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A. MANIFOLDS These conditions are familiar from metric spac&sd,
where the open balB.(x) := {y : d(x,y) < &} form a base
This course is about manifolds. An-manifold is a space for the metric topology: The topologlcal spaces that v_v|II

X ) arise for us are all metrizable, meaning the topology arises
that looks locally like Euclidean spa&é”. . .

) ) ] 5 from some metric. In particular, the standard topology
Examples of manifolds include a circt, a spher&? or  on " comes, of course, from the Euclidean inner prod-

i m m+1 m_
T‘Solr;n.s'tfagté?.to am-sphereS™ c R™"oranmHtorusT™ = gy vy — x _y| = Jx—y.X=y).
In multivariable calculus, one studies (smootmsub- ~ Definition A1.6. A spaceX is Hausdoyf if any two dis-
manifolds ofR™; these have several equivalent characteri{inct pointsx # y € X have disjoint (open) neighborhoods.
zations (locally being level sets or images of smooth func/t iS regularif given a nonempty closed sét c X and a
tions). These are the motivating examples of (smoothCintx € X\ A, there are disjoint (open) neighborhoods
manifolds. Indeed, we will see any manifold can be em-Of A andx. (These are just two examples of the many
bedded as a submanifold of some (high-dimensiok@l) ~“Separation axioms” in point-set topology.) A spaxes
But it is important to give an abstract definition of mani- second countabli there is a countable base for the topol-

folds, since they usually don't arise as submanifolds. 0gy.

The idea of manifolds is that they are spaces on which ongyq+ric spaces are Hausdbrand regular (take metric

can do ana!ysis (derivativgs, integrals, etc.). This meangeighborhoods of radiug(x, A)/2). Eucldiean space is
we are talking here not simply about topological mani-gecong countable (take balls with rational centers and
folds, but about smooth (@erentiable) manifolds. This o) The importance of these notions is clear from the
Is a distinction we explain soon. Urysohn metrization theorem, which says thas separa-

ble (that is, has a countable dense subset) and metrizable if

and only if it is Hausddf, regular and second countable.
Al. Topological manifolds

Definition A1.7. We say a spach is locally homeomor-

phic to R™ if each p € M has an open neighborhoddl

that is homeomorphic to some open subse®R8f If

¢: U > ¢(U) c R™ denotes such a homeomorphism,

2. XeU, then we call U, ¢) a (coordinate) chartfor M. An atlas
for M is a collection{(U,, ¢,)} of coordinate charts which

*UVel = UnVet, coversM, in the sense that) U, = M.

e {UyjcU = U, Up eU.

Definition A1.1. A topologyon a setX is a collection{
of subsets oK (called theopensubsets) such that

_ ) ) ) Clearly we can rephrase the definition to 9dyis locally
All other topological notions are defined in terms of openhpomeomorphic t&™ if and only if it has an atlas of charts.

sets. Less obvious (but an easy exercise) is that it is equivalent to
Definition A1.2. A subsetA c X is closedif its com- {g%ur;re eaclp € M to have a neighborhood homeomorphic

plementX \ A is open. Any subse¥ c X naturally
becomes a topological space with thebspace topology Although one might expect this to be a good topological
{(UUY : U c Xopenrj. That is, the open sets M are  definition of an abstract manifold, it turns out that there are
exactly the interestions of with open sets irX. some pathological examples that we would like to rule out.
L ) Certain properties from point-set topology are not auto-
Definition A1.3. A spaceX is connectedf @ andX are  magically inherited. For instance, examples like the line
the only subsets that are both open and closed. A Spacgi the origin doubled (or with alk > 0 doubled) fai

is compactif every open cover has a finite subcover. (If {5 pe Hausddf. The “long line” (obtained by gluing un-

we talk about a subsdt c X being connected or compact, ¢qntably many unit intervals) fails to be second countable
etc., we mean with respect to the subspace topology.)  _jt js sequentially compact but not compact. The “Priffer
Definition A1.4. A map f: X — Y between topological Surface”is separaple but not second c_ountable: (Note there
spaces iontinuousif the preimage of any open seti  are also much weirder examplt_as, for instance in papers of
is open inX. A continuous bijectionf: X — Y whose Alexgndre Gabard.) For technical reasons, we also prefer
inverse is also continuous is callethameomorphism an ~ Manifolds to have at most countably many components, as
equivalence of topological spaces. is guaranteed by second countability.

Definition A1.5. Usually, one specifies a topology not by Thus we are led to the following:

listing all open sets, but by givinglaases8. This is a col-  Definition A1.8. A topological m-manifolds a second-
lection of “basic” open sets fiicient to generate the topol- countable Hausd@rspaceM = M™ that is locally homeo-
ogy: an arbitraryJ c X is defined to be open if and only morphic toR™.

if it is a union of sets fronB. The requirements o8 to

form a base are (1) th& coversX and (2) that intersec- Regularity then follows, ensuring that our manifolds are
tions B; N B, of two basic open sets are open, that is, formetrizable spaces. Indeed, we will later put a (Rieman-
anyx € B;NBy, there exist8; € Bwith x € Bz ¢ ByNB;. nian) metric on any (smooth) manifold. It is also straight-
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forward to check various other local properties: A topo-Let us look at the lowest dimensions. A 0-manifold is a
logical manifoldM is locally connected, locally compact, countable discrete set. Equivalently, we can say a con-
normal and paracompact (defined later when we need ithected 0-manifold is a point. In general, of course, any
Being separable and locally compact, it is also globally themanifold is a countable union of connected components,
union of countably many compact subsets. so it makes sense to classify connected manifolds. It is
Note: Form # n, it is easy to see there is nofiiomor-  Not hard to show that any connected 1-manifold is (home-
phismR™ — R" It is also true that there is no homeomor- 0morphic to) eltheiRl_ or St. If we allow manifolds with
phism, but this requires the tools of algebraic topology likePoundary, there are just two more examples: the compact
homology theory. AnyR™ is contractible, so they all have [nterval, and the ray or half-open interval.

the same (trivial) homology. The trick is to first remove While the complete classification of noncompact surfaces
a point. TherR™ \ {0} contracts taS™?, and spheres of is known, we will only consider the compact case. We have
different dimension havefiierent homology. This was the seen the example$?, T2 andRP?. It turns out that any
start of topological dimension theory, and shows that everyronnected closed surface is a connect sum of these: either

(nonempty) manifold has a well-defined dimension. an orientable surfacgy of genusg or a nonorientable sur-
ExamplesA1.9. faceN;. (And if we allow compact surfa}ces with boundary,
then all we get are these examples with some nurkloér
¢ R™is anm-manifold (with a single chart). open disks removed, denotEgl or Ny .)
* An open subset) ¢ M™ of anm-manifold is itself  The uniformization theorem, a classical result in complex
anm-manifold (restricting charts to). analysis and Riemann surface theory, implies that any sur-

¢ Any smooth surfacé? c R3 is a 2-manifold. (Get face admits a metric of constant Gauss curvature. Indeed,
a chart aroung € M by projecting orthogonally to  the sphere and the projective plane have spherical )
TpM.) metrics, the torus and Klein bottle have euclidean (flat,
= 0) metrics, and all other closed surfaces have hyper-
olic (K = —1) metrics.
Guided by this, Bill Thurston conjectured a method to
understand compact 3-manifolds (with boundary). In
2003, Grigory Perelman proved this “geometrization con-
Mo am . ey jecture”, establishing that any 3-manifold can be cut into
e RP™ 1= §"/x = {lines through OIlR™} is anm-  ieces each of which admits one of eight standard geome-
manifold called real projective space. tries. There is interesting work remaining to be done to
e M™ x N"is an (n + n)-manifold (using product better understand the case of hyperbolic 3-manifolds.
charts). In dimensions four and higher, there is in some sense no
» For any smooth surfadd® c R?, the tangent bundle hope of classifying manifolds. Given any finite group
TM={(p,v) : pe M,ve T,M}is a 4-manifold presentation, one can build a closed 4-manifold with that

, . . fundamental group. Since the word problem is known
One of our first tasks will be to defirig,M for an abstract ;1o undecidable, it is impossible in general to decide

ZmOOth.maTifOICMm; in genergl x’e Vr‘:i” find th?; itis a {Whether 4-manifolds are homeomorphic. Much interest-
imensional vector space and that these can be put toget fﬁrg research thus restricts attention to the case of simply

to form a 2Zn-manifold, the tangent bundle. connected manifolds (with trivial fundamental group).

In some cases it is important to consider also manifold§y, certain other ways, higher dimensions are easier to un-
with boundary, modeled on the halfspace derstand. One reason is that two generic 2-disks will have
empty intersection in dimensions five and above. Thus, for
instance, the Poincaré conjecture was first proved in these

whose boundary i8H™ = {x! = 0} = R™1, dimensions.

e Other surfaces — like polyhedral surfaces — are als
topological manifolds.

e More generally, any smooti-submanifold inR" is
anm-manifold. (We will consider such examples in
general later.)

H™ = {5 %, ..., xM e R™: x* < 0},

Definition A1.10. An m-manifold with boundaris then a
second-countable Hausdibspace locally homeomorphic
to H™. If a point p € M is mapped to the boundary in
one chart, then this is true in every chart. Such points form
the boundarydM c M of M; it is an (m — 1)-manifold  If (U,¢) and {,y) are two charts for a manifol™, then
(without boundary, and perhaps empty). The complement .

M\ 8M is called thénterior and is amm-manifold (without Yo ipUNV)—=yUNV)

boundary).

A2. Smooth structures

is a homeomorphism between open set®R) called a

We will use manifolds with boundary later when we study change of coqrdiqateer transition function The inverse
integration and Stokes’ theorem. Until then, we will ba- homeomorphism is of courgeo yh

sically neglect them, with the understanding that all ourSince the transition functions are maps between Euclidean
theory extends in the “obvious” way. The following ter- spaces, we know how to test how smooth they are. Sup-
minology is standard even if confusing at first:closed poseU c R™is open andf: U — R". To sayf is C°
manifoldis a compact manifold without boundary. just means that it is continous. ffis differentiable at each
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p € U, then its derivative is a functiobf: U — R™™,
We sayf is C! if Df is continuous. By induction, we say
fisC'if Df isC'%, thatis, if D' f is continuous. Iff has
(continuous) derivatives of all orders, we say i0%. If

later. Note that it is easy to tell if a fieomorphism is
orientation-preserving; fa€° manifolds one needs homol-
ogy theory.)

Given aC'-structure on any manifold, for arg/< r, by the

aC>™ mapf is real analytic, meaning that its Taylor series |emma it extends to a uniques-structure. On the man-

around anyp € U converges td, then we sayf is C®.

Definition A2.1. Fix r € {0,1,2,...,0,w}. We say
two charts {, ) and {,y) for a manifold M™ are C'-
compatibleif the transition functions o ¢! and¢p o 1
areC" maps. (They are then inver€é diffeomorphisms.)
A C'-atlasfor M is a collection ofC'-compatible coor-
dinate charts which covergl. A C'-structureon M is a
maximal C-atlas, that is an atla®/ = {(U,, ¢,)} such that
any coordinate chartMy) which is compatible with all
the U,, ¢.) is already contained i#{. A C'-manifoldis a
topological manifoldV™ with a choice ofC'-structure. A
chartfor a smooth manifold will mean a chart in the given

smooth structure (unless we explicitly refer to a “topolog-

ical chart”).

Of course the case= 0 is trivial: any atlas i<C® and the

CC-structure is the set of all possible topological charts. (In

ifold R™, the standardC" structure arises from the atlas
{(R™, id)} consisting of a single chart. If we I&{" denote
the collection of all chart€"-compatible with this one,
then we have

U U > US> U™ > U,

End of Lecture 12 Oct 2015

The point of a smooth structure is to know which mappings
are smooth. Suppose M™ — N"is a (continuous) map
between two smooth manifolds. Givere M, we can find
(smooth) chartsl, ¢) aroundp € M and {,y) around
f(p) € N. Then the composition

yofop™ipUnf V) -R"

this case, of course, one should use the term “homeomors called the expression df in these coordinates. (Writ-

phism” instead of C°-diffeomorphism”.)

ing (x%,...,x™ for a typical point inp(U) ¢ R™ and

This course is about smooth manifolds, where we use th&™. ..., y") for a typical point iny(V) c R", then we can

word “smooth” to mearC®. When we say “manifold”
we will mean smooth manifold unless we explicitly say

think of y o f o ¢~* very explicitly asn real-valued func-
tions, giving they! as a function of¢*, ..., x™).)

otherwise. Of course many of our results will be valid evenNow it is easy to define smoothness:

for lower degrees of smoothness (usuayor C2 or C®
would sufice) but we will not attempt to keep track of this.

Lemma A2.2. Any C-atlas is contained in a unique max-
imal one.

Proof. Given an atlasi{ = {(U,,¢.)}, let V be the col-
lection of all charts\, ) that are compatible with every
(Ua, @a)- We just need to show thal’ is aC'-atlas, that
is that any charts\(s, 1) and {/,, y») are compatible with
each other. But anp € V; NV, is contained in somé,,,
and ony1(V1 N V2 N U,) we can write

Y2oyit = Waog)o(paoyr). O
At the end of this proof, we implicitly use three properties:

e The composition of tw&" functions isC'.

e The restriction of &' function to an open subset is
c.

e Amap thatiC" is some neighborhood of each point
inUisC'onU.

Definition A2.3. The mapf is smoothf for eachp we can
find charts ), ¢) and {, v) as above such thgto f o ¢,

the expression of in these coordinates, is smooth (as a
map between euclidean spaces).MifandN are onlyC'-
manifolds, then it makes sense to ask ifM — N is C®

for s<r but not fors > r.) A diffeomorphism f M - N
between two smooth manifolds is a homeomorphism such
that bothf and f~* are smooth. The set of all smooth maps
M — N is denoted byC*(M, N); we write C*(M) :=
C=(M,R).

ExerciseA2.4. If f: M™ — N" is smooth, then its ex-
pressiony o f o =1 in any(smooth) coordinate charts is
smooth.

Note two special cases: M = R™ (of course with the
standard smooth structure), then we can take id and
thus considery o f; if N = R" then we can takey =

id and considerf o ¢!, For a mapf: R™ — R", we
takey = id andy = id and see that our new definition of
smoothness agrees with the one we started with for maps
between euclidean spaces.

Without getting into formal details, these properties mearnThe basic constructions of new manifolds from old — open

that the class o€" diffeomorphisms form @seudogroup
(of homeomorphisms on the topological sp&:8.

Although we have only define@" structures, other kinds

subsets and products — can be adapted to the smooth set-
ting.
If U c MMis an open subset of a smooth manifold, then we

of structures on manifolds arise from other pseudogroupscan restrict the smooth structure dhto a smooth struc-

For instance, @rojectiveor Mobiusstructure orM arises

ture onU (which we already know is a topological man-

from an atlas where the transtion functions are all projecifold). In particular, each charMy) for M gives a chart

tive or Mdbius transformations (respectively). Arienta-
tion on M arises from an atlas where all transition func-
tions are orientation-preserving. (We will return to this

(VNU, ylvau) for U. (If we talk about a smooth map on an
open subset) of a smooth manifoldM, then we implic-
itly mean smooth with respect to this restricted structure.)
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Suppose we have a covét,} of Mandamagd: M — N.
Then f is smooth if and only if its restriction to eadh,

is smooth. (This is a version of the pseudogroup property
above.)

If M™andN" are smooth manifolds, then it is a straight-
forward exercise to put a smooth structure on the manifold
M x N. (Hint: Use only product chartdJ(x V, ¢ X ¥)
obtained fromsmoothcharts U, ¢) and V, v).)

