗ω on M defined
by

( f ∗ω)p(X1, . . . ,Xk) = ω f (p)((Dp f )X1, . . . , (Dp f )Xk).

(Of course this vanishes ifk > m.) As a special case, if
f : M → N is the embedding of a submanifold, thenf ∗ω =
ω|M is the restriction of ω to the submanifoldM, in the
sense that we consider only the values ofωp(X1, . . . ,Xk)
for p ∈ M ⊂ N andXi ∈ TpM ⊂ TpN.
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ExerciseB3.2. Pullback commutes with wedge product in
the sense that

f ∗(ω ∧ η) = ( f ∗ω) ∧ ( f ∗η)

for f : M → N andω, η ∈ Ω∗N.

In a coordinate chart (U, ϕ) we have discussed the coordi-
nate bases{∂i} and{dxi} for TpM andT∗pM, respectively,
the pullbacks underϕ of the standard bases onRm. Simi-
larly, {

dxi1 ∧ · · · ∧ dxik : 1 ≤ i1 < · · · < ik ≤ m
}

forms the standard coordinate basis fork-forms; anyω ∈
Ωk(M) (or more properly its restriction toU) can be ex-
pressed uniquely as

ω|U =
∑

i1<···<ik

ωi1···ikdxi1 ∧ · · · ∧ dxik

for some smooth functionsωi1···ik ∈ C∞U. To simplify
notation, we often write this asω|U =

∑
I ωI dxI in terms

of themulti-index I= (i1, . . . , ik).

B4. Exterior derivative

Zero-forms are of course just scalar fields, that is, smooth
functions. We have also already considered one-forms,
which are simply covector fields. In particular, given
f ∈ Ω0M, its differentiald f ∈ Ω1M is a one-form with
d f(X) = X f for any vector fieldX. We now want to gener-
alize this to define for anyk-formω its exterior derivative,
a (k+ 1)-formdω.

Definition B4.1. An antiderivationon the graded alge-
bra (Ω∗M,∧) is a linear mapD : Ω∗M → Ω∗M satisfy-
ing the following version of the Leibniz product rule for
ω ∈ ΩkM andη ∈ Ω`M:

D(ω ∧ η) = (Dω) ∧ η + (−1)kω ∧ (Dη).

To remember the sign here, it can help to think ofD as
behaving like a one-form when it “moves past”ω.

Proposition B4.2. Any antiderivation onΩ∗M is a local
operator in the sense that ifω = η on an open set U then
Dω = Dη on U.

Proof. By linearity it suffices to consider the caseη ≡ 0,
ω ∈ ΩkM. Given anyp ∈ U, we can find a functionf ∈
C∞M supported inU with f (p) = 1. Then fω ≡ 0 on M
and it follows that

0 = D( fω) = (D f ) ∧ ω + f ∧ (Dω).

At p this gives 0= D f ∧ 0+ 1(Dω)p = (Dω)p as desired.
�

End of Lecture 7 Dec 2015

Theorem B4.3.For any manifold Mm, the differential map
d: Ω0M → Ω1M has a uniqueR-linear extension to an
antiderivation d: Ω∗M → Ω∗M satisfying d2 = d ◦ d = 0.
This antiderivation has degree1 in the sense that it sends
ΩkM toΩk+1M; it is called theexterior derivative.

Proof. First supposeg, f i ∈ C∞M so thatg d f1∧· · ·∧d fk ∈

ΩkM. The two conditions ond together automatically im-
ply that

d
(
g d f1 ∧ · · · ∧ d fk) = dg∧ d f1 ∧ · · · ∧ d fk ∈ Ωk+1M.

In a coordinate chart (U, ϕ) of course everyk-form ω can
be expressed as a sum of terms of this form. The propo-
sition above shows we can work locally in such a chart.
Thus we know the exterior derivative (if it exists) must be
given in coordinates by

d
(∑

I

ωI dxI ) =∑
I

dωI ∧ dxI =
∑

I

∑
i

∂iωI dxi ∧ dxI

=
∑

I

∑
i

∂iωI dxi ∧ dxi1 ∧ · · · ∧ dxik .

(Note that terms here wherei = i j will vanish; for the other
terms, reordering the factors in this last wedge product –
to put i in increasing order with thei js and thus obtain a
standard basis element – will introduce signs.)

Now a straightforward calculation shows that the operator
d defined by this formula really is an antiderivation locally:

d
(
(a dxI ) ∧ (b dxJ)

)
= d(ab) ∧ dxI ∧ dxJ =

(
(da)b+ a(db)

)
∧ dxI ∧ dxJ

= (da∧ dxI ) ∧ (b dxJ) + (−1)k(a dxI ) ∧ (db∧ dxJ),

whereI = (i1, . . . , ik) is ak-index. Clearly this antideriva-
tion has degree 1 as claimed.

Now sinced is determined uniquely, if we have overlap-
ping charts (U, ϕ) and (V, ψ), then onU ∩ V we must get
the same result evaluatingd in either chart. Finally, since
the exterior algebra operations+ and∧ are defined point-
wise, to check thatd is an antiderivation andd2 = 0 it
suffices that we know these hold locally. �

Proposition B4.4. The pullback of forms under a map
f : Mm→ Nn commutes with the exterior derivative. That
is, forω ∈ Ω∗N we have d( f ∗ω) = f ∗(dω).

Proof. It suffices to work locally around a pointp ∈ M.
Let (V, ψ) be coordinates aroundf (p). By linearity we can
assumeω = a dyi1 ∧ · · · ∧ dyik in these coordinates. For
k = 0 we haveω = a ∈ C∞N. For anyXp ∈ TpM we have

( f ∗da)(Xp) = (da)( f∗Xp) = ( f∗Xp)a

= Xp( f ∗a) = (d f∗a)(Xp).

Note that if (f 1, . . . , f n) = ψ ◦ f is the coordinate expres-
sion of f (on some neighborhood ofp) then the formula
above givesf ∗(dyi) = d f i . Since pullback commutes with
wedge products, fork > 0 we then have

f ∗ω = ( f ∗a) d f i1 ∧ · · · ∧ d f ik
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and so

d( f ∗ω) = d( f ∗a) ∧ d f i1 ∧ · · · ∧ d f ik

= f ∗(da) ∧ d f i1 ∧ · · · ∧ d f ik

= f ∗
(
da∧ dyi1 ∧ · · · ∧ dyik) = f ∗(dω). �

Thecontractionof a form with a vector field (also known
as interior multiplication) has a seemingly trivial defini-
tion: if ω ∈ ΩkM andX ∈ X(M) thenιXω ∈ Ωk−1 is given
by

ιXω(X2, . . . ,Xk) := ω(X,X2, . . . ,Xk).

First note that this is a purely pointwise operation, so we
could define it onΛkV for a single vector space – even
proving the next proposition at that level – but we won’t
bother. (It is the adjoint of the operator onΛkV given by
left multiplication byX.)

Next note that for a 1-form,ιX(ω) = ω(X) ∈ Ω0M. For a
0-form f ∈ Ω0M = C∞M we setιX f = 0.

Proposition B4.5. For any X, the operationιX is an an-
tiderivation onΩ∗M of degree−1 whose square is zero.

Proof. It is clear thatιX ◦ ιX = 0 since

ιXιXω(. . .) = ω(X,X, . . .) = 0.

The antiderivation property is

ιX(ω ∧ η) = (ιXω) ∧ η + (−1)kω ∧ (ιXη)

for ω ∈ ΩkM; we leave the proof as an exercise. �

We will later discuss Cartan’s Magic Formula, relating this
contraction to exterior and Lie derivatives.

B5. Volume forms and orientation

An orientationon anm-dimensional vector spaceV is a
choice of component ofΛmV r {0} � R r {0}, that is a
choice of a nonzerom-form in ω ∈ ΛmV (up to positive
real multiples). IfV is oriented byω, then an ordered ba-
sis {e1, . . . ,em} for V is said to bepositively orientedif
ω(e1, . . . ,em) > 0. Often an orientation onV is defined
through such a basis (to avoid the machinery of the exte-
rior algebra).

A volume formon a manifoldM is a nowhere vanishing
m-form ω ∈ ΩmM. We sayM is orientableif it admits a
volume form. (The Möbius strip and the Klein bottle are
examples of nonorientable 2-manifolds.) Anorientation
of M is a choice of volume form, up to pointwise multipli-
cation by positive smooth functionsλ > 0 ∈ C∞M. This
is the same as a continuous choice of orientations of the
tangent spacesTpM. A connected orientable manifold has
exactly two orientations.