A3. Exotic smooth structures

Supposeh: M™ — N™ is a homeomorphism between
topological manifolds (so thaM and N are really the
“same” topological manifold). Thef can be used to
move other structures betwedhandN. A trivial exam-
ple would be a real-valued functioh: N — R; it can be
“pulled back” to give the real-valued functidine h on M.

Of interest to us is the case ofGi-structurel on N (a
maximal atlas). We can use the homeomorphisim pull

it back to give &C"-structureh*(U/) on M: the pull-back of
achartU, ¢) € U is the charth1(U), goh) for M. Almost

by definition,h: M — N is then aC'-diffeomorphism
from (M, h*(U)) to (N, U).

SinceM andN are homeomorphic, they are really the same
topological manifold, and we might as well be considering
self-homeomorphismis: M — M. If h = id then clearly
h*(U) = U; more generally this is true any tintds a dif-
feomorphism from the smooth manifol( /) to itself.

But supposéh is a homeomorphism that is not affeio-
morphism. Therh*(U) is adistinct smooth structure on
the manifoldM. Consider a couple of examples on the
line M = R, starting with its standard smooth structure
U, the pull-back structur&*(U) is the one generated by
the single coordinate chamR(h). If h: x — x3 thenh is
smooth but its inverse is not, so with respecht{i{) it is

smooth structure oR™ for m # 4.

The Hauptvermutung(known by that name even
in English) of geometric topology (formulated 100
years ago) suggested that every topological manifold
should have a unique piecewise linear (PL) structure
— essentially given combinatorially by a triangula-
tion — and a unique smooth structure. This is now
known to be false.

Every smooth manifold has a (PL) triangulation. For
every dimensiorm > 4, there are topologicair+
manifolds that admit no triangulation — and in par-
ticular no PL or smooth structures. (For= 4 this
has been known since the 1980s, butror> 4 it

was just proven in 2013!)

There are uncountably manyfidirent smooth struc-
tures onR?. It is unknown if there is any exotic
smooth structure of*.

In higher dimensions, some things get easier. In
dimensionsm > 7, for instance, there are exotic
spheress™, but these form a well-understood finite
group (e.g., there are 28 fan = 7). In general, the
differences between smooth and PL manifolds (and
to some extent between PL and topological mani-
folds) can be analyzed fan > 5 by means of alge-

braic topology.

For compact, simply connected topological 4-mani-
folds, Freedman showed how to use invariants from
algebraic topology to check when they are homeo-
morphic. In most (but not all) cases we know which

of these topological manifolds admit smooth struc-
tures; it is not known how to classify the smooth

structures when they do exist.

easier for maps intd/ to be smooth, but harder for maps Especially since we know there are exotic spheres in cer-
from M to be smooth. (The reverse is true of course if wetain dimensions, it is important to say what we mean by

start withx — +/x.) If on the other hanth: x — 2x + ||,

the standard sphef#" as a smooth manifold. The “right”

then neitheih nor its inverse is smooth. (Note that in all answer is that it inherits a smooth structure as a smooth
these examples, the meaning of smoothness changes onrfyibmanifold ofR™?, but since we haven't developed that

near 0.)

theory yet, we use explicit charts. Any “obvious” atlas will

Such examples are weird, but in fact they are all trivial. give the same standard smooth sphere, for instance the two

As we noted aboveh is always a dieomorphism from
(M, h*(U)) to (M,U). Thus the two smooth manifolds

are difeomorphic to each other — really the same smoothy, = ™\ {+en.1},
manifold. We have merely put on strange eyeglasses — the

maph — to relabel the points d¥1.

More interesting is the question of existence of “exotic”
smooth structures — can twofidirent (nondieomorphic)

charts of stereographic projection:

X
0:(X,2) = ——, xeR™, zeR,
Fz

or the 2Zn + 2 charts of orthogonal projection:

Usj = {xe S c R™: sgnx! = +1),

smooth manifolds have a homeomorphism between them
(meaning that their underlying topological manifolds are
the same). There are still many interesting open questions .
here, especially in dimension 4. The following facts arelt is @ good exercise to check that all these chart<are
known: compatible.
With our basic constructions, we then get many further
e Up to difeomorphism, there is a unique smooth examples of smooth manifolds, like the-torus T™ =
structure on any topological manifod™ in dimen- S x --- x $? (a product of circles) or tha?-dimensional
sionm < 3. Up to difeomorphism, there is a unique matrix groupGL,R c R™" (an open subset).

(¥ = (.., x, L, XM,
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A4. Smooth maps, rank, immersions

Suppose : M™ — N"is smooth, angj = ¢ o f o tisits
expression in some local coordinaték ¢) aroundp € M
and {, y) aroundf(p) € N. Then we define theank of f
at p to be the rank ofj at x = ¢(p), that is, the rank of the
Jacobian derivative matri¥)§! /dx) there.

That this is well-defined (independent of coordinates) fol-

Corollary A4.3. Suppose U MMis open, £ U - R is
smooth and g U is given. Then there is a neighborhood
V c U of p and a smooth map:gM — R such that g= f
onV and g= O outside U.

Proof. SinceM is locally compact, we can choose neigh-
borhoods

peVicVicVocV,cU

lows from the chain rule: a change of coordinates (on one

side or the other) would multiply the Jacobian by an in-with V; compact. (Quite explicitly, we can take any coordi-
vertible square matrix (on one side or the other), leavinghate neighborhoods, ¢) with p € V3 ¢ U andg(p) = 0
the rank unchanged. Note that the rank can be at mogtnde(Va) = Bs(0); then we seV; := ¢~*(B;(0)).) Use the

min(m, n).

theorem to findr with o = 1 onV; ando = 0 outsideVs,.

The rank theorem from multivariable calculus can be re-Then defineg to equalof on U and to be 0 outsid¥>.
stated most nicely for smooth manifolds. (When stated folEach of these is a smooth function on an open set; they

Euclidean spaces it needs to mentiofiedimorphisms.)

Theorem A4.1 (Rank Theorem). Suppose f M™ — N"
is a smooth map of constant rank k. Then for each d
there are coordinate neighborhoo@d, ¢) of p and(V, ¥)
of f(p) such thaty o f o ¢t is the orthogonal projection
map

O, XM - (..., %60, 0),

where of course there are-nk zeros at the right. (Note:
if we want, we can require that(U) = B;(0) andy(V) =
B1(0).)

In particular, maps of maximum rank are important. We

say f is asubmersionf f has constant rank < m. We
say f is animmersionif f has constant rankn < n. For
m = n these notions coincide. A mafjzg M™ — N™is a

diffeomorphism if and only if it is bijective and has con-

stant rankm.

Now recall that smooth functions (unlike analytic func-

tions) are quite flexible. Starting with a function like

O»
e—l/x,

X<0,

h: R - R, h(x):{ %0

we can use it to give a smoothed step function (Ofer0

agree on the intersection. Thus they define a smoath
the union, which is all oM.) O

A5. Tangent vectors and tangent spaces

We know that the tangent spa€gR" at a pointp € R" is

a copy of the vector spade”; a vectorv € TpR" can be
viewed intuitively as an arrow fromto p+v. (Technically,

of course, a tangent vector knows where it is based, so we
could setT,R" = {(p,v) : v € R"}, but usually we write
justv for (p,v).)

If y is a curve througlp := y(0) in R", then its velocity
¥'(0) is best viewed as a vector pR". If M™ is anm-
submanifold througlp € R", then the tangent spaggM™
is anm-dimensional linear subspaceR", consisting of
all velocity vectors to curves lying iM.

For an abstract manifold™, its tangent spac&,M™
should still be the collection of velocity vectors to curves
throughp € M. But of course, there are always many
curves with the same tangent vector. One approach would
be to define tangent vectors as equivalence classes of
curves, but when are two curves equivalent? One could
say: “when they agree to first order”, but this begs the
question.

and 1 forx > 1), and then a smoothed bump function, A good approach is to think about what we use tangent

which can also be rotated into higher dimensions.

For the next proof, we thus fix a smooth functigon R™
with g(x) = 1 for x| < 1 andg(x) = 0 for|x| > 2.

Theorem A4.2. Suppose F and K are disjoint closed sub-

sets of a (smooth) manifold M with K compact. Then
there is a smooth functiom: M — R with values in0, 1]
such thato- = 0on F ando = 1 on K.

vectors for: to take directional derivatives! df R" —» R

is a real-valued function, andis a curve througlp = y(0)
with velocity v = y’(0) there, then the directional deriva-
tive of g is the derivative along:

d

at t=o(9 07y).

avg = ng(V) =

Let us think aboud, as a map taking to the real number

Proof. Each pointp € K has a coordinate neighborhood 9vd € R. This is linear:

Up € M\ F such thatp(p) = 0 andep(Up) = Bs(0)
R™. Then we can define a smooth functign: M — R
by gp := go ¢p 0n U,, extending it to be O outsiddg,,.
The open set¥, = 9051(81(0)) coverK ¢ M \ F (since
there is one for eaclp € K). By compactness, we get
a finite subcovefVy,,...,Vy}. Then if we definer :=
1-1¥,(1-gp), itis easy to check = 1 onK ando = 0
onF. O

ov(g+ Ah) = 9,9 + 19yh
and satisfies the Leibniz product rule:

av(gh) = (8vg)h(p) + (Bvh)a(p).

Such a map is called@derivation Furthermore, it is local
in the sense thai,g only depends on values @f in an
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arbitrarily small neighborhood gf. A fact we will check  staris used to indicate a “pull-back”, a map associatefd to
later is that there are no other local derivationgat R"  acting in the opposite direction.)

besides these directional derivatives. Thus we can use thike any linear map between vector spacésjnduces a

as the definition of tangent vector. dual map between the dual spaces; here we claim this re-
So fix a pointp in a (smooth) manifoldM™. What is the  stricts to a mapf,: ToM — TgN. Working out what the
right domain for a derivation (think of a directional deriva- dual map means, we find that f§p € T,M andg € C*(q)

tive) atp € M? Consider the class we have
C= U C™(V) (£.(Xp))(Q) = Xp(7(9)) = Xp(go f).
Usp

This linear mapf, is called thedifferential of f at p and

of all real-valued functiong defined on some open neigh- e will usually write it asD, f. (Other common notations
borhood ofp. If two functions agree on some neighbor- included, f or simply f’.)

hood, then they must have the same derivativgs ab we

consider them to be equivalent. More precisgtyl) — R~ Theorem A5.1. Given a smooth map :fM™ — N" of

is equivalentto h: V — R if there is some opekv > p ~ manifolds and a point g M, the construction above in-
(with W c U N V) such thamglw = hjw. An equivalence duces alinear map.f= Dpf: T,M — TN, the difer-
class is called @erm(of a smooth function) ap. The set  ential of f.

of germs afp is the quotient spaacg/~ =: C*(p). If gis a

function on a neighborhood qf we often write simplyg ~ Proof. The many claims we made during the construction

for its germ (which might more properly be calleg]); are all routine to check. We gives just two examples. To
see thatf,(X;) is actually a tangent vector gt= f(p), we

Note that ifg € C*(p) is a germ, we can talk about its need to cheek the Leibniz rule:

valueg(p) € R at p, but not about its value at any other
point. (ForM = R™, a germg at p also encodes all dervia- £(X)(ah) = X-((ah o f) = X f\(ho f
tives atp — that is, the Taylor series @f— but also much A(Xp)(h) = Xp((gh) o f) = Xp((g o f)(he f))
more information, sincg is not necessarily analytic.) = (Xp(g o ))(N(@)) + (Xp(h o F))(g(@)

The seC*(p) of germs is an (infinite dimensional) algebra = (1.(Xp)9N(@) + (f.(Xp))9().
overR, that is, a vector space with multiplication. (Exer-

: N o see thaf, is linear, we compute:
cise: check that multiplication of germs makes sense, etc.}- P

We now define @gangent vector Xatp € M to be a deriva- f.(Xp + AYp)(@) = (Xp + AYp)(go f)
tion on this algebra. That is{,: C*(p) — R is a linear = Xy(go ) + AYo(go )
functional: =g pd

= (£.(Xp) + A£.(Yp))(9)-
Xp(g + h) = Xpg + AXph
O
satisfying the Leibniz rule:
_ Itis now a straightforward exercise to check the “functori-
Xp(gh) = (Xp0)N(p) + (Xph)g(P)- ality” of the operationf  f,, that is, the following two

We letT,M denote theangent spacéo M at p, that is, the properties:

setof all such tangent vecta, e For f =id: M —» M, the mapsf* and f, are also

End of Lecture 19 October 2015 the identity maps.
e If h = go f (for maps between appropriate mani-
folds), thenh* = f* o g* andh, = g, o f..

ClearlyT,M is a vector space, with the obvious operations

(Xp + AYp) T 1= Xpf + AYpf. ) .
(The second of these is of course the chain rule from cal-
(In fact, this is just exhibitingl,M as a linear subspace culus.)

within the abstract dual vector spa€&(p)* of all linear . . .
functionals orC*(p). Corollary A5.2. If f: M — N is a djfeomorphism, then

for any pe M, the map Rf: T,M — TN is an iso-
morphism. In particular, if(U, ¢) is a coordinate chart
for M™, theng,: TyM — T, R™ is an isomorphism

Note that ifU c M is open withp € U, thenTp,U = TyM
since the se€*(p) of germs is the same whether we start
with M or U.

Now supposd : M™ — N" is a smooth map of manifolds  Of course, this refers t6;R™ in the sense we have just de-
and consider a poirp € M and its imageg := f(p) € N.  fined for abstract manifolds. It is time to go back and prove
If gis a germ afg, theng o f is a germ atp. (Here of  the claim we made early on, that there are no derivations
course, we really composewith any of the functions in  on R™ other than the usual directional derivatives, that is,
the equivalence clagg) This gives a map thatT,R™ = R™.

f*: C*(q) — C(p), f*(g) :=go f We know \r/nve have a map™ — T,R™ which associates to
eachv € R™ the directional derivativé, at p. This map is
between these algebras of germs, which we claim is lineaglearly linear and is easily seen to be injective. Indeed, if
indeed an algebra homomorphism. (Note that the upper': R™ — R denotes the projectiop — p', thend,n' =
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V' = 7'(v); now two distinct vectors # w must difer in ~ Note that if{g} is the standard basis &™ (so thatv =
some component # W, meaningdyz' # dun', S0, # Y Vve), then{de = o 9.1 is the corresponding standard ba-
Ow. The claim that now remains is just that this map issis of T,R™. Recall that, given a coordinate chaldt, ()
surjective — there are no other derivations. aroundp € M™ the diferentialDpp = ¢.: TM —
T.pR™ = R™ is an isomorphism. Under this isomor-
phism, the% correspond to the elements of a basis for
TpM, which we write as

Lemma A5.3. Suppose X € T,R™ and g € C*(p) is
constant (in some neighborhood of p). TheygX 0.

Proof. By linearity of X, it suffices to consideg = 1. By P
the Leibniz rule, 8 = dip = ( )

X
Xp(1) = Xp(1-1) = Xp(1) - 1+ Xp(1) - 1 = 2Xp(1)
Suppose a functiof € C*(U) has coordinate expression

which clearly impliesXp(1) = 0. ] fogl: o(U) - R, then atp € U we get

Our next lemma can be thought of as a version of Taylor's ~
theorem. (Note that one could IBtbe an arbitrary star- oif = ¢ (axl)( )= X (f ¢ )
shaped region arourl)

Lemma A5.4. Let B:= B,(p) where pe R™ande¢ > 0.
For any ge C*(B), we can find a collection of m functions
h' e C*(B) with H(p) = 22 (p), such that on B we have

909 = g(p) + ) (X ~ PIN ().

In particular, if we consider the individual components
xI = 71l o ¢ of the coordinates as real-valued functions,

e finddi(x! o ¢) = dnl/0X = 6!. We can express any
Xp € TpM in terms of our basi§;} as follows:

m
Xp = > (Xplr' 0 ¢))d)
Proof. If we set =
' 1 og Consider a smooth maf: M™ — N" between manifolds,
h'(x) :=f = (p+t(x-p))dt and choose local coordinates, () around p e_ M and
ox (V,y) aroundq := f(p) € N. (We writex' = z' o ¢ and
then the desired properties follow from the fundamentaly’ = 7/ o ¥.) In these coordinates, is represented by the

theorem of calculus in the form mapy o f o ¢! of Euclidean spaces, or more explicitly as
14 functionsyl = fi(x!,..., xM). Here the derivative is given
gx) =g(P)+ | —=o(p+t(x—p)dt, by the Jacobian matrix
o dt | _
noting that this-derivative is the directional derivative of J= (6_}/1) = (a—fl)
gin directionx — p. O X X

Theorem A5.5. The map v— 4y is a (natural) isomor-  Let us write{d;} as usual for the coordinate frameT§M,

phismR™ — T,R™. where@. = ¢;1(9/ax). For T4N, we use the notation
w*l(a/ayl) We find thatJ is the matrix ofD, f with

Proof. As noted above, all that remains is to prove surjec-respect to these bases. That is,

tivity. Given X, € TpR™, definev € R™ by v := Xy(r'). _

We claimdy = Xp. By definition, these agree on (the germs Do f(d1.0) = Z (B_yJ) %

of) the projectionst’. Now supposeg € C®(p) is any P OXi e

- @(p)
germ. Finding a representatigee C*(B.(p)) for some

£ > 0, we can use the second lemma to write or equivalently, ifX, = YV, and f.(Xp) = X Widjq,
g= g(p) + Z(ﬂ_i _ pI)hl then we have
i j
o W= (ay ) .
Then by the definition of derivation, X ) o)
Xpg = Xp(9(P)) + Z:(XpﬂI = XpP)(h'(p) We should have waited until now to define the rankpat
X-h) (2 (D) — o). M of a mapf: M™ — N". It is simply the rank of the
’ Z( s (P) = P) linear mapD,f: ToM — T N. In coordinates this is,

Here the last sum (which would seem to involve secondf course, the rank of the Jacobian matrix above, as we
derivatives ofg) vanishes simply becausg(p) = p'. And  defined before.

the termsX,p' and X,(g(p)) vanish by the first lemma. One special case is whén= idy, is the identity map. That

Thus we are left with is, we have overlapping coordinate chattis¢) and {/, )
for M™. At any pointp € U n'V, we have two dierent
Xpg = Z(Xp”')(h'(p)) = ZV' Ex (p) = 0v(9) coordinate bases foF,M, which we write asid;} (with
respect ta) and{d (W|th respect tay). Then the change-
as desired. m| of-basis matrix is ]USt the Jacobian matrix of the coordinate
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expression of igh, which here is just the transition function by a smooth functionf € C*(M) pointwise: fX), =
Yoyl (This is the basis for a definition of tangent vectors f(p)X,. That is, the vector field&(M) form not just a real
still popular among physicists: a tangent vector “is” its ex- vector space, but in fact a module over the r@fg(M) of
pression in a coordinate base, with the rules for changingmooth functions.

this “covariantly” when we change coordinates.) Given a vector field and a functionf, we can also define
As usual, we also consider the special cases where one off € C*(M) by (Xf)(p) := X,f € R. Note the distinc-

the manifoldsM or N is (a submanifold ofR. ForR of  tion between the vector fieltiX (given by pointwise scalar
course we use the standard chart (the identity map), and waultiplication) and the functioiX f (given by directional

write d; for the corresponding basis vector for the tangentderivatives off).

space IR at any pomt.' _ ExerciseA6.4. Each of the following conditions is equiv-
A mapy: (a,b) - M™is acurvein M. Its tangent vector alent to the smoothness of a vector fid{das a section

atp:=y(t) € Misy'(t) := Dry(r) € TpM. X: M- TM:

The opposite case is a real-valued functiore C*(M). - . :
ForX € ToM, we have(Dp f)(X) € TspR, s0(Dpf)(X) = e For eachf € C%(M), the functionXf is also
20, for somed € R. Of course, thist is just the direc- smooth. ,

tional derivativeX f. For instance, in local coordinates, e If we write Xjy =! ¥V in a coordinate chart
(Dpf)(@) = (8if)d. We writedf = dpf: T,M — R for (U.¢), then the componenté: U — R are smooth.
the linear mapX — Xf. The dual vector spacg;M is

called thecotangent spacand its elements aretangent End of Lecture 26 October 2015

vectors(or covectorsfor short). Thusd,f € TyM is the
covector given byl f(X) := Xf; this is just another way to
view the diferential since we havd, f(X) = d, f(X)d:. A7.  Submanifolds

A6. The tangent bundle The canonical example of an-dimensional submanifold
of ann-manifold isR™ x 0 c R", the set of vectors whose

_ lastn — m components vanish.
Definition A6.1. The tangent bundle TM= T(M) to

a smooth manifoldv™ is, as a set, the (disjoint) union Definition A7.1. Given a manifoldN", we say a subset
TM = Upem TpM of all tangent spaces tM; there is M c N is anm-submanifoldf around each poinp € M
obviously a projectionr: TM — M with 77{p} = TpM. there is a coordinate chatt)(¢) for N in which M looks
We can equipl M in a natural way with the structure of a like R™x 0 c R". That is, in such greferred chartwe
smooth Zn-manifold. Start with a (smooth) atlas fod. have

Over any coordinate chart)(y), there is a a bijection

Dp: TU — ¢(U) x R™ c R?™ sendingy; Vi € TpU = ¢(MNU) = gU) N (R™x0).

TpM to (¢(p), v). We define the topology ofiM by speci-

fying that these mapB¢ are homeomorphisms; they then |t is straightforward then to check tha (with the sub-

form an atlas fofl M as a topological @-manifold. space topology) is ammanifold. Indeed, the preferred
ExerciseA6.2. These charts fof M areC®-compatible, ~charts form £ atlas forM™.
and thus define a smooth structureToll. Two alternative local characterizations — as for submani-

folds inR" — are then immediate. A submanifdid™ c N"
can be described locally (that is, in some neighborhood
U c N of any pointp € M) as

Note thatT M is an example of a vector bundle, which is
a special kind of fiber bundle to be defined later. Without
going into details, diber bundlewith baseB and fiberF is

a certain kind of spack with projectionz: E — B such
that the preimage of any poibte B is isomorphic toF.

A trivial bundle isE = F x B projecting to the second
factor. Any fiber bundle is required to be locally trivial in
the sense tha® is covered by open set$ over which the
bundle is trivial £ x U). A sectionof a bundler: E — B

is a continuous choice of point in each fiber, that is, a map
o: B— Esuchthatro o = idg.

1. the zero level set of a submersiNA — R"™™ (here
¢ composed with projection onto the last m co-
ordinates), or

2. the image of an immersid™ — N" (here the stan-
dard inclusiorR™ — R" composed withp™1).

We now want to consider in more detail the description
Definition A6.3. A (smooth)vector field Xon a manifold  of submanifolds via immersions. Immersions frai are
M™is a smooth choice of a vectof, € TyM for each 310 known asegular parametrizations Recall that last
pointp € M. Thatis,X is a (smoothpectionof the bundle  semester we used such regular parametrizations to describe
7. TM — M, meaning a smooth may: M — TMsuch  cyrves and surfaces &®. It is of course important that the
thatro X = idy. We writeX = X(M) = I'(T M) for the set  parametrization be an immersion, in order to be sure that
of all vector fields. the image is a smooth submanifold.

We define addition of vector fields pointwiseX ¢ Y), = ExamplesA7.2. Consider the following examples of im-
Xp+Yp. Similarly, we can multiply a vector field € X(M) mersions based on smooth plane curves.
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1.t — (cos Zit, sin 2rt) is a periodic parametrization We will show that the image of a smooth embedding is a
of a simple closed curve, a 1-submanifold. This im- submanifold (and vice versa); the embedding is then not
mersion is not injective, but becomes injective if we merely a homeomorphism but indeed df@dmorphism
consider the domain to be the cir@¢Z = S'. onto its image.

Above we saw many examples of injective immersions of
manifolds which were not embeddings. However, there is
one standard result from point-set topology which guaran-
tees that this never happens whdris compact.

2. Ifr: R - (1, 2) is strictly monotonic, then
t > (r(t) cos 2, r(t) sin 2rt)

is an injective immersion whose image is a submani-proposition A7.4. If X is compact and Y is Hausdgr
fold, a spiral curve in the plane. Note that this imagethen any continuous bijection: X — Y is a homeomor-
is not a closed subset 8f (because the immersion phism.
is not “proper”).
) ) ) _ For the proof, recall that a maf: X — Y is openif the
3.t > (cos&t,sin4rt) is again a closed curve, this jmage of every open st ¢ X is open inY, andf is closed
time a figure-eight. It descends again to the quotienit the image of every closed sétc X is closed inY. If f
cirle R/Z, butis not injective even there. The image js a hijection, then these notions are equiavalent, and also
is not a submanifold. equivalent tof % being continuous.

4. If we restrict this last example to the open interval
(-1/4,3/4), which of course is dieomorphic taRr,
we get an injective immersion whose image is still
the whole figure-eight curve, not a submanifold.

Proof. We need to show ™ is continuous, or equivalently
that f is a closed map. So supposBec X is closed; we
need to showf (A) is closed inY. SinceX is compact,
A is also compact. Sincé is continuous,f(A) is then

5. One can build an injective immersion whose image.compaCt' But a compact subset of the HauitpaceY

is not even locally connected. For instance, join the'> necessarily closed. O
“topologist’s sine curve”, the curve (1/t,sint)
fort > 2, to a downward ray in thg-axis, the curve

t — (0,t) for t < 1, via a smooth intermediate arc
fort e [1,2].

Two examples related to the quotient map> S* (where

I = [0,1] and the quotient identifies the endpoiffisl} to

a single point) show why the two conditions are necessary.
First, we can get a bijection by restricting this map to the
noncompact interval [(1). Second, we can get a bijection
by replacingS? by a non-Hausdd¥ circle with a doubled
basepoint (like our line with doubled origin).

6. For any slopex € R, we can project the ling¢ —
(t, at) of slopee from R? to the quotient torug? =
R?/Z?. Fora = p/q € Q, this gives a periodic curve,

i i i 2
that is, a circle submanifold ifi“ called a 6,q)- Corollary A7.5. If X is compact and Y is Hausdfirthen

Forus kr)ot.. F.OF '”'."‘“O”a"? on the qther ha“fi t2he any (continuous) injection :fX — Y is a topological em-
immersion is injective but its image is dense int bedding

and thus is not a submanifold (in our sense).

Corollary A7.6. If M is a compact manifold, then any in-
In some other contexts, mainly that of Lie groups, exam{ective immersion f M™ — N" is a smooth embedding.
ples like this last one can be considered as submanifolds. A
Lie group is smooth manifold with the structure of an alge-Now we show that the concepts of smooth embedding and
braic group, where the group operations are smooth mapsubmanifold coincide in the following sense:
we will discuss these later. The torTi§ is an example of a ) )
(compact, 2-dimensional) Lie group (under addition). TheTheorem A7.7.If f: M™ — N" is an embedding, then
dense subseX — consisting of points of the fornt,@t) —  f(M) c N is a submanifold and :fM — f(M) is a dif-
is a subgroup; from the point of view of Lie groups this feomorphism. If M' ¢ N is any submanifold, then the
is a 1-dimensional Lie subgroup. Of coungec T2 with  inclusioni: M — N is an embedding.
the subset topology is not a manifold. Instead we simply
use the bijective immersioR — X to transfer the stan- Proof. For the first statement, consider a pom& M and
dard smooth manifold structure frofato X. (Indeed, any  its imageq = f(p) € f(M) c N. Becausef has constant
time we have an injective immersioin M™ — Nn’ itis rankm <n, by the rank theOI’em, we can find coordinates
a bijection onto its image, and could be used to transfefU: ¢) aroundp € M and {, ) aroundq € N in which f
the topology and smooth structure frdvhto that image, 100ks like the embedding™ — R". Itis tempting to hope

making f by definition a difeormorphism, though notto a that () is the preferred chart we seek in the definition
subspace ofl.) of submanifold — but we have not yet used the fact that

f is an embedding and the problem is that other parts of
Definition A7.3. A continuous injectionf: X — Y of f(M) might enterV, while we wantf(U) = f(M) n V.
topological spaces is a topologicainbeddingf it is a  But sincef is an embeddingf(U) is open inf(M) — in
homeomorphism onto its imaggX). A (smooth)embed- the subspace topology frolM. By definition of subspace
ding f: M™ — N" of manifolds is an immersion that is a topology, this means there is an open sub¥et N such
topological embedding. that f(U) = Wn f(M). Now we simply restrict\, ) to
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WnV and we find these are preferred coordinates showingt follows that eachd;: M — M is a difeomorphism, with

f(M) as a submanifold dfl (aroundq). inversed_;. Note that sinc® is an abelian groups(+ t =
We essentially proved the second statement when we putta- S), these dteomorphisms all commute:
smooth structure on the submanifdltic N: we remarked _ _

Gtogs— 93+t —GSogt.

then that the manifold topology oll was the subspace o _ _
topology fromN, which exactly means the inclusion is a This is often simply called ane-parameter group action
topological embedding. The fact that it is an immersion isor a(global) flowon M.

also obvious in a preferred coordinate chart. o Definition A8.1. We say a vector fielX isinvariantunder

the action if it is invariant under eadh that is, if(6;),X =

m n i
SupposeM™ c N" is a submanifold. Then at anye M X for all t.

we can viewT,M c TpN in a natural way as a vector
subspace (using the injectivefidirentialDpi of the inclu-  This may seem like a very special situation, but we will see
sion mapi). More generally, ifM is described (locally) it is quite natural.

as the image of a regular parameterization, an immersio
R™ > U — N, thenT,M is the image of its dferen-
tial. If insteadM is (locally) the zero set of a submersion
f: N — R"™™, thenT,M is the kernel oD, f.

Bur notationé,(p) := 6(t, p) emphasizes the fieomor-
phismsé; obtained by fixingt € R. If instead, we fix a
pointp € M, we of course get a curvwg: R — M defined
by yp(t) := 6(p). The trace of this curve is the orbit of
p € M under the action. It is helpful to rewrite the defin-
ing propertyfs o 6, = 0s,¢ Of a flow in terms of these flow
curves. For any poirg := y,(S) = 6s(p) alongy,, we find

that the curveyy is just a reparametrization ¢f,; indeed
Supposef : M™ — N"is a smooth map anX is a vector

field on M. For any pOIntp c M, we can USd* — Dpf Vq(t) = Ht(q) = et(es(p)) - 0t+S(p) - 7p(S+ t)

to push a vectoX, € T,M to a vector atf(p) € N. If Equivalently,yq = 65 o yy:

there exists a vector fied on N such that for eaclp € M

we haveYi, = Dpf(Xp), then we say is f-relatedto X. Ya(®) = O5(6(p)) = bs(vp(V).