The standard orientation onRm is given bydx1∧· · ·∧dxm,
so that{e1, . . . ,em} is an oriented basis for eachTpM.

An equivalent definition of orientation (analogous to that
of smooth structures) is through a coherently oriented atlas
for M. Here two charts (U, ϕ) and (V, ψ) are coherently
orientedif the transition functionϕ ◦ψ−1 is an orientation-
preserving diffeomorphism ofRm.

Suppose nowMm is an oriented Riemannian manifold. At
any p ∈ M there is a uniqueΩp ∈ Λ

mTpM such that
Ωp(e1, . . . ,em) = +1 for any oriented orthonormal basis
{e1, . . . ,em} for TpM. These fit together to give theRie-
mannian volume formΩ ∈ ΩmM. In terms of the Hodge
star, we haveΩ = ?1.

Given an oriented coordinate chart (U, ϕ) then at anyp ∈
U we have the coordinate basis{∂i} for TpM but can also
choose an oriented orthonormal basis{ek}. Then of course
for some matrixA =

(
ak

i

)
we have∂i =

∑
k ak

i ek. Since
〈ek, è 〉 = δk`, we get

gi j =
〈
∂i , ∂ j

〉
=

〈∑
ak

i ek,
∑

a`j , è
〉
=

∑
k

ak
i a

k
j .

As a matrix equation, we can write
(
gi j

)
= AT A, which

implies det(gi j ) = (detA)2. Since both bases are positively
oriented, we know detA > 0, so detA = +

√
detg. (Note

that while abbreviating det(gi j ) as detg is common, it un-
fortunately hides the fact that this is an expression in par-
ticular coordinates.)

Now we compute

Ωp(∂1, . . . , ∂m) = (detA)Ωp(e1, . . . ,em) = detA =
√

detg.

Equivalently, we have the coordinate expression

Ω =
√

detg dx1 ∧ · · · ∧ dxm.

On an oriented Riemannian manifold (Mm,g), anym-form
ω is a multipleω = fΩ = ? f of the volume formΩ, with
f ∈ C∞M.

B6. Integration

We will base our integration theory on the Riemann inte-
gral. Recall that given an arbitrary real-valued functionf
on a boxB = [a1,b1] × · · · × [am,bm] ⊂ Rm we define up-
per and lower Riemann sums over arbitrary partitions into
small boxes – the functionf is Riemann integrableif these
have the same limiting value, which we call∫

B
f dx1 · · · dxm.

Recall also thatA ⊂ Rm has (Lebesgue)measure zeroif
for eachε > 0 there is a covering ofA by countably many
boxes of total volume less thanε. The image of a set of
measure zero under a diffeomorphism (or indeed under any
locally Lipschitz map) again has measure zero. Thus we
can also speak of subsets of measure zero in a manifoldM.

Given a functionf : D → R with D ⊂ Rm, we define its
extension by zerof̄ : Rm → R by setting f̄ = f on D
and f̄ = 0 elsewhere. Lebesgue proved the following: A
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bounded functionf : D → R defined on a bounded do-
main D ⊂ Rm is Riemann integrable if and only if̄f is
continuous almost everywhere, meaning that its set of dis-
continuities has measure zero.

For instance, the characteristic functionχD is Riemann in-
tegrable ifD is bounded and its boundary∂D has measure
zero. Then we callD adomain of integration.

Because a continuous functionf on a compact set is
bounded, we find: IfU ⊂ Rm is open andf : U → R
has compact support inU, then f is Riemann integrable.

We writeΩk
cM ⊂ ΩkM for the subspace ofk-forms with

compact support. (IfM is compact, then of courseΩk
c =

Ωk.)

Definition B6.1. If ω ∈ Ωm
c U is anm-form with compact

support inU ⊂ Rm then of course we can write uniquely
ω = f dx1 ∧ · · · ∧ dxm. We define∫

U
ω =

∫
U

f dx1 ∧ · · · ∧ dxm :=
∫

U
f dx1 · · · dxm.

Note that we use the standard basis element forΛmRm

here. Otherwise we have for instance
∫

f dx2 ∧ dx1 =

−
∫

f dx1 dx2.

Lemma B6.2. If ϕ : U → V is a diffeomorphism of con-
nected open sets inRm and ω an m-form with compact
support in V, then∫

U
ϕ∗ω = ±

∫
V
ω,

where the sign depends on whetherϕ is orientation-
preserving or not.

Proof. Usexi for the standard coordinates onU andy j for
those onV. Thenω = f dy1 ∧ · · · ∧ dym for some func-
tion f . Writing ϕi = yi ◦ ϕ, the Jacobian matrix ofϕ is
J := (∂ϕi/∂x j). We havedϕi = ϕ∗dyi and so

dϕ1 ∧ · · · ∧ dϕm = detJ dx1 ∧ · · · ∧ dxm.

Thus ∫
U
ϕ∗ω =

∫
U

( f ◦ ϕ) dϕ1 ∧ · · · ∧ dϕm (1)

=

∫
U

( f ◦ ϕ) detJ dx1 ∧ · · · ∧ dxm. (2)

On the other hand, the standard change-of-variabes for-
mula says∫

V
ω =

∫
V

f dy1 · · · dym =

∫
U

( f ◦ϕ) |detJ|dx1∧· · ·∧dxm.

SinceU is connected, detJ has a constant sign, depending
on whetherϕ is orientation-preserving. �

Now supposeMm is an oriented manifold, andω ∈ Ωm
c M

is a compactly supportedm-form. Then we will define∫
M
ω ∈ R.

First consider a single (oriented) chart (U, ϕ) and assume
ω ∈ Ωm

c U. Then we define∫
U
ω :=

∫
ϕ(U)

(
ϕ−1)∗ω.

We claim this is independent ofϕ: if (U, ψ) is another ori-
ented chart, then using the diffeomorphismϕ◦ψ−1 we find∫

ϕ(U)

(
ϕ−1)∗ω = ∫

ψ(U)

(
ϕ ◦ ψ−1)∗(ϕ−1)∗ω = ∫

ψ(U)

(
ψ−1)∗ω.

In general, we choose a partition of unity{ fα} subordinate
to an oriented atlas

{
(Uα, ϕα)

}
. For anyω ∈ Ωm

c M, note
thatω =

∑
α fαω is a finite sum and each summand has

compact support in the respectiveUα. We define∫
M
ω :=

∑
α

∫
Uα

fαω.

We just need to check this is independent of the choice of
atlas and partition of unity.

So suppose{gβ} is a partition of unity subordinate to an-
other oriented atlas

{
(Vβ, ϕβ)

}
. Then we have∑

α

∫
Uα

fαω =
∑
α

∫
Uα

fα
∑
β

gβω

=
∑
α

∑
β

∫
Uα

fαgβω =
∑
α

∑
β

∫
Uα∩Vβ

fαgβω.

But by symmetry, we see that the last expression also
equals

∑
β

∫
Vβ

gβω, as desired.

Note: If −M denotes the manifoldM with opposite orien-
tation, then we have

∫
−M

ω = −
∫

M
ω

Note: form = 0, a compact oriented 0-manifold is a finite
collection of points with signs±1: we writeM =

∑
pi −∑

q j . (Here we cannot use charts to test orientation.) The
integral of a zero-form (function)f : M → R is defined to
be

∫
M

f =
∑

i f (pi) −
∑

j f (q j).

We have developed this theory for smooth forms, partly
just because we have no notation for possibly discontin-
uous sections ofΛmT M. As long asω is bounded, van-
ishes outside some compact set and is continuous almost
everywhere, we can repeat the calculations above with no
changes to define

∫
M
ω.

End of Lecture 14 Dec 2015

On an oriented Riemannian manifoldM (or any manifold
with a specified volume formΩ), we define the volume
integral of a functionf ∈ C∞M as∫

M
f dvol :=

∫
M

fΩ =
∫

M
? f .

Note that if we switch orientation, the volume form on−M
is−Ω, so the volume integral is independent of orientation:∫
−M

f dvol =
∫

M
f dvol.

For a domainD ⊂ M (compact with boundary of measure
zero) we define its volume to be

vol D :=
∫

D
1dvol =

∫
D
Ω :=

∫
M
χDΩ ≥ 0.
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The volume of the manifold is vol(M) :=
∫

M
1dvol =∫

M
Ω. This works directly if M is compact; for a non-

compact manifold we can take a limit over an appropriate
compact exhaustion and reach either a finite value or+∞.