Of course, wherf is not injective, it might be impossible pefinition A8.2. The infinitesimal generatoof the flow
to find anf-related vector field; wherf is not surjective, g is the vector fieldX on M defined byXp 1= ¥;(0), the

Y is not uniquely determined away frofifM). But when  yelocity vector of the curve, atp = yp(0).
f is a difeomorphism, there clearly is a unig¥ethat is

f-related to any giveiX, and then we writ&f = f.(X). End of Lecture 2 November 2015

If 1M — M is a difeomorphism it can happen that a An equivalent way to define the infinitesimal generaXor

vector f|eI_dX IS f-re_lated to ltseIfD( = f.(X). Inthis Case,  omes from looking at a standard “vertical” vector field on
we sayX is f-invariant As a simple example, consider R x M, defined by

the radial fieldX, = p on R™. It is invariant under any

homothetyf: p — Ap. This may seem like a very spe- TR x M) = TR x ToM 3 (0, 0) =: V().
cial situation, but in fact our goal now, given an arbritrar .

vector fieldX, is to construc?a one-pagrameter family o¥ Theniitis easy to check tha, = (Dp6)(V).
diffeomorphism#;: M — M under whichX is invariant. Theorem A8.3. Supposd is a flow on M with infinitesi-
Recall that ifG is an algebraic group andis any set, then mal generator X. Then X &-invariant. That is, for any
anaction6 of GonXisamap: GxX — X, oftenwritten ~ S€ R and pe M we have

as (65),(Xp) = Xoqp-
(9. %) — g- X:=0g(X), : ,
Proof. Write g = 6s(p) so thatX, = y,(0) andXq = y4(0).

satisfying the following properties: Then the desired formula follows immediately from the
0o = idy Ogh = Oy © O observation above that, = s o yy. o

A8. Vector fields and their flows

(That is, in the typical group theory notaticey,x = xand ~ Corollary A8.4. If X,, = 0 then the curvey, is the con-
(gh) - x=g- (h-x).) Eachgy: X — X is a bijection (with ~ Stant mapyy(t) = p. If X, # 0, then the curvey, is an
inversedy-1). The actiory partitions the seX into orbits immersion. If it is not injective of then it is s-periodic

and injective orR/sZ for some s> 0.
G-x:={g-x:9€eG},

which are the equivalence classes under the equivalend@©0f- First note that

relationx ~ g- X. Yp(®) = Xyp) = (60), Xp-
We are interested in smooth actions of the (1-dimension
Lie) group R, +) on a smooth manifoldM™. Such an ac-

tion is a smooth map: R x M — M, again written as . . . .
(t. p) - 6(p), satisfying injective curve withy(t + s)_ = yp(t) for somes and_t,
’ ' then the same holds for thsand everyt, that is,y is
6o = idy, Os 0 6; = Os.t. s-periodic. |

aéinceet* is a linear isomorphism, these vectors either re-
main zero or remain nonzero. Finally, if we have a non-

10
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Recall that these curves are thsbits of the flow 6§ and
form a partition ofM. (Each orbit is topologically an open
arc or a closed loop or a single point.)

Note also that the vector field is 6-related to the vector
fieldV = (6;,0) onR x M since

Xoe.p = De.p@(Viep)-

As we have seen, any flowhas an infinitesimal genera-
tor X. What if we start with a vector fielX on M: does it

generate a flow? We will see that the answer is always yes

whenM is compact; in general the flow might exist only
for smallt (depending orp).

Definition A8.5. Given a vector fieldk on a manifoldM,
acurvey: J —» M (whered c R is some open interval) is
called arintegral curveof X if y/(t) = X,y forallt € J.

As we have seen, arB-actiond has an infinitesimal gen-
eratorX. Then each orbiy(t) = 6:(p) is an integral curve
of X, defined onJ = R. In other cases, the integral curve
does not exist for all time, since it flows out bf in finite
time. For instance, consider the fléy(x) = x+te; onR™,
whose infinitesimal generator ¥ = 9. If we replaceR™
by an open subset (likR" \ {0} or R" \ By(0)) then we
sometimes leave this open subset in finite time.

Think for a minute about dimensiom = 1. Up to dif-
feomorphism, there is no filerence between reaching the
“end” of a finite open interval like (A.) and reachingeo.

A classical example is the flow dfd; on R, that is, the
solution of the ODEdu/dt = u?, which blows up in finite
time. So it is too much to hope for a global solution in
general. But of course, standard theorems on ODEs gu

Like any local result, this can be transferred immediately to
the context of an arbitrary manifold, where its restatement
has a more geometric flavor.

Definition A8.8. A local flowaroundp € M is a map
0: (-g,&) xV—-> M

(for somee > 0 and some opeX > p) such thatp(q) = q
forallge V, and

6:(65(0)) = 6t+s(0)

whenever both sides are defined. Timv linesare the
curvesy,(t) := 6:(0); theinfinitesimal generatois the vec-
tor field Xq = v4(0) tangent to the flow lines.

Theorem A8.9. Any vector field X on a manifold M has a
local flow around any point g M.

Note that if we prove this theorem by appealing to the pre-
vious theorem o™, then the neighborhood we con-
struct (and even the values@fwill be in some coordinate
chart aroundp. But this doesn’t fiect the statement of the
theorem.

Theorem A8.10. On a compact manifold M any vector
field X has a global flow.

Proof. For anyp € M we have a local flow, defined on
some Eep, gp) X V. By compactness, finitely many of the
V,, sufice to coverM. Lete > 0 be the minimum of the
corresponding (finitely many,. Then we know that the

low of X exists everywhere for a uniform tintes (-¢, ¢).

s oca) estence and Uiaeness of SOUONS, W1CHut the, for nstance using = oo 6, we can
teg o j construct flows for arbitrary times. O

ODE course, you might learn about minimal smoothness

conditions for existence and for uniqueness; certaiity

or evenC! suffices for both.)

Theorem A8.6. Suppose L R™isopenand f U —» R™

is smooth. Then for eacheU, there is a unique solution L . . .
to the equation djdt = f(x) with initial condition x0) =  Definition A9.1. A Lie algebrais a vector space with

p: it is smooth and is defined on some maximal open tim&" antisymmetric (or skew-symmetric) product
interval (ay, bp) > 0.
( Y P) L X L N L,

A9. Lie brackets and Lie derivatives

(v,w) > [v,w] = —[w, V]

A proof of this basic result (using the Banach fixed- o ) _ . _ .
point theorem for contraction mappings) can be found inthat is bilinear (i.e., linear i and inw, where it sifices
Boothby. Somewhat more subtle is the “smooth depent® check one of these:
dence on parameters” as given in the next theorem. (See
Conlon’s textbook for a proof.) In our version, there are no

parameters other than the initial pomt

[AV+ V', W] = A[v, W] + [V, W],

noting this could also be called a distrubutive law) and sat-
Theorem A8.7. Suppose U R™isopenand f U - R™  isfies theJacobi identity
is a smooth function. For any point p U there exists

& > 0, a neighborhood \& U of p, and a smooth map [u [v,W]] + [v, [w, u]] + [w, [u,v]] = O.

X: (-&,)xV - U A trivial example is any vector space with the zero prod-
uct [v,w] := 0. The Jacobi identity may not at first seem
intuitive, but in fact there are some familiar nontrivial ex-
amples.

ExampleA9.2. Three-spac®&2 with the usual vector cross
product y,w] := vxw = Vv Awis a Lie algebra.

satisfying

o= fta). 0.9 =aq

forallt € (—&,¢) and ge V.

11
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ExampleA9.3. The ordinary matrix product dR™" is bi- is a vector field, that is, that it is local and satisfies the
linear but neither symmetric nor antisymmetric. But the Leibniz product rule. But locality — the fact that the value
matrix commutator A, B] := AB - BAis clearly antisym-  of [X, Y] f at p depends only on the germ &fat p and not
metric. To check the Jacobi identity, we compute on its values elsewhere — is clear, giving

[A[B,C]] = ABC— ACB- BCA+CBA X.Y]p: Co(p) > R, f > Xp(Y ) = Yp(XF).

and then cyclically permute. The bracket notation for Lie To show [X, Y], € TpM we now check the Leibniz rule:

algebras comes from this earlier use of brackets for com-
mutators. [X, Y]p(fg) = Xp(Y(f9)) — Yp(X(fQ))

ExampleA9.4. More generally (and more abstractly), sup- = Xp(fYg+0Y ) - Yp(fXg+gXf)

poseV is any vector space, and consider the set Epd¢ = (XpF)(Ypg) + F(P)Xp(YQ
L(V, V) of linear endomorphisms (self-maps) ¥n Then + (Xp9)(Yp ) + 9(p)Xp(Y )
the commutator _ (Ypf)(ng) _ f(p)Yp(Xg)
[AB]:=AoB-BoA = (Yp0)(Xp ) — 9(p) Yp(X 1)
= ()X Y]pg + 9(P)[X, Y]pf o

is again a Lie product.

) ] Exercise A9.6. Of course the Lie bracket{ Y] is R-
Now consider the seX(M) of smooth vector fields on a pjlinear, but it is noC*(M)-bilinear. Instead we have
manifold M™. As we have observed, this is an (infinite-

dimensional) vector space ov& and indeed a module [fX,gY] = fg[X, Y] + f(XQ)Y —g(Y f)X.
over C®(M), where forX,Y € X and f € C* the vector _ _ _
field fX + Y is defined pointwise: (Hint: consider first the casef K, Y] = f[X Y] - (Y )X

and then use that twice, with the antisymmetry.)
fX+Y), = f(p)Xp + Yp. .
(X4 ¥)p = T(P)Xp + Y5 Lemma A9.7. Letd; € X(U) denote as usual the coordi-
But we also recall that a vector fiekle X gives (orindeed ~Nate basis vector fields on a chdtd, ¢). Then their Lie
can be viewed as) a map°(M) — C=(M) via f ~» Xf,  bracketsvanishfd;,9;] = Oforalli,j=1,...,m.
taking directional derivatives of in the directionsXp. A
That is, we can view vector fields as endomorphisms of’roof. Let f be a germ ap € U, and write f for the

C=(M): germf o o7t aty(p) € R™. By definition of9;, we have
@i F)(p) = (0f/0X)(¢(p)). Then for the Lie bracket we
X(M) c EndC®M). get:
As Lie observed, the commutator product on EZfdi) [0, 9] = 6i(6;F)(p) - 8;(0i F)(P)
in fact restricts to the subspade 82f 52f
= W(w(p)) - m(‘ﬁ(p)) =0,

Theorem A9.5. The space of vector fieldg(M) is a Lie X X

algebra with the Lie bracket using the fact that the mixed partials commute. o

[X, Y]f := X(Y f) = Y(XT). ExerciseA9.8. Using this lemma and the result of the pre-

vious exercise, compute the formula for the Lie bracket

Note that the ordinary composition product does not re{X: Y] in coordinates, ifX = ¥ o'd; andY = 389 in a
strict: the mappingf — X(Y f) is an endomorphism of chartU,¢).

C*(M) which should be thought of as taking a secondoyt coyrse, vector fields are used to take derivatives of func-
derivative of f in particular directions; this does not cor- tions. X e X(M) and f € C*(M) then X f)(p) = X,f is

respond to a vector field, because second derivatives dg yirectional derivative of. If y is an integral curve oX
not satisfy the Leibniz product rule. But partial derivative throughp andé its (local) flow, then

commute; in the commutator above the second-order terms

cancel, leaving only first-order terms, that is, a vector field d d

[X,Y]. To understand why there can be first-order terms Xpf = dtlio flyp(®) = dtlio F(6:(p))-

remaining, recall the formula for the second derivative of a

function f along a curvey in R" passing through(0) = p Now suppose we want to take a derivative of a vector

with velocity y’(0) = v and acceleratiop”(0) = a: field Y along a curvey. The problem is that for each
g = y(t), the vectorYy lives in a diferent tangent space
d_2 f(y(t)) = D2f(v,V) + Do f(a) T4(M). So we cannot compare these vectors or ask for
dt?|,_, Y= et P their rate of change along without some sort of addi-
tional information. Later in the course, we will introduce
Proof. We need to check that the endomorphism the notion of a “connection” (for instance coming from a
Riemannian metric), which does allow us tdfdrentiate
[X,Y]: C*(M) - C*(M) a vector field along a curve. But Lie suggested féedént
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approach. Suppose we have not just one (integral) curve A10. Vector bundles
vp but a whole vector fielk and its associated local flow

aroundp. Then we can use When we defined the tangent bundiévl of a manifold

Dpbt = 6t TpM — Ty oM M™, we mentioned that it is a specific example of a smooth
to identify the tangent spaces along the integral cyye vector bundle oveM, with fibers the tangent spacésM.

In particular, for each(in the interval (s, ) of definition) N 9éneral, abundle overzmse space Monsists of dotal
we haves_i, (Y,p) € TpM. space Ewith a projectiont: E — M. When there is no

o ] o confusion, we often refer th as the bundle. Thigber over
Definition A9.9. If X,Y € X(M) then theLie derivative ¢ M js simply the preimag&, := 7 4p}. If S c M, we

LxY of Y with respect toX is the vector field defined by \yrite Eg for the restriction of E to S, that is, the bundle
_ ns:Es =n74(S) » S. If 7: E > Mandr’: E - M
(LxY)p = dtli—o 0-1.(Yap) € ToM. are two bundles, thep: E — E’ is fiber-preservingif
n" o ¢ = m, thatis, ifp(Ep) C Ej, for eachp.
Of course, we only calt: E — M a bundle if the fibers are
all isomorphic (in an appropriate sense, to sdmgeand if

It would be straightforward but tedious to check in coor-
dinates that this is a smooth vector field. For us, that will
follow from the theorem below, saying that the Lie deriva- E is locally trivial, locally looking like a product withF.

tive is nothing other than the Lie bracket: We now give a precise definition for the case of interest
LxY =[X, Y] = -[Y,X] = -LyX. here.

For this we first need the following lemma, a modification

of the Taylor-type lemma we used to provgR™ = &M Definition A10.1. A (smooth) vector bundlef rank kis a

mapn: E™X — M™ of manifolds such that
Lemma A9.10. Suppose a vector field X X(M) has local

flowd: (—&,6) x V. — M around pe M. Given any fe e each fiber is a vector space of dimension
C*(M), there exists a smooth function ¢-¢, £) xV — R, « each point inM has atrivializing neighborhood U
which we write agt, ) — g(d), such that meaning there is a fiber-preservingfdbmorphism
f(6(Q) = f(q) + tge(q), Xqf = 0o(0). Ey - U x R¥ that is a vector space isomorphism on
each fiber.

. . o d _
Proof. First we definefy(q) := 5 f(6(0)) = Xaqf, and ExerciseA10.2. If M™ c N"is a submanifold and: E —

1 )
then we sety(q) := [_,h«(d)ds Fort = O this clearly N is a vector bundle of rank over N, then the restriction
medaf;]sgc;(Q); ho(q) |=thf- US”f‘g al ckllangfe of \t/)grlables Ew is a vector bundle of rank over M.
and the fundamental theorem of calculus, for arbitt .

. i Hary RemarkA10.3 The tangent bundl& M is a rankm bun-

tt = f(0 —f desired. - . S
gettar(@) = F(6(@) - f(q) as desire . dle overM™. Any coordinate chartl, ¢) is a trivializing
Theorem A9.11. For any vector fields XY on M, the Lie  neighborhood where the fiber-preservinffedmorphism
derivative and Lie bracket coincide, that is, we hay& |= is
[X,Y].

) (7, D) : Xp = (P, Dpp(Xp)).
Proof. Supposef € C*(p) is a germ afp € M. We want
to show (LxY),f = [X Y]of. Choose a representative The restrictionDpe: T;M — R™ to each fiber is indeed
f e C*(U) for the germ and use the lemma (applied to thelinear.
manifoldU) to findg; such thagy = X f andfo6; = f+tg;, .
or negating as we will, f o 6_, = f —tg_,. Then starting Supposer: E — M is a vector bundle. We can covbt

from the definition ofLyY we find by open setd) that are (small enough to be) both coordi-
1 nate charts for the manifol and trivializing neighbor-
(LxY),f =lim —((H_I*Ygtp)f - Ypf) hoods for the bundl&. That is, we have dieomorphisms

-0 t ¢: U - p(U) cRMandy: Ey — U xR, the latter being

= lim }(y&p(f 00— Ypf) fiber-preserving and linear on each fiber. Composing these
=0 ; gives a difeomorphism

=im Y(Y"‘p(f ~ 1) - o) (p,id) o Ey — @(U) x RX ¢ R™K,
d .

= d_t‘t:o (Yapf) - lt'_r,% Yoip9-t which is a coordinate chart for the manifdid

= E‘ (Y )(6:(P) — Yp%o Definition A10.4. A sectionof a vector bundler: E - M
dtleo isasmooth map: M — E such thatroo = idy, meaning

= Xp(Y 1) = Yp(Xf) = [X, Y]pf O o(p) € E, for eachp € M. The space of all (smooth)

ExerciseA9.12 Supposef : M™ — N is a smooth map Sections is denotel(E).
andY € X(N) is f-related toX € X(M) while Y’ is f-

related toX’. Then [Y, Y] is f-related to K, X’]. Vector fields, for example, are simply sections of the tan-
gent bundle:X(M) = I'(T M). As in that examplel'(E)
End of Lecture 9 Nov 2015 is always a module oveZ*(M), using pointwise addition
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and scalar multiplication: itr,r € T'(E) and f € C*M,
theno + fris defined pointwise by

(c+fr)p=0p+ f(P)1p € Ep.

Sometimes we talk about local sectiomse T'(Ey) that
are not defined globally on all df1 but only on a subset
U c M. A trivialization of E over U is equivalent to a
frame that is, a set ok sectionso; € T'(Ey) such that at
eachp € U, theo(p) form a basis foiE,,.

Operations on vector spaces yield corresponding opera{i-aIs of functions. Iff € C*

tions (acting fiberwise) on vector bundles. For instance
if E—~ M andF — M are two vector bundles ovéM (of
ranksk andl, respectively) then theitirect sum(or Whit-
ney suUmEaF — M is a vector bundle of rank+I, where
we have E®F), = Ep@ F, fiberwise. Any neighborhood
which trivializes bothE andF will trivialize their sum.

Al1l1l. Dual spaces and one-forms

write QY(M) = T'(T*M) for the space of all sections. A
one-formw € Q(M) acts on a vector fielK € X(M)

to give a smooth function(X) € C®(M) via (wX)(p) =
wp(Xp) € R. In a coordinate charlJ, ¢) we have the ba-
sis vector field$);; taking the dual basis pointwise we get
the basis one-formgx satisfyingdx (9;) = 6}. Any one-
form o € Q1(U) can be written as~ = ¥, odX, where the
components; = o(d;) € C*U are smooth functions.

An important way to construct one-forms is as thiéaten-
M thenDpf (oM - TR,
under the identificatiom{R = R, can be thought of as a
covectordf, at p. If X € X(M) is a vector field, then
df(X) = Xf, meaningdf,(X,) = X,f for eachp € M.
While X, f depends on the germ dfat p, it only depends
ondf at p: the covectod f, encodes exactly all the direc-

tional derivatives off at p.

Note that the notatiodX we used above for the coordinate
basis one-forms in a coordinate chdit ¢) is consistent:
these are indeed theffirentials of the coordinate compo-
nent functionsk' := 7' 0 ¢: U — R. In coordinates, we
havedf = Y(d;f)dX, where we recall thad; f is thei"

We next turn to various constructions on a single vectohartial derivative of the coordinate expressiongt of f.

spaceV. Even though much of what we say could extend
to arbitrary spaces, we assuids a real vector space of
finite dimensiork; later it will be a tangent space to a man-
ifold.

Thedual space V := L(V,R) is defined to be the space of
all linear functionalsy — R (also calledcovectory. The
dual spacé&/* is alsok-dimensional.

As we have mentioned before, a linear mapV — W

induces a dual linear map*: W* — V* in the opposite
direction, defined naturally byL{o)(v) = o(Lv). This

construction is functorial in the sense that id id and

(Lo L’)" = (L')* o L*. One can check thdtis surjective if
and only ifL* is injective, and vice versa.

While there is no natural isomorphiskh — V*, any ba-
sis{ey, ..., & for V determines aual basis{w?, ..., vk}
for V* by setting

0,
1’

i i I+ ],
w'(€)) = 9] :{ i= .
The covector' is the functional that gives thH& compo-
nent of a vector in the basig}, that is,v = Y w'(V)e,
which we could also write as' = &'(v). Similarly,
o= 0(e)w.
There is a natural isomorphiswi — V**, wherev € V
induces the linear functionat — o(v) on V*. Given a
linear mapL: V — W, we havel ™ = L.

Applying duality to each fibeE, of a vector bundle gives
the dual bundle E with (E*), = (Ep)*. It is trivialized
over any trivializing neighborhood fdg, as one sees by
choosing a frame and taking the dual frame.

Applying duality toTpM gives thecotangent space ;M

to M at p. These fit together to form trmtangent bundle
which (just like the tangent bundle) is trivialized over any
coordinate neighborhood.

A (smooth) sectionw of the cotangent bundle is called a
covector fieldor more often gdifferential) one-form We

An interesting example of a one-form is the fodton S?.
We covers?t with coordinate charts of the form

(cos, sind) — 0 € (6o, Ho + 2r).

On each such chart, we writ#9 for the coordinate basis
one-form (which would also be calleti'); then we note
that on the overlaps, these formgagree (independent of
the omitted pointy).

Unlike for most manifolds, the tangent bundfes?! is
(globally) trivial; thusT*S? is also trivial. Any one-form
is written asfdd for some smooth functiofi. The formdo
can be thought of as dual to the vector fields{ng, coso)
on S, which isg; in any of the charts above.

The notationdd is slightly confusing, since this one-form
is not globally the dterential of any smooth function
on st. Thus on$?, this is a one-form which is “closed”
but not “exact”, meaning thald looks like a diferential
locally but not globally. This shows, in a sense we may
explore later, that the spa&@ has nontrivial “first coho-
mology”, that is, that it has a one-dimensional loop.

One forms are in some sense similar to vector fields, but
we will see later how they (as well asfidirential forms of
higher degree) are often more convenient. This is mainly
because, while a map: M — N does not in general act
on vector fields, it can be used to pull one-formd\bhack

to M. To see this, note that

f* = Dpf . TpM — Tf(p)N
at eachp € M induces a dual map
f* = (Dpf)": TipyN — ToM.
Givenw € QY(N), we definef*w € QM) by (f*w), =
f*(a)f(p)) € TEM.

A special case is the restrictiany of a formw € QN
to a submanifoldM™ c N", which is simply the pullback
under the inclusion map. For a§y € T,M c TN at any
p € M c N we of course simply have|u(Xp) = w(Xp).
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Al12. Bilinear forms and Riemannian metrics The matrix @;j) is of course symmetric and positive defi-
nite at eactp € U.

A bilinear mapb: V x V — R is called abilinear form ~ The standard Riemannian metgcon the manifoldR™
onV. If {e,,...,&] is a basis forV, thenb is given ~comes from putting the standard Euclidean inner product
by bij = b(e.e): if v = YVe andw = Y we then ©OneachT,R™ =R™ Thatis, in the standard chait7, id)
b(v,w) = ¥ ;bijVwi. The bilinear formb is calledsym- ~ We havegij = gi;.

metric if b(w,v) = b(v,w) (i.e., if b = b;) andan- If f: M™ — N"is a smooth map, then we can pull back
tisymmetricor alternating if b(w,v) = —b(v,w) (i.e., if  sections ofQ(TN) to sections ofQ(T M) in the natural
bij = —bji). Any bilinear formb can be uniquely decom- way:

posedb = b* + b~ into a symmetric parb* and an anti- . .

symmetric parb~, defined by B* (v, w) = b(v, w)=+b(w, v). () (Xp, Yp) = 9(fe Xp, £.Yp).

Given a linear maj: V — W, we can pull back any bi- If g is a Riemannian metric, then of courgg will be
linear formb onW to a bilinear formL*b onV, defined by  positive semidefinite at eagh € M, but it will be a Rie-
(L*b)(v, V') = b(Lv, LV). mannian metric if and only if is an immersion (meaning
We will consider antisymmetric fierential forms later. thatDpf is injective for everyp € M, and in particular
For now we restrict attention to symmetric bilinear forms M < N)- Again, an important special case of this pull-back
on V. These are in one-to-one correspondance witHnetric is whentf is the inclusion map of a submanifold;
quadratic formsy: V — R: of courseq(V) := b(v,V) de- then we speak of restricting the Riemannian megron N
pends only on the symmetric partiménd we can recovér 10 dim on the submanifold/ c N.

from q via the formula In particular, the standard metric &' restricts to give a
Riemannian metric on any submanifdld™ c R". Last
2b(v, w) := q(v + w) — q(v) — q(w). semester, we studied the case- 2, n = 3, and called this

metricg(v, w) = (v, w) the first fundamental form.

(Note that much of our discussion would fail for vector
spaces over fields of characteristic 2, where @.)

A symmetric bilinear fornb (or the associated quadratic
form q) is calledpositive semidefinité g(v) = b(v,v) > 0
forall ve V. Itis calledpositive definitéf g(v) = b(v,v) >

0 for all v # 0. A positive definite form orV is also
called aninner product(or scalar productonV. Aninner ~ The sections of any vector bundie — M form a vec-
product is what we need to define the geometric notions ofor space. In particular, there is always the zero section

End of Lecture 16 Nov 2015

Al13. Partitions of unity

length(or norm) ||vl| := +b(v, v) andangle op = 0 € Ep. An interesting question is whether there is
a nowhere vanishing section. A trivial bundié x R" of
. Eb(V, w) course has constant nonzero sections. Sometimes it turns
£(v:w) := arcco (V] {]w| out that the tangent bundleM is trivial — this happens for

_ . N ~instance forS? or more generally thentorusT™. Other
between vectors iW. The pullback."b of a positive defi-  times, there is no nonvanishing sectionok. For in-

definite if and only ifL is injective. any closed orientable surfadé? other than the torug?2.
Of course the standard example of an inner product is th®©vers? there is also a nontrivial line bundle, whose total
Euclidean inner produdi(v,w) = 3 VW onR™. space is topologically a Mobius strip. This bundle has no

The quadratic forms oW form a vector spac€)(V) of ~ Nonvanishing section.

dimensior(mgl). The positive definite forms form an open From this point of view, it might be surprising that the
convex cone in this vector space, whose closure consistgundle Q(T M) has nonvanishing sections for any mani-
of all positive semidefinite forms. (A convex cone is a setfold M™, indeed sections which are positive definite ev-
closed under taking positive linear combinations.) erywhere. In other words, any manifol can be given

a Riemannian metric. This follows from the fact that any
manifold can be embedded RI" for suficiently largen,

or can be proven more directly by taking convex combi-
nations of standard metrics infiérent coordinate charts.
tor bundleQ(T M) of rank("‘gl). A positive definite sec-  Either of these approaches requires the technical tool of a
tion g € T(Q(T M)) is called aRiemannian metrion M. partition of unity, a collection of locally supported func-

It consists of an inner prOdU(ﬁKp’ Yp> = gp(Xp, Yp) ON tions whose sum is e_verywher_e one. This giyes a general
each tangent spadgM, which lets us measure length and method for smoothly interpolating betweertfdrent local

Again, we can apply this construction to the fibers of any

vector bundleE. If E has rankk, then Q(E) has rank

(kgl). In case of the tangent bundleM, we get a vec-

angles between tangent vectors at arg/ M. definitions. We do not want to get into questions of sum-
In a coordinate charll, ¢), the metricg is given by com- ming infinite sequences; thus we impose a local finiteness
e condition.

ponentsy;j := g(d;, ;) € C*U so that
Definition A13.1. A collection{S,} of subsets of a topo-
g(z aidi Zﬂiaj) = Z gijo/Bl. logical spaceX is calledlocally finiteif eachp € X has a
0 neighborhood that intersects only finitely many of e
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Definition A13.2. The support suppf of a function
f: X = R"is the closure of the set whefex 0.

ExampleAl13.8. The cover{(-n,n) : n € N*} of R is not
locally finite, but any covering dR by bounded open sets
is a refinement, so for instan¢gk — Lk + 1) : ke Z}is a

Lemma A13.3. If f,: M — R are smooth functions such o :
locally finite refinement.

that {suppf,} is locally finite, then}, f, defines a smooth
function M— R. A standard result in point set topology says that any sec-
ond countable, locally compact Hausffspace is para-
compact. It is also true that any metric space is paracom-
pact. Some authors replace “second countable” by “para-
compact” in the definition of manifold, which makes no
difference except for allowing uncountably many compo-
nents. (The long line, for instance, is not paracompact.)
It is known that a topological space admits a continu-
ous partition of unity subordinate to any given open cover
if and only if X is paracompact and HausdorWe will,
however, explicitly prove what we need for manifolds.

Proof. The local finiteness means that egele M has a
neighborhoodJ which meets only a finite number of the
suppf,. OnU, the sumy}; f, is thus a sum of a fixed finite
collection of smooth functions, hence smooth. O

Note that saying the collection of supports sudpps lo-
cally finite is stronger than saying eaple M is contained
in finitely many supgf,, which in turn is stronger than say-
ing only finitely manyf, are positive at each € M. This
would sufice to evaluaté’ f,(p) as a finite sum at eagh
The stronger conditions ensure that the sum is a smootbemma A13.9. Every manifold M has a countable base
function. consisting of coordinate neighborhoods with compact clo-

Definition A13.4. A (smooth)partition of unityon a man- sure.

ifold M is a collection of functiong, : M — R such that Proof. Start with any countable ba$B;} and letB be the

subcollection of thosd; that are contained in some co-
ordinate neighborhood and have compact closure. Now
suppose we are given an open sutwet M and a point

p € W. Choose a coordinate chattl, () aroundp such
that

L4 wa Z 01
e {suppy,} is locally finite,
e XY =1

A trivial example is the single constant function 1. The
interest in partitions of unity comes from examples where
the support of each,, is “small” in some prescribed sense.

UcW  ¢(p)=0,  Bx(0)c )

and setV := ¢ 1(By(0)). ThenV has compact closure.
Since{B;} is a base, we havp € B; c V c U for somei.
But then thisB; is also contained with compact closure
in the coordinate neighborhoddi; thusB; € 8. Sincep
andU were arbitrary, this shows is a base. O

Definition A13.5. Given an open covelU,}, a partition
of unity {y3} is subordinateto the cover{U,} if for each
B there existsx = a(B) such that the support supp is
contained inJ,,.

Note that if we want, we can then define a new partitionLemma A13.10. Every manifold M has a “compact ex-
of unity {¢,} also subordinate tflJ,} and now indexed by haustion”, indeed a nested family of subsets

the same index set. Simply sgt to be the sum of those
Y for whicha = o(B). (Note that this is not the sum of alll
Y supported irlJ,.)

To give the flavor of results about partitions of unity,
we start with the easy case of a compact manifold. All

@iWJ_CW]_CWQCWzC“-

with W, open and\, compact, whose union is M.

manifolds have a related property called paracompactnesgy, il choose 1=

which will be enough to extend this result.

Proposition A13.6. Given any open covetJ,} of a com-
pact manifold NMI', there exists a partition of unity subor-
dinate to this cover.

Proof. For eachp € M, we havep € U, for some

Proof. Choose a countable bafg} as in the last lemma.

i1 <ip <--- and seM := ¥, B.
These automatically have compact closure and are nested.
We just need to choose eaghlarge enough that\i o
W,_1. But this is possible, sind@/_; is compact and thus
covered by some finite collection of tiigs. Finally, since

ik > kwe have thatWi > Bx solJ Wk D> | Bx = M. O

a = a,(p), and we can choose a smooth nonnega‘[ive funcCOfOllary Al13.11. Given a manifold M, we can find

tion f, supported inJ, with f, > 0 on some neighbor-
hoodV, > p. SinceM is compact, a finite subcollection
Vo, ..., Vp ) coversM. Thenf := 3 f, is a positive
smooth function orM, so we can define a finite collec-
tion of smooth functiong; := f,/f. These form a (finite)
partition of unity, subordinate to the given cover. m|

Definition A13.7. An open cover{V)} is arefinemenif
another open covelJ,} if eachV; is contained in some
U,. A spaceX is paracompacif every open cover has a
locally finite refinement.

countable families of subsets K O; ¢ M, fori € N*,
with K; compact, @ open,|JK; = M, and{O;} locally
finite.