B7. Manifolds with boundary

SupposeMm is an manifold with boundary; its boundary
∂M is an (m − 1)-manifold. At p ∈ ∂M ⊂ M we see
thatTp∂M ⊂ TpM is a hyperplane, cuttingTpM into two
parts, consisting of theinward-andoutward-pointingvec-
tors atp.

An orientation onM induces an orientation on∂M as fol-
lows. Suppose (v, v1, . . . , vm−1) is an oriented basis for
TpM, wherev is outward-pointing andvi ∈ Tp∂M. Then
(v1, . . . , vm−1) is by definition an oriented basis forTp∂M.
(There are four obvious possible conventions here – either
and inward- or outward-pointing vector could be put either
before or after the basis forTp∂M. Our convention works
best for Stokes’ Theorem.

Equivalently, suppose the orientation ofM is given by a
volume formΩ, and we pick a vector fieldX ∈ X(M)
which is outward-pointing along∂M. Then the contraction
ιX(Ω) restricted to∂M is a volume form on the boundary
which defines its orientation.

B8. Stokes’ Theorem

SupposeMm is an oriented manifold with boundary andω
is an (m− 1)-form with compact support onM. Stokes’
Theorem then says

∫
M

dω =
∫
∂M
ω. We seed2 = 0 is dual

to the condition that∂(∂M) = ∅:

0 =
∫

M
d2η =

∫
∂M

dη =
∫
∂∂M

η = 0.

Stokes’ Theorem is quite fundamental, and can be used
for instance to definedω for nonsmooth forms, or∂M for
generalized surfacesM.

RemarkB8.1. Of course in
∫
∂M
ω, the integrand is really

the restriction or pullbackω|∂M = i∗ω of ω to ∂M. This is
now a top-dimensional form on the (m− 1)-manifold∂M.

When M is a manifold without boundary (∂M = ∅) of
course Stokes’ Theorem reduces to

∫
M

dω = 0. It turns out
that on a connected orientable closed manifoldMm, anm-
form η can be written asdω for someω if and only if

∫
M
η

vanishes; we will return to such questions after proving the
theorem.

Stokes himself would probably not recognize this gener-
alized version of his theorem. The modern formulation in
terms of differential forms is due mainly to Élie Cartan.
The classical cases are those in low dimensions. ForM an
interval (m = 1), we just have the fundamental theorem
of calculus; for a domain inR2, we have Green’s theorem;
for a domain inR3, we have Gauss’s divergence theorem;
and for a surface with boundary inR3 we have the theorem
attributed to Stokes.

These special cases are of course normally formulated not
with differential forms and the exterior derivative, but with
gradients of functions, and divergence and curl of vector
fields. More precisely, on any Riemannian manifold, we
use the inner product to identifyTpM andT∗pM and thus
vector fields with one-forms. The gradient∇ f of a function
f ∈ C∞M is the vector field corresponding in this way to
d f . In particular, for any vector fieldX, we have

g(∇ f ,X) = 〈∇ f ,X〉 = d f(X) = X f.

On R3 we further use the Hodge star to identify vectors
with pseudovectors and thus one-forms with two-forms,
and to identify scalars with pseudoscalars and thus zero-
forms with three-forms. Then div, grad and curl are all
just the exterior derivative. Explicitly, we identify both the
one-formp dx+ q dy+ r dz and the two-formp dy∧ dz+
q dz∧ dx+ r dx∧ dywith the vector fieldp∂x + q∂y + r∂z,
and the three-formf dx∧dy∧dzwith the functionf . Then
d: Ω0 → Ω1 is the gradient as above,d: Ω1 → Ω2 is the
curl, andd: Ω2→ Ω3 is the divergence.

Our version of Stokes’ theorem is (as mentioned above)
certainly not the most general. For instance, we could eas-
ily allow “manifolds with corners”, like compact domains
with piecewise smooth boundaries. (It should be clear that
the divergence theorem inR3 is valid for a cube as well as
a sphere.)

Theorem B8.2 (Stokes).Suppose Mm is an oriented man-
ifold with boundary andω is an (m− 1)-form on M with
compact support. Then∫

M
dω =

∫
∂M
ω.

Proof. Both sides are linear and integrals are defined via
partitions of unity. In particular

dω =
∑

d( fαω) =
(
d
∑

fα
)
ω +

∑
fα dω =

∑
fα dω,

we see that it suffices to consider the case whenω is
compactly supported inside one oriented coordinate chart
(U, ϕ). We may also assume thatϕ(U) = Rm or ϕ(U) =
Hm, depending on whetherU is disjoint from∂M or not.
Since the statement of the theorem is invariant under pull-
back by a diffeomorphism, we have shown it suffices to
consider the cases (a)M = Rm and (b)M = Hm.

After scaling, we can assume thatω is compactly sup-
ported within the cube (a)Q := (−1,0)m or (b) Q :=
(−1,0] × (−1,0)m−1. In either case, we write

ω =

m∑
j=1

(−1) j−1ω j dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm

with suppω j ⊂ Q, so that

dω =
∑ ∂ω j

∂x j
dx1 ∧ · · · ∧ dxm,

meaning that∫
M

dω =
∑∫

Q

∂ω j

∂x j
dx1 · · · dxm.

26



J.M. Sullivan, TU Berlin B: Differential Forms Diff Geom II, WS 2015/16

Now for eachj we have∫
Q

∂ω j

∂x j
=

∫ 0

−1
· · ·

∫ 0

−1

(∫ 0

−1

∂ω j

∂x j
dxj

)
dx1 · · · d̂xj · · · dxm.

By the fundamental theorem of calculus, the inner inte-
gral in parentheses equalsω j(. . . ,0, . . .) − ω j(. . . ,−1, . . .).
Sinceω has compact support inQ, this vanishes forj > 1.
In case (a) it vanishes even forj = 1, completing the proof
that

∫
M

dω = 0.

In case (b) we have obtained∫
Hm

dω =
∫ 0

−1
· · ·

∫ 0

−1
ω1(0, x2, . . . , xm) dx2 · · · dxm.

Now consider the restriction ofω to ∂Hm, the pullback
under the inclusion mapi. Sincei∗dx1 = 0 we immediately
get

i∗ω = ω1 dx2 ∧ · · · ∧ dxm.

Comparing this to the formula for
∫

M
dω shows we are

done. �

B9. De Rham cohomology

Definition B9.1. We say ak-form ω on Mm is closedif
dω = 0; we sayω is exactif there is a (k− 1)-formη such
that dη = ω. For clarity, writedk := d|Ωk : Ωk → Ωk+1.
We write Bk(M) for the space of exact forms andZk(M)
for the space of closed forms. That is,Zk = kerdk and
Bk = Im dk−1.

Since by definitiond2 = 0, it is clear that exact forms are
closed. (Algebraically, we haveBk ⊂ Zk ⊂ Ωk.) An in-
teresting question is to what extent the converse fails to be
true. The answer is measured by thede Rham cohomology
Hk(M) := Zk/Bk, the quotient vector space (overR). A
typical element is the equivalence class [ω] = {ω + dη} of
a closedk-formω.

If we consider all degreesk together, we set

Z := Z0⊕ · · · ⊕Zm = kerd, B := B0⊕ · · · ⊕Bm = Im d.

Defining

H := Z/B = H0 ⊕ · · · ⊕ Hm

we find thiscohomology ringis not just a vector space but
indeed an algebra under the wedge product. To check the
details, start by noting that ifω′ is closed, then

(ω + dη) ∧ ω′ = ω ∧ ω′ + d(η ∧ ω′).

An important theorem in the topology of manifolds says
that this cohomology agrees with other standard defini-
tions, in particular that it is dual to singular homology.
(This is defined via cycles of simplices modulo boundaries,
and can be thought of as counting loops or handles in di-
mensionk.) The key here is Stokes’ Theorem: a closed
form integrates to zero over any boundary, so closed forms
can be integrated over homology classes. Furthermore an
exact form integrates to zero over any cycle.

Theorem B9.2. If Mm is an orientable closed manifold
with n components, then H0(M) � Rn.