Proof. Using the nestedV; from the lemma, simply set
Ki :== W, \ W_; andO; := Wi,1 \ Wi_, (where we take
Wp = @ = W_3). The local finiteness follows from the fact
that anyp is contained in som&j,; \ Wj_l, which meets
only four of theQ;. O

Corollary A13.12. Any manifold M is paracompact.
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Proof. SupposdqU,} is an open cover. Choosg andK; We will restrict to compact manifolds and not attempt to
as in the last corollary. For eachthe compact sej is  get an optimain. Rather than using a partition of unity
covered by the set®; n U,, and thus by a finite subcol- directly, we will repeat the easy proof of the compact case,
lection, which we namé)ij for j = 1,...,k. The union of using some of the functions involved in the construction
these finite collections, over dllis a locally finite refine-  directly.

ment. O  The theorems are also true in the noncompact case; the
proof uses decompositions like tkgandO; above but re-

We are now set up to adapt the construction of partitiongjuires knowing that each compact piece can be embedded
of unity from the compact case to the general case. in the same dimension, sayRf™1.

Theorem A13.13. Given any coveringU, } of a manifold  Theorem A13.15. Any compact manifold Mcan be em-
M, there exists a partition of unityy;} subordinate to this bedded in some Euclidean spa&#
covering.

Proof. For each poinp € M, find a nonnegative function
Proof. FindK; c O; as above. Fixing, for eachp € K; we fp: M = Rwith f =1 in some neighborhood, > p and
havep € U, n O; for somea = a(p). Choose a smooth with support in a coordinate chatt/f, ¢,). By compact-
nonnegativef, with support inU, n O; such thatf, > 0  ness, a finite number of thé, sufice to coverM. Call
on some neighborhood, > p. Finitely many of these these pointspy, ..., p« and simply use the indices 1.k
neighborhoods cover the compact #gt Now lettingi  for the associated objects. Define a ngapM — RK™D)
vary, we have a countable family of bump functiofis ~ as follows:
whose supports form a locally finite family. Thus dividing
by their well-defined, positive, smooth sum gives a parti-  9(P) == (1:(P)¢1(P). ... i(P)e(p). T2(P). ... fid(P))-

tion of unity. O OnV, we havef; = 1, so thé™ “block” in g equals;, with

. . . injective diferential. Thugy is an immersion on eac¥;,
Note that ifK ¢ M is compact, then for any partition of ,,5 on all ofVl. By compactness, it only remains to show
unity {yi} for M, only finitely manyy; have support meet- 414 s injective. ifg(p) = g(q) then in particular we have
ing K. (Eachp € K has a neighborhood meeting only f.(p) = fi(q) for all i. Choosei such thatp € Vi c U;.
finitely many supi; by compactness finitely many such tpen f.(q) = 1 impliesq e U;. But then we also have
neighborhoods cove.)
Now we turn to some applications of these ideas. Note that #i(p) = fi(P)¢i(p) = fi(Aei(d) = ¢i(a).
if {i¥,} is a partition of unity subordinate to a covis,}
and we have function$, € C*(U,), theny, f, defines
a smooth function oM supported inJ,. Then} ¢, f,
makes sense as a locally finite sum of smooth functions.

Sincey; is injective onU;, it follows thatp = q. O

The same works for sections of any vector buriglle> M: Al4. Riemannian manifolds as metric spaces
local sectionsr,, € I'(Ey, ) can be combined to get a global
sectiony. Y, € I'(E). We fix a Riemmanian manifoldM, g), that is, a smooth

manifold M™ with a fixed Riemannian metrig. Where

Theorem A13.14. Any manifold M" admits a Riemannian convenient, we writd Xy, Yo) 1= go(Xp, ;) for the inner

metric.
product and|Xpll := +/{Xp, Xp) for the length of a tangent
Proof. Let go denote the standard (flat) Riemannian metricvector.

onR™. Let{(U,,p,)} be an atlas foM. In each chart L i i )
the pullbackg, := ¢ (go) is a Riemannian metric od,. Definition A14.1. Supposey: [a,b] — M is a piecewise

Now let v} be a partition of unity subordinate {J,).  Smooth curve. Théengthof y (with respect to the Riem-
We can consider eaah,g, as a global section dd(TM), ~ Manian metriq) is

supported of course id,. Then} .0, is a Riemannian b

metric onM, since locally near any point it is a convex len(y) = f Iy’ (Ol dt.

combination of finitely many Riemannian metrigs O a

Note that by the chain rule, this length is invariant under

An alternative proof of the existence of Riemannian met'reparametrization. The arclength function algnig

rics simply uses the fact that any manifditi” can be em-
bedded iR" for large enoug.

t
Itis not too hard to show that= 2m-+ 1 actually stfices — SO = 1en(ylfan) = fa Iy’ ()il de
a generic projection from higher dimensions to dimension . ] ] o )
2m + 1 will still give an embedding — but we omit such @nd — assuming is a piecewise immersion — we can
discussions. Harder is thWhitney trickused to get down reparametrizg by arclength so thak/|| = 1.
ton = 2m. Most manifolds actually embed iR**? —  Note that if the standard Riemannian metric®his re-
the only exceptions (besid&) are closed nonorientable stricted to a submanifol™, then the length of a curve
manifolds of dimensiom = 2%, like closed nonorientable in M as defined above is the same as its lengtR'lras
surfaces. considered last semester.
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Definition A14.2. Thedistancebetween two pointp, q €
M is the infimal length

by at most a constant factor. For finite dimensional vector

spaces, all norms are equivalent. We sketch a proof of the

case we need.

d(p,q) := inf len(y)
L4 Lemma Al4.4. Any two inner products oR™ induce

taken over all piecewise smooth curyeln M from ptog.  €duivalent norms.

Note that we could easily apply our definition of length Proof. Let vl denote the standard Euclidean norm, and
to more general curves, say to all rectifiable or Lipschitz/€t 2 gijV'w! denote an arbitrary inner product &f7. On
curves. Since any curve can be smoothed, in the infimuni1® compact unit spher@™* = {v : |l = 1} the other
definingd it is not important whether we allow all rectifi- NOrm /3 gijv'v} achieves its minimung > 0 and its max-
able curves or restrict to smooth curves. We have chosetintumC. Then by homogeneity, we have

an option in the middle.
oMl < D gVl < CIvl

Note that (no matter which smoothness class is chosen) tHer all v, as desired. We note that the optimal constants
infimum is not always realized, as one sees for instance iflepend smoothly og. O

M = R2 \ {0}.

The theorem below will show thatM, d) is a metric space
compatible with the given topology dvi. Of course when exist constants < ¢ < C such that
M is not connected, poingsandq in different components -

are not connected by any path, d(p,q) = +o by the M| < m < C|M|

above definition. It is easiest to use a definition of metric

spaces that allows infinite distance. If this is not desiredfor all p € K and all ve T,U = T,R™ = R™. In particular,
the following discussion should be restricted to connectedor any curvey in K from p to q we have

manifolds. Note that a connected component of a man-
ifold is automatically path-connected; any pair of points

can actually be joined by a smooth path, whose length is
necessarily finite. wherelery is the length relative to the standard Euclidean

A few properties ofd are immediate. The constant path metric andlery is the length relative to g.
showsd(p,p) = 0. The inverse path showd(p,q) = .
d(g, p). Concatenating paths gives the triangle inequalityproo.f' For eachp € K the !emma gives usp < Cp. AS'
d(p.r) < d(p, q) + d(q, r). (This is one reason we chose to suming we choose the optimal constants at each point, they
allow piecewise smooth paths.) That is, we see easily thaqepend smoothly ogp thus smoothly orp. By compact-

dis a pseudometri, and to see it is a metric we just neelf =5 B SR B =T S0 7 B e RO
to show thad(p, g) = 0 holds only forp = q. 9 9 9

for any curvey. O

End of Lecture 23 Nov 2015

Corollary A14.5. Suppose g is a Riemannian metric on
an open set Uc R™and K c U is compact. Then there

clp—qll <clenyy <lengy < Clergy,

Lemma A14.3. ConsiderR™ with the standard Rieman-

nian metric. Then o, q) = [Ip - q|l. This corollary gives the key uniformity needed for the fol-

lowing theorem.
Proof. Since both sides are clearly translation invariant, it
sufices to consideq = 0. It is easy to compute the length
of the straight path fronp to 0 as||p||. We must show no
other path has less length (and may assyme 0). So

Theorem Al14.6. Let (M, g) be a Riemannian manifold.
With the distance function d above, it is a metric space
(M, d). The metric topology agrees with the given manifold

supposey(0) = p andy(1) = 0. We may assumg(t) # 0
for t < 1, since otherwise we replageby yljoy, which is
not longer. Thus fot < 1 we can writey(t) = r(t)B(t)
where||3(t)|| = 1 andr(t) > 0. We haver(0) = ||p|| and
r(t) —» 0 ast —» 1. Since(3,B) = 1, we get(3,8’) = 0.
The product rule/ = r’g + rg’ then gives

2 2012112 o (2|12 |I2 2
YII° = 11BN + rellB’ll = 1.

topology on M.

Proof. We have noted that is symmetric and satisfies the
triangle inequality. We must prow#p,q) =0 = p=g
and show that the topologies agree.

Let D denote the closed unit ball R™. Givenp # q

in M, we can find coordinatesJ(¢) aroundp such that
o(p) = 0, ¢(U) > D andq ¢ ¢ (D). OnD use the last
corollary to getc,C comparing ¢~1)*g with the standard

Thus metric. Any path fromp to q must first leavey™1D. Its g-
1 1 1 length is at least thg-length of this initial piece, which is
f Iyl dt > f Ir'|dt > f r’ dt‘ =r(0)-r(1) = Ipll thep~'"g-length of its imager. Sincea connects 0 téD,
0 0 0 it has Euclidean length at least 1,9 g-length at least.
as desired. g Since this is true for any, we findd(p,q) > ¢ > 0.

We have just seen that a Euclidean ball in a coordinate
Two norms on a vector space induce the same topology i€hart contains a small metric ball. Thus open sets in the
and only if they are equivalent in the sense that théiedi  manifold topology are open in the metric topology. To
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get the converse, consider again coordinates arpumith

D c ¢(U), and findC as in the corollary. Ifp(q) is in the
g-ball around 0= ¢(p), then they can be joined by a path
of Euclidean length less than< 1. Thusp andq can be
joined by a path of-length less tharC. O
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B. DIFFERENTIAL FORMS instance, ifS hask elements this gives k-dimensional
vector space witl$ as basis.

We have already seen one-forms (covector fields) on &iven vector space¥ and W, let F be the free vector
manifold. In general, &-form is a field of alternating- ~ SPace over the s&t x W. (This consists of formal sums
linear forms on the tangent spaces of a manifold. Formsx (V. W) butignores all the structure we have on the set
are the natural objects for integrationkdorm can be in- VX W.) Now letR c F be the linear subspace spanned by
tegrated over an orientéesubmanifold. We start with ten-  all elements of the form:

sor products and the exterior algebra of multivectors. (V+ VW) — (V, W) — (V, W)
v, w+w)—(v,w) — (v, W),
(av,w) —a(v,w),  (v,aw) — a(v, w).

B1l. Tensor products

These correspond of course to the bilinearity conditions

Recall that, ifV, W and X are vector spaces, then a map V& started with. The quotient vector spa&dR will be the

b: VxW — X is calledbilinear if tensor producV ® W. We have started with all possible
' v® w as generators and thrown in just enough relations to
b(v + V', W) = b(v, W) + b(V', W), make the mapy w) — v® w be bilinear.
b(v, W+ W) = b(v, w) + b(v, w) The tensor product is commutative: there is a natural linear

isomorphisnVeW — WeV such thavew — wev. (This
is easiest to verify using the universal property — simply
factor the bilinear mapv(w) — w® v throughV ® W to

b(av, w) = ab(v, w) = b(v, aw).

The functionb is defined on the s&t x W. This Cartesian . Lo /
. ive the desired isomorphism.)

product of two vector spaces can be given the structure 09 . _ o _

a vector spac¥ & W, the direct sum. But a bilinear map Similarly, the tensor product is associative: there is a natu-

b: V x W — X is completely diferent from a linear map 'al linear isomorphisiv @ (W® X) — (V® W) ® X. Note
VaW = X that any trilinear map fronv x W x X factors through this

The tensor product spate® W is a vector space designed triple teljnso.r producy @ We X. ]
exactly so that a bilinear map V x W — X becomes a  Of special interest are thtensor powersf a single vector
linear mapV ® W — X. More precisely, it can be charac- SPaceV. We write Ve := V®---® V. If (g} is a basis

terized abstractly by the following “universal property”.  for V, thenfe, ® --- ® ,} is a basis folV® . In particular
if V has dimensiom, thenV® has dimensiom¥. There

Definition B1.1. The tensor produciof vector space¥ is a naturak-linear mapVk — V& and anyk-linear map
andW is a vector spac¥ ® W with a natural bilinear map VK — W factors uniquely through'®<.

VXW — VeW, wrtten (,w) — ve®w, with the prop-  one can check that the dual of a tensor product is the tensor
erty that any bilinear map: V x W — X factors uniquely product of duals: ¥ ® W)* = V* ® W*. In particular,
throughV @ W. That means there exists a unique linearye have y*) = (V&)*. The latter is of course the set
mapL.: V@W — X such thab(v,w) = L(v® w). of linear functionalsv®* — R, which as we have seen is

_ . exactly the set ok-linear maps/k — R.
This does not yet show that the tensor product exists, but

uniqueness is clear: X andY were both tensor products, Definition B1.2. A graded algebras a vector spacé de-
then each defining bilinear map would factor through thecOmposed af = 1o A« together with an associative

other —we get inverse linear maps betweandY, show- bilinear multiplication operatio x A — A that respects
ing they are isomorphic. the grading in the sense that the product; of elements

w € Acandn € A is an element ofy,,. Often we consider
graded algebras that are either commutative or anticommu-
tative. Hereanticommutativénhas a special meaning: for

w € Acandn € A, as above, we hawe - = (-1) 7 - w.

(Z vieI) ® (Z wi fj) - Z vw g ® fj. ExampleB1.3. Thetensor algebraof a vector spac¥ is
i j ij
Clearly then{e ® f;} spansV ® W — indeed one can check

.V = (P Ve
k=0
that it is a basis. This is a valid construction for the space " 0
V ®W — as the span of the ® f; — but it does depend on Here of cours&/®" = V andV®® = R. Note that the tensor

the chosen bases. If divh= mand dimW = nthen we Productis graded, butis neither commutative nor anticom-
note dimV ® W = mn mutative.

A much more abstract construction\df® W goes through
a huge infinite dimensional space. Given any&dhefree
vector spacen S is the set of all formal finite linear com-
binations}’ a5 with g € R ands € S. (This can equally
well be thought of as the set of all real-valued functionsWe now want to focus on antisymmetric tensors, to de-
on the set which vanish outside some finite subset.) Forvelop the so-calledxterior algebraor Grassmann algebra

Note that the elements of the fow® w must spaV @ W,
since otherwisd. would not be unique. Ife} is a basis
for V and{f;} a basis folW then bilinearity gives

B2. Exterior algebra
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of the vector spac¥. is, alternatingk-linear maps fromvk correspond to linear
Just as we constructdfi® V = V2 as a quotient of a huge Maps fromAk\_/. (One can also phrasg the univer;ality for
vector space, adding relators corresponding to the rules fé!l k together in terms of homomorphisms of anticommu-
bilinearity, we construct the exterior powera V = A,V tative graded algebras.)

as a further quotient. In particular, lettiSggc V®V denote  So far we have developed everything abstractly and alge-

span of the elements® v for all v e V, we setV AV := braically. But there is a natural geometric picture of Hew
(VeV)/S. We writev A w for the image o@w under the  vectors inAyV correspond td-planes k-dimensional lin-
guotient map. Thusg A v = 0 for anyv. From ear subspaces) M. More precisely, we should talk about
simple kvectors here: those that can be written in the form
(V+w)A(v+w) =0 V1A« AVk. We will see that, for instance;s+es, € AoR?
is not simple.

it then follows thavAw=-wAVv. If {g:1<i<m}isa

basis forV, then A nonzero vectow € V lies in a unique oriented 1-plane

(line) in V; two vectors represent the same oriented line if

feAe:1<i<j<m) and only if they are positive multiples of each other. Now
. suppose we have vectorsg ..., € V. They are linearly
is a basis fov A V. independent if and only if G vy A -+ AV € AV. Two

linearly independerit-tuples {1, ..., v) and (v, ..., W)
represent the same orientéeplane if and only if the
wedge products; A -+ A Vg andwy A -+ A W are pos-
itive multiples of each other, that is, if they lie in the same

Higher exterior powers df can be constructed in the same
way, but formally, it is easiest to construct the whele
terior algebraA.V = €P AV at once, as a quotient of

the tensor algebre.V, this time by the two-sided ideal . . . .
generated bygthea;ame Dt= {V®)\ll} CcVeV calV., rayinAV. (Indeed, the multiple here is the ratio lof

This means the span not just of the elementS biit also ~ 2r€as of the parallelepipeds spanned by the ktgples,

of their products (on the Ieft and right) by arbitrary other given as the determinant of the change-of-basis matrix for
tensors. Elements of.V are callednultivectorsand ele- thek-plane.)

ments ofA,V are more specificalli-vectors We let G((V) denote the set of orientekiplanes inV,
called thg(oriented) Grassmanniarmhen the set of simple
k-vectors inAgV can be viewed as the cone o@y(V). (If

Again we use: to denote the product on the resulting (still W€ Pick a norm om\V, say induced by an inner ero_duct

graded) quotient algebra. This product is calledwleeige ©N V. then we can think oB(V) as the set of “unit” sim-

productor more formally theexterior product We again ple k-vectors, say those arising from an orthonormal basis

getvAw = —w A vfor v,w € V. More generally, for any for somek-plane.)

Vi,...,Vk € V and any permutationr € X of {1,...,k},  (Often, especially in algebraic geometry, one prefers to

this implies work with the unorientedGrassmannia®Gy(V)/+. It is
most naturally viewed as lying in the projective space

End of Lecture 30 Nov 2015

Vo1 Ao AVgk = (SQNO) VL A -+ A Vg
: . _ P(V) == (V\{0})/(R N {O}).
A special case is the product ofkavector a with an ¢-
vector where we use a cyclic permutation to get the anti-In algebraic geometry one typically also repla@eby C

commutative lawr A B8 = (-1)B A a. throughout.)
If {& : 1 <i<m}isabasis fol, then If we give V an inner product, then ankplane has a
) ) unigue orthogonaln — k)-plane. This induces an isomor-
(€ =8 A A Tl < <lksm) phism betweerG,V and G, V. It extends to a linear,

) ) ) ) norm-preserving isomorphism
is a basis forAV. In particular, dimAV = r,f ; we have

AoV = R but alsoAnV = R, spanned bgio.m. Fork > m *: AV = AmV
there are no antisymmetric tensonrsV = 0. The exterior
algebra has dim.V = Y, (}) = 2" Thedeterminant called the Hodge star operator. (Recall that both these
has a natural definition in terms of the exterior algebra: ifspaces have the same dimens{@h) If v is a simplek-
we havem vectorsv; € V given in terms of the basi®}  vector, thenxv is a simple (- k)-vector representing the
asvj = 2 V'J-€1 then orthogonal complement. In particular,{&} is an oriented
‘ orthonormal basis fov, then
VIA - AVp = det(v'j)elz...m.
*(ELA - AB) =681 A Ay
(The components of the wedge produckofectorsy; are
given by the variouk x k minor determinants of the matrix and similarly each other vector in our standard basis for
(v‘j).) AV maps to a basis vector fox,_V, possibly with a
The exterior powers of/ with the naturalk-linear maps ~ MINUS sign.
VK — AV are also characterized by the following univer- Classical vector calculus in three dimensions uses the
sal property. Given any alternatikginear mapv® — Xto  Hodge star implicitly: instead of talking about bivectors
any vector spac¥, it factors uniquely throughAV. That  and trivectors, we introduce the cross product and triple
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product: AV = V* we set
VXW:= *x(VAW), [u,v,w] = {U,vXxW)=*x(UAVAW). WA =w®N—N®w.

But even physicists noticed that such vectors and scalafdore generally, forw € A*V andy € A’V we use an
transform diferently (say under reflection) than ordinary alternating sum over all permutationse Zi:

vectors and scalars, and thus refer to them as pseudovec-

tors and pseudoscalars. (WAL - Vi) =

o . 1
For dimV = m, we can use these terms as follows: i Z(sgno-) W(Verts -+ 5 Vok) Vo (ke1)s - - - » Vor(ke6))-

o

e scalarsare elements dk = AgV,

e vectorsare elements of = A1V, The factor is chosen so that{i} is a basis fo and{w'}

1 1 1 — *
e pseudovectorare elements okV = A1V, and is the dual basis foA™V = V* then

o pseudoscalarare elements ofR = ApV. [T = Wt A A WY

Of course, these are in a sense the easy cases. Fokthesés the basis oAV dual to the basigg, .., } for AgV.

any k-vector is simple. We can identify botB:V and  pytting these spaces together, we get an anticommutative
Gm-1V as the unit sphere iV = AV = ApqV. For  graded algebra

2 < k £ m- 2 on the other hand, not altvectors are

simple, and5V has lower dimension than the unit sphere . ™ K

in AV. Indeed, it can be shown that the set of simiple AV = @A V.

vectors (the cone oveB,V) is given as the solutions to a k=0
certain set of quadratic equations called the Grassman
Pliicker relations. For instan¢ea’le; € A,R* is a simple
2-vector if and only if

"Again the dimension of each summand{f} so the whole
algebra has dimensiori"2

If L: V - Wis a linear map, then for eadhwe get an
a?a®* — al3a?4 4+ al%aB = 0. induced map.*: AKW — AKV defined naturally by

This shows that,R* is a smooth 4-submanifold in the L'w(va, ..., Vi) = w(Lva,..., Lv).
unit spheres® c A,R*.

If we choose an inner product dn then thinking about h -
. ) m to the tangen M manifoldM™. W
how oriented orthonormal bases fok#lane and its or- them to the tangent spacésM to a manifold e get

thogonal complement fit together, we see that we can iderflu@! bundies\yTM andA*T M of rank ().
tify GV = SQm)/(SQAK) x SAm-K)). In particular, it pefinition B3.1. A (differential) k-formon a manifoldvi™
is a smooth manifold of dimensid«m — k). is a (smooth) section of the bundi&“TM. We write
QKM = T(AT M) for the space of alk-forms, which
is a module ovelIC*M = Q°M. Similarly we write
B3. Differential forms Q'M = T(A'TM) = P QM for the exterior algebra
of M.

B ecirs 1S SO < G0 s akform, then at each poip < I tre

abstracti/jefinition o?tensdr owerspand then gxterior Owy%luewp € A“TpM is an alternating-linear form orT,M

ers as quotient Spaces seer?tﬁa:iilt) Recall that vectgr or equivalently a linear functional af,T,M. That is, for
d pace ' ) . ﬁnyk vectorsXy, ..., Xk € T,M we can evaluate

subspaces and quotient spaces are dual operations, in the

sense that. iff ¢ Xisa subspa_ce, thgn thg du/Y)* wp(X, .-, X) = w(Xg A+ AX) ER.

of the quotient can be naturally identified with a subspace _ _

of X*, namely with theannihilator Y° of X*, consisting of  In particular,wp naturally takes values on (weightekh)

Of course, we have introduced these ideas in order to apply

those linear functionals oX that vanish orY: planes inl,M; as we have mentionekkforms are the nat-
ural objects to integrate ovérdimensional submanifolds
(X/Y)* = Y° c X", in M.

If f: M™— N"is a smooth map and € Q*N is ak-form,
then we can pull back to get ak-form f*w on M defined

AV = (AV)F C (VER)* by

Using this, we find that

is the subspace of thoselinear mapsvk — R that are (Fw)p(X1. ... %) = wi(p((Dpf)X4..... (DpF)X).

alternating (Of course this vanishes K > m.) As a special case, if
While it is easy to construct the wedge product on multi-f: M — N is the embedding of a submanifold, thEnw =
vectors as the image of the tensor product under the quas|y is therestriction of w to the submanifoldM, in the
tient map, the dual wedge product &viV requires con- sense that we consider only the valuesug{Xy,. .., X)
structing a map to the alternating subspace. &of € forpe M c NandX € ToM c TpN.
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ExerciseB3.2 Pullback commutes with wedge product in
the sense that

f(wAn) = (F'w) A (f7)
for f: M - Nandw,n € Q*N.

In a coordinate chartj, ¢) we have discussed the coordi-
nate base$;} and{dx} for T,M and T M, respectively,
the pullbacks undep of the standard bases &¥'. Simi-
larly,

{dx'l/\--.Adx'k:1si1<---<iksm}

forms the standard coordinate basis keiorms; anyw €
QK(M) (or more properly its restriction tb)) can be ex-
pressed uniquely as

wly = Z wil...ikd)él ARERIVA d)ék

i1<'~~<ik

for some smooth functions,..;, € C*U. To simplify
notation, we often write this as|y = Y, w;dX in terms
of themulti-index 1= (iq,...,ix).

B4. Exterior derivative

Theorem B4.3. For any manifold M, the djferential map
d: Q°M — QM has a uniqueR-linear extension to an
antiderivation ¢ Q*M — Q*M satisfyingd =dod = 0.
This antiderivation has degrekin the sense that it sends
QM to Q<"1 M; it is called theexterior derivative

Proof. First suppose, f' e C*M sothaigdfia---Adfke
QKM. The two conditions oml together automatically im-
ply that

digdftA---Adf) =dgadfia--- Adfke QM.

In a coordinate chart, ¢) of course everk-form w can

be expressed as a sum of terms of this form. The propo-
sition above shows we can work locally in such a chart.
Thus we know the exterior derivative (if it exists) must be
given in coordinates by

d(Zwldx') = Zdw. AdX = ZZ@M dx¥ A dx
| | | i

:ZZ@iw| dX AdXt A AdXK,
| i

(Note that terms here where= i; will vanish; for the other
terms, reordering the factors in this last wedge product —
to puti in increasing order with thgs and thus obtain a
standard basis element — will introduce signs.)

Now a straightforward calculation shows that the operator

Zero-forms are of course just scalar fields, that is, smootf§l defined by this formula really is an antiderivation locally:

functions. We have also already considered one-forms
In particular, given

which are simply covector fields.
f € QOM, its differentialdf € QM is a one-form with
df(X) = Xf for any vector fieldX. We now want to gener-
alize this to define for ank-form w its exterior derivative
a k+ 1)-formdw.

Definition B4.1. An antiderivationon the graded alge-
bra @@*M, A) is a linear mapD: Q*M — Q*M satisfy-
ing the following version of the Leibniz product rule for
w € QM andn € Q‘M:

D(w A7) = (Dw) A+ (=1)w A (Dn).

To remember the sign here, it can help to thinkDbfs
behaving like a one-form when it “moves past”

Proposition B4.2. Any antiderivation of2*M is a local
operator in the sense thatd = n on an open set U then
Dw = Dnon U.

Proof. By linearity it sufices to consider the cage= 0,
w € QM. Given anyp € U, we can find a functiorf €
C*M supported inJ with f(p) = 1. Thenfw = 0onM
and it follows that

0=D(fw) = (Df) Aw + f A (Dw).

At pthis gives 0= Df A 0+ 1(Dw)p = (Dw)p as desired.
O

End of Lecture 7 Dec 2015

d((adxX) A (bdx))
= d(ab) A dX A dX’ = ((da)b + a(db)) A dX A dX’
= (dan dX) A (bdxX) + (-1)(@dxX) A (db A dX’),

wherel = (iy,...,Ix) is ak-index. Clearly this antideriva-
tion has degree 1 as claimed.

Now sinced is determined uniquely, if we have overlap-
ping charts (J, ¢) and §, ¢), then onU N V we must get
the same result evaluatirthin either chart. Finally, since
the exterior algebra operatiorsand A are defined point-
wise, to check thadt is an antiderivation and? = 0 it
sufices that we know these hold locally. O

Proposition B4.4. The pullback of forms under a map
f: M™ — N" commutes with the exterior derivative. That
is, forw € Q*N we have (f*w) = f*(dw).

Proof. It suffices to work locally around a point € M.
Let (V, ) be coordinates arount(p). By linearity we can
assumeaw = ady® A --- A dy* in these coordinates. For
k = 0 we havew = ae€ C*N. For anyX, € T,M we have

(frda)(Xp) = (da)(f.Xp) = (f.Xp)a
= Xp(fra) = (df a)(Xp).
Note that if (f1,..., f") = y o f is the coordinate expres-
sion of f (on some neighborhood qf) then the formula

above gives *(dy) = df'. Since pullback commutes with
wedge products, fdt > 0 we then have

frw = (f*a)dfr A--- Adflk
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and so An equivalent definition of orientation (analogous to that
. , of smooth structures) is through a coherently oriented atlas
d(f*w) =d(frfayAdfr A .- AdFf for M. Here two chartsU, ¢) and {,y) are coherently
- f(da) r d fi A A d ik orientedif the transition functionp oy ~1 is an orientation-

preserving dieomorphism oR™.

Suppose nov™ is an oriented Riemannian manifold. At
any p € M there is a uniqu&}, € A™T,M such that
Qp(ey,...,em) = +1 for any oriented orthonormal basis

= f*(dandy* A---Ady¥) = f*(dw). O

The contractionof a form with a vector field (also known
as interior multiplication) has a seemingly trivial defini- {er.....em) for T;M. These fit together to give thie-

tion: if w € Q“M andX € X(M) thenixw € Qs given  annian volume forn € Q™M. In terms of the Hodge
by star, we have = 1.

ix@(Xas - s X) 1= (X, Xas - -, X). Given an oriented coordinate chad, () then at anyp €
T ey U we have the coordinate bagi) for T,M but can also

First note that this is a purely pointwise operation, so weChoose an oriented orthonormal bagg. Then of course

ok o K .

could define it onAXV for a single vector space — even Eor seo>m_e6ma$\rlz<AeI (&) we haved, = Yae. Since

proving the next proposition at that level — but we won't & €)= Okt 9

bother. (It is the adjoint of the operator eaqV given by 4 A K , _ K.k

left multiplication byX.) gj = (@07 = () e ) af.er) = Zk: aaj.

Next note that for a 1-formy(w) = w(X) € Q°M. For a

0-form f € Q°M = C*M we setix f = 0. As a matrix equation, we can wrifg;;) = ATA, which
implies det@;;) = (detA)?. Since both bases are positively

I?roplositlion B4.5. For any X, the operationy is. anan-  griented, we know de > 0, so defA = + +/detg. (Note
tiderivation onQ*M of degree-1 whose square is zero. that while abbreviating deg() as det is common, it un-

fortunately hides the fact that this is an expression in par-

ixtxw(...) = w(X X,...)=0. Now we compute
The antiderivation property is Qp(1; - - - Om) = (detA) Qp(&y, ..., &m) = detA = ydetg.