Proof. Note thatB0 = 0 soH0 = Z0, which is the space
of functions with vanishing differential. But these are just
the locally constant functions, so it is clear this space is
n-dimensional. �

For orientable closed manifoldsMm, Poincaré duality (re-
lated to the Hodge star operation) gives a connection be-
tween co/homology in complementary dimensions. As
an example, if such a manifold hasn components, then
Hm(M) � Rn. We prove the dimension is at least this big.

Theorem B9.3. If Mm is an orientable closed manifold
with n components, then Hm(M) has dimension at least n.

Proof. Denote the components byMi . By Stokes, inte-
gration ω 7→

∫
Mi
ω over each component gives a map

Ωm = Zm→ R vanishing onBm, and thus a mapHm→ R;
together these give a map toRn. Choosing a Riemannian
metric onMi , its volume form has positive integral; these
n forms show that our mapHm→ Rn is surjective. �

B10. Lie derivatives

Earlier we defined the Lie derivative of a vector fieldY
with respect to a vector fieldX. This is a derivative along
the integral curves ofX, where we use (pushforwards un-
der) the flowϕt of X to move vectors ofY between different
points along these curves.

The Lie derivative of a differentialk-form ω is defined in
the same way, except that the pushforward underϕ−t is
replaced by a pullback underϕt. That is, we define:(

LXω
)

p :=
d
dt

∣∣∣∣∣
t=0
ϕ∗tωϕt(p) =

d
dt

∣∣∣∣∣
t=0

(ϕ∗tω)p.

Note that this is again ak-form. In the particular case of
k = 0 whereω = f ∈ C∞M we can ignore the pullback –
LX f is simply the derivative off along the integral curve,
that is,LX f = X f .

Proposition B10.1. The Lie derivative LX on forms satis-
fies the following properties:

1. it is a derivation onΩ∗M, that is, anR-linear map
satisfying

LX(ω ∧ η) = (LXω) ∧ η + ω ∧ (LXη);

2. it commutes with the exterior derivative, that is,

LX(dω) = d(LXω);

3. it satisfies the “product” formula – for a k-formω
applied to k vector fields Yi ∈ X(M) we have

LX
(
ω(Y1, . . . ,Yk)

)
= (LXω)(Y1, . . . ,Yk) +

k∑
i=1

ω
(
Y1, . . . , LXYi , . . . ,Yk

)
.
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Proof. 1. This follows directly from the fact that pull-
back commutes with wedge product and from the
product rule ford/dt:

(
LX(ω ∧ η)

)
p =

d
dt

∣∣∣∣∣
t=0

(
ϕ∗t (ω ∧ η)

)
p

=
d
dt

∣∣∣∣∣
t=0

(ϕ∗tω)p ∧ (ϕ∗t η)p

=

(
d
dt

∣∣∣∣∣
t=0

(ϕ∗tω)p

)
∧ ηp + ωp ∧

(
d
dt

∣∣∣∣∣
t=0

(ϕ∗t η)p

)
= (Lxω)p ∧ ηp + ωp ∧ (LXη)p.

2. This follows from the fact thatd is linear and com-
mutes with pullback:

LXdω =
d
dt

∣∣∣∣∣
t=0
ϕ∗t dω =

d
dt

∣∣∣∣∣
t=0

dϕ∗tω

= d
( d

dt

∣∣∣∣∣
t=0
ϕ∗tω

)
= dLXω.

3. The proof follows (as for the product rule ford/dt)
from a clever splitting of one difference quotient into
two or more. We will write out the proof only for
k = 1, consideringω(Y). We find

LX
(
ω(Y)

)
p = lim

t→0

1
t

(
ωϕt p

(
Yϕt p

)
− ωp(Yp)

)
= lim

t→0

1
t

(
ωϕt p

(
Yϕt p

)
− ωp

(
ϕ−t∗Yϕt p

))
+ lim

t→0

1
t

(
ωp

(
ϕ−t∗Yϕt p

)
− ωp(Yp)

)
.

Here the second limit clearly gives

ωp

( d
dt

∣∣∣∣∣
t=0
ϕ−t∗Yϕt p

)
= ωp

(
LXY

)
.

For the first limit, we can rewrite the first term as(
ϕ∗tωϕt p

)(
ϕ−t∗Yϕt p

)
, so that both terms are applied to

the same vector. The limit becomes

lim
t→0

ϕ∗t (ωϕt p) − ωp

t
(
ϕ−t∗Yϕt p

)
,

where the form clearly limits to (LXω)p and the vec-
tor toYp.

�

End of Lecture 4 Jan 2016

Since the Lie derivatives of functions and vector fields are
known, we can rewrite the product formula as a formula
for LXω as follows:

(LXω)(Y1, . . . ,Yk)

= X
(
ω(Y1, . . . ,Yk)

)
−

k∑
i=1

ω
(
Y1, . . . , [X,Yi ], . . . ,Yk

)
.

Proposition B10.2 (Cartan’s magic formula). For any
vector field X we have LX = dιX + ιXd.

Proof. We know thatLX is a derivation commuting withd.
Sinced2 = 0, it is easy to check the right-hand side also
commutes withd. Furthermore it is a derivation: forω ∈
ΩkM we get

dιX(ω ∧ η) + ιXd(ω ∧ η)

= d((ιXω) ∧ η) + (−1)kd(ω ∧ ιXη)

+ ιX((dω) ∧ η) + (−1)kιX(ω ∧ dη)

= (dιXω) ∧ η + (−1)k(ιXω) ∧ (dη) + · · ·

= (dιXω) ∧ η + (ιXdω) ∧ η + ω ∧ (dιXη) + ω ∧ (ιXdη).

Thus if the formula holds forω and η, it also holds for
ω∧ η and fordω. By linearity and locality, this means it is
enough to check it for 0-forms:

(dιX + ιXd) f = ιXd f = (d f)(X) = X f = LX f . �

Proposition B10.3. Suppose X and Y are vector fields on
Mm andω is a1-form. Then

dω(X,Y) = Xω(Y) − Yω(X) − ω([X,Y]).

Proof. We use Cartan’s Magic Formula and the product
rule for LXω:

dω(X,Y) = (ιXdω)(Y)

= (LXω)(Y) − (dιXω)(Y)

= X
(
ω(Y)

)
− ω

(
[X,Y]

)
− d

(
ω(X)

)
(Y)

= X
(
ω(Y)

)
− ω

(
[X,Y]

)
− Y

(
ω(X)

)
. �

Note that by linearity and locality it suffices to con-
siderω = f dg. So an alternate proof simply computes
each term for this case, getting for instanceXω(Y) =
X( f dg(Y)) = X( f Yg) = (X f)(Yg) + f XYg.

Theorem B10.4. Supposeω ∈ Ωk(Mm) is a k-form and
X0, . . . ,Xk ∈ X(M) are k+ 1 vector fields. Then

(dω)(X0, . . . ,Xk)

=
∑

0≤i≤k

(−1)iXi
(
ω(X0, . . . , X̂i , . . . ,Xk)

)
+

∑
0≤i< j≤k

(−1)i+ jω
(
[Xi ,X j ],X0, . . . , X̂i , . . . , X̂ j , . . . ,Xk)

)
.

Note that the casek = 0 is simplyd f(X) = X f , and the
casek = 1 is the last proposition. The general proof by
induction onk is left as an exercise; the hint is to use Car-
tan’s magic formula as in the proof of the proposition to
write

(dω)(X0, . . . ,Xk)

= (LX0ω)(X1, . . . ,Xk) − (dιX0ω)(X1, . . . ,Xk).
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C. RIEMANNIAN GEOMETRY

To take derivatives of a vector field along a curve requires
comparing tangent spaces at different points. The Lie
derivative uses diffeomorphisms to do this, which is not
entirely satisfactory since we need not just a curve but a
whole vector field.

Another approach is through connections or covariant
derivatives. In particular, there is a natural connection on
any Riemannian manifold, which is the starting point for
studying its geometry.

C1. Submanifolds in Euclidean space

SupposeMm ⊂ Rn is a submanifold. A mapX : M → TRn,
p 7→ Xp ∈ TpR

n is called anRn-valuedvector field along
M. Of courseTpR

n � Rn, so we can identifyX with a
function X̃ : M → Rn.

But TpR
n also has an orthogonal decomposition (with re-

spect to the standard Euclidean inner product) into spaces
tangent and normal toM:

TpR
n = TpM ⊕ NpM.

We let π‖ andπ⊥ denote the orthogonal projections onto
these subspaces, so thatXp = π

‖Xp + π
⊥Xp.

Now if γ : [a,b] → M is a curve (embedded) inM, then
we have the functioñX ◦ γ : [a,b] → Rn and can take its
derivative. We can view this derivative as anRn-valued
function on the 1-submanifoldγ ⊂ M ⊂ Rn instead of on
[a,b] (technically we compose withγ−1). Again such a
map toRn can be identified with anRn-valued vector field
alongγ (viewing its value at each pointp as lying inTpR

n).
We call this vector field the derivativedX/dt of X alongγ.

Both the original fieldX and its derivativedX/dt can be
decomposed (viaπ‖ andπ⊥) into parts tangent and normal
to M. These decompositions are not in any definite rela-
tion to each other. Consider for instance vector fields along
a surface inR3 as we studied last semester. The deriva-
tives of the unit normal vector field are tangent vectors; the
derivatives of tangent vector fields will usually have both
tangent and normal components.

Definition C1.1. SupposeX is a smooth vector field on
Mm ⊂ Rn andγ is a curve inM. Then the vector field

DX
dt

:= π‖
(dX

dt

)
along γ, which is tangent toM, is called thecovariant
derivativeof X alongγ.

Note that we only needX to be defined alongγ. Note also
that we could apply this definition to anyRn-valued field
X, but there is little reason to do so – our goal is to focus on
the geometry ofM. Indeed, we will see that this covariant
derivative can be defined in a way depending only on the
Riemannian metric onM and independent of the particular
embeddingM ⊂ Rn.

ExampleC1.2. Consider the round sphereS2 ⊂ R3 and
let γ(t) := (cost, sint,0) be the equator parametrized by
arclength. Consider the vector fieldX alongγ given by the
tangent vector

Xγ(t) := γ′(t) = (− sint, cost,0).

SincedX/dt = γ′′(t) = −γ(t) is normal toS2, we find
DX/dt ≡ 0.

In general, a parametrized curveγ on M is called a
geodesicif its velocity vector fieldX = γ̇ satisfiesDX/dt ≡
0. On the sphere, the geodesics are exactly the great circles
parametrized at constant speed.

Now we want to work out coordinate expressions for the
covariant derivative. So let (U, ϕ) be a coordinate chart
for Mm ⊂ Rn and writeV := ϕ(U) ⊂ Rm. Write {ui :
i = 1, . . . ,m} for the coordinates onRm. BecauseM is
embedded inRn, we can also write the inverse map

ϕ−1 =: ψ = (ψ1, . . . , ψn) : V → U ⊂ M ⊂ Rn

explicitly in coordinates. (Here we use{xα : α = 1, . . . ,n}
for the coordinates onRn and haveψα = xα ◦ ψ.) The
standard coordinate frame forTU is of course given by

∂i = ψ∗

(
∂

∂ui

)
=

∑
α

∂ψα

∂ui

∂

∂xα
.

A curveγ in M will be given in coordinates as

γ(t) = ψ
(
u1(t), . . . ,um(t)

)
for some real-valued functionsui(t).

A vector fieldY (tangent toM) alongγ can be expressed
in the coordinate basis as

Yγ(t) = Y(t) =
∑

i

bi(t)∂i

for some real-valued functionsbi(t). Its derivative and co-
variant derivative alongγ are then

dY
dt
=

∑
i

dbi

dt
∂i + bi d∂i

dt
,

DY
dt
=

∑
i

dbi

dt
∂i + bi D∂i

dt
.

To compute the covariant derivativeD∂i/dt of the coordi-
nate basis vectors, we recall that a time derivative alongγ
is a directional derivative in direction ˙γ, so we get

D∂i

dt
= π‖

( d
dt

∑
α

∂ψα

∂ui

∂

∂xα

)
=

∑
α

∑
j

∂2ψα

∂u j ∂ui

duj

dt
π‖

(
∂

∂xα

)
.

Here the∂/∂xα are the standard basis vectors inRn. Their
tangent parts can of course be expressed in the coordinate
basis:

π‖
(
∂

∂xα

)
=

∑
k

ck
α∂k
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for some smooth functionsck
α ∈ C∞(U).

We now define the so-calledChristoffel symbols

Γk
i j :=

∑
α

∂2ψα

∂u j ∂ui
ck
α,

noting the symmetryΓk
i j = Γ

k
ji . We haveΓk

i j ∈ C∞(U) for
1 ≤ i, j, k ≤ m.

Using these, the expression above for the covariant deriva-
tive of ∂i becomes

D∂i

dt
=

∑
j,k

Γk
i j

duj

dt
∂k.

We can consider in particular the covariant derivative along
a u j-coordinate curve, whereu j = t and each otherui is
constant. We write this as

D∂i

∂u j
=

∑
k

Γk
i j∂k.

That is, the Christoffel symbolΓk
i j is the∂k component of

the covariant derivative of∂i in direction∂ j .

We can now return to the general case of the covariant
derivative ofY alongγ; our formula becomes

DY
dt
=

∑
k

(dbk

dt
+

∑
i, j

Γk
i j b

i duj

dt

)
∂k.

Note here that we don’t see the coordinates inRn at all; the
vector fieldY and curveγ on M are expressed in the stan-
dard instrinsic ways in the coordinate chart (U, ϕ). The em-
bedding ofM ⊂ Rn enters only in the computation of the
Christoffel symbolsΓk

i j , and our goal is to show these re-
ally only depend on the Riemannian metric induced onM
by the embedding.

Now supposeY =
∑

bk∂k is a vector field defined on all
of M (rather than just alongγ) – its componentsbk are
now functions onU. We note that the covariant derivative
DY/dt at a pointp = γ(t0) doesn’t depend on the whole
curveγ but only on its velocity vectorXp := γ̇(t0) there.
In particular, if we seta j := duj/dt thenXp =

∑
a j∂ j , and

the time derivativedbk/dt appearing in the formula is the
directional derivativeXp(bk).

To emphasize this viewpoint, we introduce new notation
and write this covariant derivative ofY at p in the direction
Xp as∇XpY. If X andY are vector fields onM, we write
∇XY for the vector field whose value atp is ∇XpY. The
formulas above mean that ifX =

∑
a j∂ j andY =

∑
bk∂k

in some coordinate chart, then

∇XY =
∑
j,k

(
a j(∂ jb

k) +
∑

i

Γk
i j b

ia j
)
∂k.

We have thus defined aconnection, meaning an operation

∇ : X(M) × X(M)→ X(M), ∇ : (X,Y) 7→ ∇XY.

This is clearly bilinear (overR) and we claim it satisfies
the following four properties:

• it is C∞-linear inX:

∇ f XY = f∇XY;

• it satisfies a product rule inY:

∇X( f Y) = (X f)Y+ f∇XY;

• it is symmetric in the following sense:

∇XY− ∇YX = [X,Y] = LXY;

• it is compatible with the Riemannian metric:

X
〈
Y,Y′

〉
=

〈
∇XY,Y′

〉
+

〈
Y,∇XY′

〉
.

The first two properties are easily verified. The symmetry
is equivalent to the fact thatΓk

i j = Γ
k
ji . The metric property

is left as an exercise.

C2. Connections

Let us now move to a very general situation. SupposeE is
a vector bundle over a manifoldM. A connection∇ on E
allows us to take covariant derivatives of sections ofE.
These are directional derivatives in the direction of some
vector fieldX ∈ X(M) and are again sections of the same
bundleE. That is, given a sectionσ ∈ Γ(E), its covariant
derivative (with respect to∇) in directionX is the section
∇Xσ ∈ Γ(E). The formal definition is as follows:

Definition C2.1. Given a vector bundleE → M, a con-
nectionon E is a bilinear map∇ : X(M) × Γ(E) → Γ(E),
written (X, σ) 7→ ∇Xσ, which isC∞(M)-linear in X and
satisfies a product rule forσ:

∇ f Xσ = f∇Xσ, ∇X( fσ) = (X f)σ + f∇Xσ.

We call∇Xσ thecovariant derivativeof σ.

Note that the tensoriality (C∞M-linearity) implies that the
dependence onX is pointwise:

(
∇Xσ)p depends only on

Xp and can be written as∇Xpσ. This covariant deriva-
tive of course depends on more than justσp, but as for the
other derivatives we have studied, the product rule means
that the definition is local: ifσ andτ have the same germ
at p (that is, agree in some open neighborhoodU) then
∇Xpσ = ∇Xpτ. The trick is again to pick a bump function
f supported withinU with f ≡ 1 on some smaller neigh-
borhood ofp, so thenfσ = f τ. We calculate

∇Xpσ = 1∇Xpσ + 0σp = f (p)∇Xpσ + (Xp f )σp = ∇Xp( fσ)

with the same forτ. Indeed, it suffices thatσ andτ agree
locally along some curveγ with γ̇(0) = Xp; this can per-
haps most easily be seen in coordinates as below.

There are many other ways to rephrase this definition, for
instance in terms of sections of various induced bundles.
For any fixedσ, we can consider∇σ as a map taking a
vector fieldX to the section∇Xσ. But the pointwise de-
pendence onX means that this acts pointwise as a linear
mapTpM → Ep. That is,∇σ can be viewed as a section
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of the bundleL(T M,E) = E ⊗ T∗M; such a section can be
called a vector-valued one-form. In this picture, the con-
nection∇ is a map fromΓ(E) to Γ(E ⊗ T∗M). While this
is the approach taken in many books, we will stick to our
more down-to-earth approach.

End of Lecture 11 Jan 2016

We have already seen one example of a connection: the
one onT M induced by an embeddingM → Rn, which
satisfied not only the properties in this definition but also
two further properties. As in that case, any connection can
be expressed in coordinates via Christoffel symbols.

SupposeU is a coordinate neighborhood forM and a triv-
ializing neighborhood forE, with {∂i : 1 ≤ i ≤ dim M} the
coordinate frame forT M and{ea : 1 ≤ a ≤ rk E} a frame
for E. Then a connection∇ is expressed in coordinates by
theChristoffel symbolsΓb

ia defined by∇∂i ea =
∑

b Γ
b
iaeb, so

that in general forX =
∑

vi∂i andσ =
∑
σaea we have

∇Xσ =
∑
i,b

vi
(
∂iσ

b +
∑

a

Γb
iaσ

a
)
eb.

Any collection of smooth functionsΓb
ia describes a connec-

tion.

Any connection induces a notion ofparallel transport
along a curve. Ifγ is a curve (fromp to q) in M, then
a sectionσ of E (defined at least onγ – more formally a
section ofγ∗E) is said to beparallel alongγ (with respect
to the connection∇) if ∇γ̇(t)σ ≡ 0 alongγ. This corre-
sponds to a first-order ODE , which has a unique solution
given any initial value. That is, given anyσp ∈ Ep, there is
a unique extension to a parallel sectionσ alongγ. In par-
ticular, looking at its valueσq at the endpointq, we get a
linear mapPγ : Ep → Eq calledparallel transportalongγ
(w.r.t.∇).

If γ is a closed curve – a loop based atp – then we call
Pγ : Ep → Ep the holonomyof ∇ aroundγ. Note that
this need not be the identity; instead it demonstrates the
curvature of the connection∇.

The tangent space toE at each point has a naturalvertical
subspaceof dimensionk at each point: the tangent space to
the fiberEp or equivalently the kernel of the differential of
the projectionE→ M. Another way to view a connection
is as a choice of a complementaryhorizontal subspaceof
dimensionm. A sectionσ is parallel alongγ if Dσ(γ̇) lies
in these horizontal subspaces.

C3. The Levi-Civita Connection

Specializing to the case of connections on the tangent bun-
dleE = T M, we can compare∇XY and∇YX. It is too much
to hope that these are the same for any vector fieldsX and
Y – the behavior when we replaceX by f X is different. But
this kind of effect is captured also in the Lie bracket of the
vector fields. We define thetorsion of the connection as
T(X,Y) := ∇XY− ∇YX − [X,Y]. This expression isC∞M-
linear in each of its arguments. The connection∇ is said
to besymmetricor torsion-freeif T(X,Y) = 0 for all X and
Y, that is, if∇XY − ∇YX = [X,Y]. (This is of course one

of the properties we observed for the connection induced
from an embeddingM ⊂ Rn.) In terms of Christoffel sym-
bols in a coordinate basis (where [∂i , ∂ j ] = 0), we find that
∇ is torsion-free if and only ifΓk

i j = Γ
k
ji .

On a Riemannian manifold (M,g) we can also ask whether
a connection∇ on T M is compatible with the metric. A
metric connectionis one satisfying

X
〈
Y,Z

〉
=

〈
∇XY,Z

〉
+

〈
Y,∇XZ

〉
.

One interpretation of this equation is as saying that the
metric tensorg is parallel with respect to∇. Just as we
saw for the Lie derivative, a connection on one bundle nat-
urally induces connections on the dual bundle and its ten-
sor powers such that product rules hold. In particular, we
could define the covariant derivative∇Xg via

X
(
g(Y,Z)

)
= (∇Xg)(Y,Z) + g(∇XY,Z) + g(Y,∇XZ).

Then clearly∇ is a metric connection if and only if for
all X we have∇Xg = 0.

We will now show that any Riemannian manifold has a
unique torsion-free metric connection∇; this is called the
Levi-Civita connection. Note that we have already con-
structed such a connection on any manifoldM ⊂ Rn em-
bedded in Euclidean space. We give a proof due to Koszul,
using the fact that a vector field∇XY on a Riemannian
manifold is specified by its inner products with arbitrary
vector fieldsZ.

Theorem C3.1. Any Riemannian manifold(M,g) has
a unique Levi-Civita connection, characterized by the
Koszul formula

2g(∇XY,Z) = X
(
g(Y,Z)

)
+ Y

(
g(X,Z)

)
− Z

(
g(X,Y)

)
+ g

(
[X,Y],Z

)
− g

(
[X,Z],Y

)
− g

(
[Y,Z],X

)
.

Proof. Because the metric is fixed, we writeg(·, ·) as〈·, ·〉.
The uniqueness amounts to checking that any Levi-Civita
connection does satisfy the Koszul formula. We use the
metric property to expand each of the first three terms; the
first (for instance) becomes〈∇XY,Z〉 + 〈∇XZ,Y〉. We use
the symmetry to expand each of the last three terms; the
first (for instance) becomes〈∇XY,Z〉 − 〈∇YX,Z〉. Adding
everything we find that most terms cancel out; we are left
with 2 〈∇XY,Z〉.

It remains to show that the formula does define a Levi-
Civita connection. First, we claim that the right-hand side
is tensorial (meaningC∞M-linear) inZ:

X
〈
Y, f Z

〉
+ Y

〈
X, f Z

〉
− f Z

〈
X,Y

〉
+

〈
[X,Y], f Z

〉
−

〈
[X, f Z],Y

〉
−

〈
[Y, f Z],X

〉
= (X f)

〈
Y,Z

〉
+ f X

〈
Y,Z

〉
+ (Y f)

〈
X,Z

〉
+ f Y

〈
X,Z

〉
− f Z

〈
X,Y

〉
+ f

〈
[X,Y],Z

〉
− f

〈
[X,Z],Y

〉
− (X f)

〈
Z,Y

〉
− f

〈
[Y,Z],X

〉
− (Y f)

〈
Z,X

〉
= f

(
X
〈
Y,Z

〉
+ Y

〈
X,Z

〉
− Z

〈
X,Y

〉
+

〈
[X,Y],Z

〉
−

〈
[X,Z],Y

〉
−

〈
[Y,Z],X

〉 )
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This means for any fixedX and Y, the right hand side
is ω(Z) for some one-formω. But using the metricg,
this one-form equivalent to a vector fieldW defined by
2g(W,Z) = ω(Z).

This construction∇ : (X,Y) 7→ W is clearly bilinear inX
andY. The facts that it is tensorial inX and satisfies the
product rule inY are verified by calculuations similar to
the one above. The the Koszul formula defines a connec-
tion ∇. What remains to show is that it is symmetric and
compatible withg.

To check the symmetry, note that the right-hand side of
the Koszul formula is symmetric inX andY except for the
term

〈
[X,Y],Z

〉
. Thus

2
〈
∇XY,Z

〉
− 2

〈
∇YX,Z

〉
=

〈
[X,Y],Z

〉
−

〈
[Y,X],Z

〉
= 2

〈
[X,Y],Z

〉
.

Since this holds for allZ, we conclude the connection is
torsion-free:∇XY− ∇YX = [X,Y].

To check the metric property, note that the right-hand side
is antisymmetric inY andZ except for the termX

〈
Y,Z

〉
.

Thus

2
〈
∇XY,Z

〉
+ 2

〈
Y,∇XZ

〉
= 2X

〈
Y,Z

〉
as desired. �

Now we want to consider what the Levi-Civita connection
looks like in coordinates. We know the Christoffel symbols
for a torsion-free connection will be symmetric:Γk

i j = Γ
k
ji .

In terms of the componentsgi j := g(∂i , ∂ j) of the metric
tensor, we can express the metric property of∇ as follows:

∂kgi j = ∂kg(∂i , ∂ j)

= g
(
∇∂k∂i , ∂ j

)
+ g

(
∂i ,∇∂k∂ j

)
=

∑
`

Γ`kig` j + Γ
`
k jg`i .

We can express this more simply in terms of another form
of Christoffel symbols. If we define

Γi jk :=
∑
`

Γ`i j gk` = g
(
∇∂i∂ j , ∂k

)
,

then we get∂kgi j = Γki j + Γk ji . Using the symmetryΓi jk =

Γ jik , we can solve this system to give

2Γi jk = ∂ig jk + ∂ jgik − ∂kgi j .

Writing
(
gk`) for the matrix inverse of

(
gi j

)
, we have

Γk
i j =

∑
`

gk`Γi j` =
∑
`

gk`

2

(
∂ig j` + ∂ jgi` − ∂`gi j

)
.

C4. Parallel transport and holonomy

Suppose∇ is any metric connection on a Riemannian man-
ifold M, andγ is a smooth curve fromp to q in M with
velocity vectorX = γ̇. SupposeY andZ are parallel fields

alongγ, meaning∇XY = 0 = ∇XZ. Then the metric con-
dition implies

X
〈
Y,Z

〉
=

〈
∇XY,Z

〉
+

〈
Y,∇XZ

〉
= 0,

that is,
〈
Y,Z

〉
is constant alongγ. In particular, the length

of any parallel field is constant, as is the angle between two
parallel fields.

It follows that parallel fields alongγ with respect to two
different metric connections will thus differ from one an-
other by some rotation – the torsion-free Levi-Civita con-
nection is in some sense the one for which parallel fields
rotate the least.

End of Lecture 18 Jan 2016

The metric condition means parallel transportPγ : TpM →
TqM is an orthogonal transformation between these inner
product spaces; the holonomy around any loop based at
p is an element ofO(TpM). (If M is orientable, then the
holonomy actually lives inS O(TpM). On an oriented sur-
face, for instance, the holonomy around any loop is rota-
tion by some angleθ.) Note that it is easy to extend the no-
tion of parallel transport to the case of a piecewise smooth
curveγ, simply by transporting along each smooth piece
in order.

Consider the example of the round sphereS2 ⊂ R3. Look
at a right-angled triangle; at a lune of angleα; at a general
triangle. In each case we find the holonomy is 2πminus the
sum of the exterior angles, which also equals the enclosed
area.

These are special cases of the Gauss–Bonnet theorem: for
any diskD on any surface, the holonomy around∂D is

2π − TC(∂D) =
∫

D
K dA.

On the sphere we haveK ≡ 1 so the right-hand side is just
the area.

The Gauss curvature at a pointp on a surface can be mea-
sured by measuring the holonomy angle around a small
loop based atp and dividing by the area of the loop.

C5. Riemannian curvature

The idea of Riemannian curvature is that given a two-plane
in TpM, the holonomy around an infinitesimal loop in this
plane will give an infinitesimal rotation ofTpM. The two-
plane is specified by a two-vector, and the infinitesimal ro-
tation is given by an operator onTpM saying in which di-
rection each vector moves.

So suppose we have vector fieldsX andY nearp ∈ M. We
consider parallel transport for times alongX followed by
time t alongY, and compare this with going the other way
around. Of course if [X,Y] , 0 this isn’t even a closed
loop, but let’s assume [X,Y] = 0. Then the holonomy
around this loop will be approximatelyst times what we
call the curvatureR(X,Y).

In general, of course we need to correct by [X,Y]. Re-
call that this Lie bracket is the commutator of directional

32



J.M. Sullivan, TU Berlin C: Riemannian geometry Diff Geom II, WS 2015/16

derivatives:

0 = X(Y f) − Y(X f) − [X,Y] f .

This inspires the definition of theRiemannian curvature
operator

R(X,Y)Z := ∇X
(
∇YZ

)
− ∇Y

(
∇XZ

)
− ∇[X,Y]Z.

Lemma C5.1. On any Riemannian manifold the curva-
ture operator R(X,Y)Z is tensorial – its value at p depends
only on Xp, Yp and Zp. In particular, R(Xp,Yp) is a linear
operator on TpM.

The proof proceeds by checking that

R( f X,Y)Z = R(X, f Y)Z = R(X,Y)( f Z) = f R(X,Y)Z,

which follows from the product rules we have for the Lie
bracket and covariant derivative. The details are left as an
exercise.

The definition implies directly thatR(X,Y) = −R(Y,X).
This antisymmetry means that we can think of this linear
operator as depending onX ∧ Y.

On an inner product space likeTpM, a linear operator is
equivalent to bilinear form. Hence we get theRiemannian
curvature tensor

R(X,Y,Z,W) :=
〈
R(X,Y)Z,W

〉
.

In coordinates (U, ϕ), with respect to the coordinate frame
{∂i}, the curvature has components given by

R(∂k, ∂`)∂i =:
∑

Rj
i k`∂ j ,〈

R(∂k, ∂`)∂i , ∂ j
〉
=: Ri jk` =

∑
m

g jmRm
i k`.

Theorem C5.2. The Riemannian curvature satisfies the
following symmetries:

(1) R(X,Y) = −R(Y,X),

(2)
〈
R(X,Y)Z,W

〉
= −

〈
R(X,Y)W,Z

〉
,

(3) R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0,

(4)
〈
R(X,Y)Z,W

〉
=

〈
R(Z,W)X,Y

〉
.

Note that we have already proved the antisymmetry (1).
The further antisymmetry (2) is equivalent to saying that
R(X,Y) is an infinitesimal rotation.

All four symmetries involve different permutations of the
vector fieldsX, Y, Z, W, and are related to each other. (A
more sophisticated approach would study them in terms of
representations of the symmetric groupS4.) For instance,
it is easy to see that, given (4), properties (1) and (2) are
equivalent.

Instead, we start by observing that (4) is an algebraic con-
sequence of the first three. For this, write (3) as〈

R(X,Y)Z,W
〉
+

〈
R(Y,Z)X,W

〉
+

〈
R(Z,X)Y,W

〉
= 0.

Then cyclically permuteXYZWto get〈
R(Y,Z)W,X

〉
+

〈
R(Z,W)Y,X

〉
+

〈
R(W,Y)Z,X

〉
= 0.

Add these two and subtract the remaining two cyclic per-
mutations. Using the antisymmetries (1) and (2), the result
follows.

End of Lecture 25 Jan 2016

Proof. It remains to show properties (2) and (3). By ten-
soriality, it suffices to prove (3) for the commuting basis
vector fieldsX = ∂i , Y = ∂ j , Z = ∂k. We will abbreviate
∇i := ∇∂i . First note thatR(∂i , ∂ j)∂k = ∇i(∇ j∂k)−∇ j(∇i∂k).
Thus the sum of three terms can be written as

∇i
(
∇ j∂k − ∇k∂ j

)
+ ∇ j

(
∇k∂i − ∇i∂k

)
+ ∇k

(
∇i∂ j − ∇ j∂i

)
.

Because the connection is torsion-free, each of the expres-
sions in parentheses is a Lie bracket like [∂ j , ∂k], but these
all vanish.

For (2) it also suffices to considerX = ∂i , Y = ∂ j . Since
the symmetric part of a bilinear form in determined by its
associated quadratic form, to show the antisymmetry (2) it
suffices to prove

0 =
〈
R(∂i , ∂ j)Z,Z

〉
=

〈
∇i(∇ jZ) − ∇ j(∇iZ),Z

〉
.

That is, it suffices to prove that
〈
∇i(∇ jZ),Z

〉
is symmetric

in i and j. To do so, consider second derivatives of the
function〈Z,Z〉:

∂ j
(
∂i 〈Z,Z〉

)
= ∂ j

(
2
〈
Z,∇iZ

〉)
= 2

〈
Z,∇ j(∇iZ)

〉
+ 2

〈
∇ jZ,∇iZ

〉
.

The last term is clearly symmetric, and the left-hand side
is symmetric since [∂i , ∂ j ] = 0, so we are done. �

The antisymmetry properties (1) and (2) mean that the cur-
vature tensor really can and should be thought of as a bi-
linear form on the space of two-vectors:

S(X ∧ Y,Z ∧W) := −
〈
R(X,Y)Z,W

〉
(extended by bilinearity to nonsimple two-vectors). Prop-
erty (4) is then simply the symmetry ofS:

S(X ∧ Y,Z ∧W) = S(Z ∧W,X ∧ Y);

this symmetry of course holds for arbitrary two-vectors,
not just simple ones. In these terms, property (3) gets no
simpler:

S(X∧Y,Z∧W)+S(Y∧Z,X∧W)+S(Z∧X,Y∧W) = 0.

If X,Y is an orthonormal basis for a two-planeΠ ⊂ TpM,
then K(Π) := S(X ∧ Y,X ∧ Y) = R(X,Y,Y,X) is called
the sectional curvatureof Π. It turns out that this equals
the Gauss curvature of the “flattest” surfaceN ⊂ M with
TpN = Π, say foliated by geodesics throughp tangent
toΠ.

Since any symmetric bilinear form is determined by the
associated quadratic form, it is not surprising that the sec-
tional curvatures of two-planes determineR completely –
but note that here we are considering only simple two-
vectors. The following lemma (applied to the difference
of two possible tensors with the same sectional curvatures)
takes care of this problem.
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Lemma C5.3. Suppose S is a symmetric bilinear form on
Λ2V satisfying

S(X∧Y,Z∧W)+S(Y∧Z,X∧W)+S(Z∧X,Y∧W) = 0.

If S(X ∧ Y,X ∧ Y) = 0 for all X and Y, then S= 0.

Proof. First compute

0 = S
(
(X + Y) ∧ Z, (X + Y) ∧ Z

)
= S(X ∧ Z,Y∧ Z) + S(Y∧ Z,X ∧ Z)

= 2S(X ∧ Z,Y∧ Z).

Now using this we get

0 = S
(
X ∧ (Z +W),Y∧ (Z +W)

)
= S(X ∧ Z,Y∧W) + S(X ∧W,Y∧ Z).

Then we use this to show

S(Y∧ Z,X ∧W) = S(X ∧W,Y∧ Z) = −S(X ∧ Z,Y∧W)

= S(Z ∧ X,Y∧W).

That is,S is invariant under a cyclic permutation ofXYZ.
But we have assumed the sum of all three cyclic permuta-
tions is zero, so we findS = 0. �

Note that actually there is a formula with 16 terms giving

6S(X ∧ Y,Z ∧W)

= S
(
(X + Z) ∧ (Y+W), (X + Z) ∧ (Y+W)

)
− S

(
(X + Z) ∧ Y, (X + Z) ∧ Y

)
+ · · · .

C6. The exponential map

Any tangent vectorXp ∈ TpM determines a unique
geodesic starting atp with velocity X; this is the solution
to a second order ODE and will exist at least for some time
δ > 0.

More precisely, we can consider the equation for a
geodesicx(t) in a coordinate chart (U, ϕ). In terms of the
Christoffel symbols we get

ẍk +
∑
i, j

Γk
i j (x)ẋi ẋ j = 0.

The existence theorem we have used before then says: For
anyq ∈ U there is a neighborhoodV 3 q andε, δ > 0 such
that, given any initial conditionsp ∈ V andXp ∈ TpM with
‖Xp‖ < ε (meaning of coursex(0) = phi(p) and ẋ(0) =
ϕ∗Xp), a unique solution as above exists withinU for |t| <
δ, and it depends smoothly on the initial conditions.

Of course if we rescaleXp to λXp, the geodesic is still
the same curve, simply parametrized atλ times the speed.
Thus there is a tradeoff betweenε and δ; the statement
above is also true say forδ = 2. Note also that we can
piece together geodesic arcs and the resulting curve is still
a geodesic, so we can apply the existence results indepen-
dent of any coordinate chart.

Suppose the geodesicγ starting atp with velocityXp exists
for at least unit time. Then we define exp(Xp) := γ(1) to be
the point at time 1 along this geodesic. For any Rieman-
nian manifoldM, thisexponential mapis defined on some
open neighborhoodW of the zero-section ofT M and is a
smooth map exp:W → M. Note thatt 7→ exp(tXp) is
the parametrized geodesic with constant speed‖Xp‖; the
length of this curve fromp to exp(Xp) is ‖Xp‖.

We use the notation expp for the restriction of exp toTpM∩
W. Since the differentialDp expp is the identity map, for
small ε > 0, expp is a diffeormorphism from theε-ball
in TpM to a neighborhoodBε(p) called ageodesic ball.
Choosing an orthonormal basis forTpM to identify it with
Rm, the map exp−1

p : U → TpM = Rm is callednormal
coordinatesaroundp on thenormal neighborhood U.

Similar considerations show that the map (π,exp) : Xp 7→

(p,expXp) is a local diffeomorphismT M → M × M. For
any p ∈ M andε > 0, we deduce the existence of a neigh-
borhoodN such that any two points inN are joined by a
unique geodesic of length less thanε.

In normal coordinates aroundp, all geodesics throughp
are the images of straight lines through the origin. Fur-
thermore, atp we havegi j (0) = δi j andΓk

i j = 0. The image
Sr :=

{
expp Xp : ‖Xp‖ = r

}
of a sphere inTpM is called

a geodesic spherearoundp ∈ M. It is easy to check that
geodesics throughp meet each of these sphere orthogo-
nally and that (for smallr < r ′) any curve fromSr to Sr ′

has length at leastr ′−r. Thus geodesics are locally shortest
curves.

Note that for smallr, the geodesic sphereSr (p) is topo-
logically a sphere and is the boundary of the geodesic ball
Br (p), which is a topological ball. For largerr, the expo-
nential map may still exist but no longer be a diffeomor-
phism; these spheres and balls will start to overlap and in-
tersect themselves. The geodesic ballBr (p) is always the
metric ball in (M,d), the set of points at distance less than
r from p.

So far, we have only discussed local existence of
geodesics. A manifold is calledgeodesically completeif
every geodesic can be extended indefinitely, that is, if exp
is defined on all ofT M. The Hopf–Rinow theorem says
this happens if and only if the metric space (M,d) is met-
rically complete. In particular, every compact manifold is
geodesically complete.

C7. Ricci and scalar curvatures

If Π ⊂ TpM is a two-plane, its image under the exponen-
tial map expp is locally a two-dimensional submanifold
through p. One can show that its Gauss curvature atp
is the sectional curvatureK(Π). (See for instance Boothby,
Theorem VIII.4.7.)

SupposeX ∈ TpMm is a unit vector. We define the Ricci
curvature in directionX to be the average sectional curva-
ture of two-planes includingX:

Ric(X,X) = (m− 1) aveΠ3X K(Π).

A manifold with constant Ricci curvature is called an Ein-
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stein manifold, because of the way this condition arises in
general relativity.

The Ricci curvature is a quadratic form; the associated
symmetric bilinear form onTpM is called the Ricci ten-
sor; if {ei} is an orthonormal frame, we have

Ric(X,Y) =
m∑

i=1

S(X ∧ ei ,Y∧ ei).

In coordinates, Rici j =
∑

k Rk
i k j . On an Einstein manifold,

Ric(X,Y) = cg(X,Y).

For m = 3, but not in higher dimensions, the Ricci curva-
ture determines the full Riemannian curvature tensor.

End of Lecture 1 Feb 2016

The Ricci flow dgi j/dt = −2 Rici j is a nonlinear heat
flow of Riemannian manifolds which tries to smooth out
the Ricci curvature. Perelman’s proof of Thurston’s ge-
ometrization conjecture (including the Poincaré conjec-
ture) used Ricci flow on 3-manifolds.

The average Ricci curvature in all directions atp gives the
scalar curvature S(p) =

∑
gi j Ri j .

The images under the exponential map of round balls and
spheres inTpM are called geodesic balls and spheres –
Br (p) is the set of all points at distance less thanr from p.

The scalar curvature measures the volume growth rate of
geodesic balls or spheres aroundp – positive curvature
means the volume grows more slowly than in Euclidean
space, which negative curvature means it grows faster.

The Ricci curvature Ric(X,X) measures in a similar sense
the rate of spreading of geodesics emerging fromp in di-
rections nearX.
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