Equivalently, we have the coordinate expression

Q= +/detg dx A--- A dX".

ix(w A7) = (txw) An+ (1w A (ixn)
for w € QXM; we leave the proof as an exercise. O

On an oriented Riemannian manifole{", g), anym-form
w is a multiplew = fQ = % f of the volume forn2, with
f e C*M.

We will later discuss Cartan’s Magic Formula, relating this
contraction to exterior and Lie derivatives.

B5. Volume forms and orientation B6. Integration

An orientationon anm-dimensional vector spacé is a
choice of component oA™V \ {0} = R \ {0}, that is a
choice of a nonzeron-form in w € A™V (up to positive
real multiples). IfV is oriented byw, then an ordered ba-
Z'(Se{lel v em ?“Lf%r Voz‘?eia;dn tgrit;ﬁgtsig:qvf’)% ?S”zg:c?g q small boxes — the functiohis Riemann integrabld these
through such a basis (to avoid the machinery of the exter—]a\/e the same limiting value, which we call
rior algebra).

A volume formon a manifoldM is a nowhere vanishing L fax . dx"

m-form w € Q™M. We sayM is orientableif it admits a

volume form. (The Mdbius strip and the Klein bottle are Recall also thalA ¢ R™ has (Lebesgueheasure zerdf
examples of nonorientable 2-manifolds.) Arentation  for eache > O there is a covering o by countably many

of M is a choice of volume form, up to pointwise multipli- boxes of total volume less than The image of a set of
cation by positive smooth functions> 0 € C*M. This = measure zero under adiomorphism (or indeed under any
is the same as a continuous choice of orientations of théocally Lipschitz map) again has measure zero. Thus we
tangent spaceb,M. A connected orientable manifold has can also speak of subsets of measure zero in a marfold

We will base our integration theory on the Riemann inte-
gral. Recall that given an arbitrary real-valued function
on a boxB = [ag, by] X - - - X [am, bm] € R™ we define up-
per and lower Riemann sums over arbitrary partitions into

exactly two orientations. Given a functionf: D — R with D c R™, we define its
The standard orientation @&f" is given bydx! A---AdX",  extension by zerd : R™ — R by settingf = f on D
so that{ey, ..., &n} is an oriented basis for eadhM. and f = 0 elsewhere. Lebesgue proved the following: A
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bounded functionf: D — R defined on a bounded do-
main D ¢ R™is Riemann integrable if and only if is
continuous almost everywhemeaning that its set of dis-
continuities has measure zero.

For instance, the characteristic functjpr is Riemann in-
tegrable ifD is bounded and its bounda#p has measure
zero. Then we calD adomain of integration

Because a continuous functioh on a compact set is
bounded, we find: U c R™is open andf: U —» R
has compact support id, thenf is Riemann integrable.
We write QKM c QXM for the subspace dé-forms with
compact support. (IM is compact, then of coursek =
Qk)

Definition B6.1. If w € QFU is anm-form with compact
support inU c R™ then of course we can write uniquely
w=fdxtA--- AdX™. We define

fuw:fufdxlA---/\dX“:szfdxl---dX“.

Note that we use the standard basis elementAfBR™
here. Otherwise we have for instanﬁe‘ dx A dxt =

— [ fdxtd.

Lemma B6.2. If ¢: U — V is a djfeomorphism of con-
nected open sets iIR™ and w an m-form with compact
supportin V, then

fgo*wzifw,
U v

where the sign depends on whethgris orientation-
preserving or not.

Proof. Usex for the standard coordinates thandy’ for

those onV. Thenw = fdy' A --- A dy™ for some func-
tion f. Writing ¢' = y o ¢, the Jacobian matrix af is

J := (8¢'/0x)). We havedy' = ¢*dy and so

dpt A Ade™=detddxXt A --- A dX.

Thus
f<p*w=f<fo¢)d¢lA-~Ad<pm )
U U

:j]fo@cmwd%A~~Adwt @
U

First consider a single (oriented) chald, () and assume
w € QTU. Then we define

f W= (¢ w.
u (V)

We claim this is independent gf if (U, y) is another ori-
ented chart, then using thefidiomorphisnmp oy~ we find

w= oy () w= 1 w.
™) fm(‘” v (oY) fmw )

»(U)

In general, we choose a partition of unitf;} subordinate
to an oriented atlaU,, ¢,)}. For anyw € QI'M, note
thatw = Y, f,w is afinite sum and each summand has
compact support in the respectidg. We define

We just need to check this is independent of the choice of
atlas and partition of unity.

So supposégg) is a partition of unity subordinate to an-
other oriented atla§V;g, ¢3)}. Then we have

Y te=3 [ Y e
= JU, — JU, 3
) J, o= 3 [ e

But by symmetry, we see that the last expression also
equalsyy fVB gsw, as desired.

Note: If —M denotes the manifolth with opposite orien-

tation, then we hav§_M w=- fM w

Note: form = 0, a compact oriented 0-manifold is a finite
collection of points with signg1: we writeM = ' p; —

2. q;. (Here we cannot use charts to test orientation.) The
integral of a zero-form (functionj: M — R is defined to

be f, f =i f(p) - X; ().

We have developed this theory for smooth forms, partly
just because we have no notation for possibly discontin-
uous sections oA™T M. As long asw is bounded, van-
ishes outside some compact set and is continuous almost
everywhere, we can repeat the calculations above with no
changes to defing, w.

End of Lecture 14 Dec 2015

On an oriented Riemannian manifd\d (or any manifold
with a specified volume fornf2), we define the volume

On the other hand, the standard change-of-variabes fointegral of a functionf e C*M as

mula says

Vﬁwzikd¢~dW%iLUo@maﬂdﬁA~de.

SinceU is connected, det has a constant sign, depending

on whetherp is orientation-preserving. m]

Now supposeM™ is an oriented manifold, and € QI'M
is a compactly supporteth-form. Then we will define

waeR.

ffdvol:szsz*f.
M M M

Note that if we switch orientation, the volume form eM
is —Q, so the volume integral is independent of orientation:
f_M fdvol = fM f dvol.

For a domairD c M (compact with boundary of measure
zero) we define its volume to be

voID::fldvoI:fQ::f,\gDQzO.
D D M
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The volume of the manifold is vay) := fM ldvol = These special cases are of course normally formulated not
fM Q. This works directly ifM is compact; for a non- With differential forms and the exterior derivative, but with

compact manifold we can take a limit over an appropriatedradients of functions, and divergence and curl of vector

compact exhaustion and reach either a finite valuecor ~ fields. More precisely, on any Riemannian manifold, we
use the inner product to identiffl,M andT;M and thus

vector fields with one-forms. The gradiént of a function
f € C*M is the vector field corresponding in this way to

B7. Manifolds with boundar
y df. In particular, for any vector fielX, we have

SupposeM™ is an manifold with boundary; its boundary g(Vf, X) = (Vi X) =df(X) = Xf.
OM is an (n — 1)-manifold. Atp € M c M we see
thatT,0M c TpM is a hyperplane, cuttin@,M into two
parts, consisting of thmward- andoutward-pointingvec-
tors atp.

An orientation onM induces an orientation o®M as fol-
lows. Supposev\vi,...,Vn 1) iS an oriented basis for

TpM, wherev is outward-pointing ant € TpdM. Then o 4, \ 4y 1 rdx A dywith the vector fieldpdy + qdy + rd,,

(V1. Vm-1) IS Dy dlefinition an oriented b_asis f0,IM.  and the three-fornti dxa dyAdzwith the functionf. Then
(There are four obvious possible conventions here — eithe - Q0 = Ol is the gradient as abovd; Q! — Qs the

and inward- or outward_-pomtlng vector could l_)e put e'thercurl, andd: O — O3 is the divergence.
before or after the basis fdi,dM. Our convention works _ , . _
Our version of Stokes’ theorem is (as mentioned above)

best for Stokes’ Theorem. ; i
Equivalentl h ientation B is ai b certainly not the most general. For instance, we could eas-
quivalently, Suppose the orientation B 1S given by a iy ajlow “manifolds with corners”, like compact domains

volymg formQ, and. we pick a vector fielk € X(M,) with piecewise smooth boundaries. (It should be clear that
which is outward-pointing alongM. Then the contraction the divergence theorem & is valid for a cube as well as
tx(Q) restricted tadM is a volume form on the boundary a sphere.)

which defines its orientation.

On R3 we further use the Hodge star to identify vectors
with pseudovectors and thus one-forms with two-forms,
and to identify scalars with pseudoscalars and thus zero-
forms with three-forms. Then div, grad and curl are all
just the exterior derivative. Explicitly, we identify both the
one-formpdx+ gdy+ rdz and the two-formpdyA dz+

Theorem B8.2 (Stokes).Suppose Mis an oriented man-
ifold with boundary andv is an (m - 1)-form on M with

B8. Stokes’ Theorem compact support. Then
SupposeM™ is an oriented manifold with boundary and f,;l do = faM @
is an (m— 1)-form with compact support oM. Stokes’
Theorem then Sayﬁn dw = faM w. We sead?2 = 0isdual  Proof. Both sides are linear and integrals are defined via
to the condition that(oM) = @: partitions of unity. In particular

ozfdz,,zf d,,zf 7= 0. do = Y d(faw) = (d ). fa)w+ Y fodw =Y f,do,
M oM oM

e see that it dfices to consider the case whenis

Stokes’ Theorem is quite fundamental, and can be use ompactly supported inside one oriented coordinate chart

for instance to defindw for nonsmooth forms, a#M for (U, o). We may also assume thafU) = R™ or @(U) =

generalized surfacdd. . ) . H™, depending on whethey is disjoint fromdM or not.
RemarkB8.1 Of course in[,, w, the integrand is really ~ Since the statement of the theorem is invariant under pull-

the restriction or pullback|sy = i*w of w to M. Thisis  pack by a dfeomorphism, we have shown itfiges to
now a top-dimensional form on then(~ 1)-manifoldoM. consider the cases (&) = R™and (b)M = H™.

When M is a manifold without boundarydM = @) of  After scaling, we can assume thatis compactly sup-
course Stokes’ Theorem reduce#ht)pdw =0. Itturnsout  ported within the cube (a) := (-1,0)" or (b) Q :=
that on a connected orientable closed manitdi, anm- (-1,0] x (=1,0)™. In either case, we write

form n can be written adw for somew if and only if fM n m

vanishes; we will return to such questions after proving the w= Z(_l)j—le AEA - AdK A AdXT
theorem. =y

Stokes himself would probably not recognize this gener- )

alized version of his theorem. The modern formulation inWith suppw! c Q, so that

terms of diferential forms is due mainly to Elie Cartan. P

The classical cases are those in low dimensions Mran dw = 99 A A dax™,

interval (n = 1), we just have the fundamental theorem X

of calculus; for a domain iiR?, we have Green’s theorem; meaning that

for a domain inR3, we have Gau%?’s divergence theorem; j

and for a surface with boundaryRy¥ we have the theorem _ Ow

attributed to Stokes. fM do =), L Xt dx'---dx™.
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Now for eachj we have Theorem B9.2. If M™ is an orientable closed manifold
with n components, then%M) = R".

<)

i 0 0, 10
@:ff( 90 Vo - - - A . o

o OX _1 _1\J_1 ox Proof. Note thatB” = 0 soH” = Z°, which is the space

Bv the fundamental theorem of calculus. the inner inte_of functions with vanishing dierential. But these are just
yu ; o the locally constant functions, so it is clear this space is

gral in parentheses equald(...,0,...) - '(...,-1,...). n-dimensional O

Sincew has compact support i@, this vanishes fof > 1. ’

In case (a) it vanishes even fpe 1, completing the proof  gq qrientable closed manifoldd™, Poincaré duality (re-

thath dw = 0. lated to the Hodge star operation) gives a connection be-
In case (b) we have obtained tween cghomology in complementary dimensions. As
0 0 an example, if such a manifold hascomponents, then
f dw = f f WH0,4, ..., XM dx - - - dX™. H™(M) = R". We prove the dimension is at least this big.
m -1 -1

Theorem B9.3. If M™ is an orientable closed manifold

Now consider the restriction ab to dH™, the pullback with n components, then™M) has dimension at least n.

under the inclusion maip Sincei*dxt = 0 we immediately

get Proof. Denote the components ;. By Stokes, inte-
"=l d@ A - AdX™ grationw ~ fMi w over each component gives a map
Q™= Z™ — R vanishing orB™, and thus a mapi™ — R;
Comparing this to the formula fOf,\,I dw shows we are together these give a mapRJ. Choosing a Riemannian
done. | metric onM;, its volume form has positive integral; these
n forms show that our map™ — R" is surjective. O

B9. De Rham cohomology
B10. Lie derivatives

Definition B9.1. We say ak-form w on M™ is closedif

dw = 0; we sayw is exactif there is a k — 1)-formn such  Earlier we defined the Lie derivative of a vector field
thatdy = w. For clarity, writed, = dig«: Q% — Q%1 with respect to a vector field. This is a derivative along
We write B(M) for the space of exact forms am@#(M)  the integral curves oK, where we use (pushforwards un-
for the space of closed forms. That &5 = kerdc and  der) the flowg of X to move vectors of between dierent
B = Imdy_1. points along these curves.

The Lie derivative of a dferentialk-form w is defined in
the same way, except that the pushforward unederis
éeplaced by a pullback undey. That is, we define:

Since by definitiord? = 0, it is clear that exact forms are
closed. (Algebraically, we havB® c Zk c QX)) Anin-
teresting question is to what extent the converse fails to b

true. The answer is measured by teeRham cohomology d . d §
HX(M) := ZX/BX, the quotient vector space (ovE). A (Lxw)p = = Gwgp = 7| (grw)p
\ | . dtli—o dtli=g
typical element is the equivalence clagd E {w + dn} of
a closedk-form w. Note that this is again k-form. In the particular case of

k = 0 wherew = f € C*M we can ignore the pullback —
Lx f is simply the derivative of along the integral curve,
Zz:=7"¢---®#Z"=kerd, B:=B’@---@B™=Imd. thatis,Lxf = Xf.

If we consider all degredstogether, we set

Defining Proposition B10.1. The Lie derivative k on forms satis-
0 fies the following properties:
H:=7Z/B=H"@---9oH™

i . o . 1. it is a derivation onQ*M, that is, anR-linear map
we find thiscohomology rings not just a vector space but

. satisfying
indeed an algebra under the wedge product. To check the
details, start by noting that it’ is closed, then Lyx(w A7) = (Lxw) A1+ w A (Lxn);
(w+dp) Ao’ =wA W +d(n A ). 2. it commutes with the exterior derivative, that is,
An important theorem in the topology of manifolds says Lx(dw) = d(Lxw);

that this cohomology agrees with other standard defini- . o

tions, in particular that it is dual to singular homology. 3 it satisfies the “product” formula — for a k-form
(This is defined via cycles of simplices modulo boundaries, applied to k vector fields;¥ X(M) we have

and can be thought of as counting loops or handles in di-

mensionk.) The key here is Stokes’ Theorem: a closed Lx(@ (Y1, ..., Yi))

form integrates to zero over any boundary, so closed forms k

can be integrated over homology classes. Furthermore an = (Lxw)(Y1,...,Yi) + Z (Y1, ..., LxYi, ..., Yi).
exact form integrates to zero over any cycle. i=1
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Proof. 1. This follows directly from the fact that pull-

Proof. We know that_y is a derivation commuting witt.

back commutes with wedge product and from theSinced? = 0, it is easy to check the right-hand side also

product rule ford/dt:

(¢t (w A M)y
=0

(Lx(o Ay = 5

d * *
d_t|t=o (piw)p A (¢in)p

9|(*) A+ A9]<*)
dtt=0¢twp Tlp + Wp dtt:O‘PtUp

2. This follows from the fact thad is linear and com-
mutes with pullback:

d d
Lydw = — ‘dw = —| dy;
XT= Tt t:o(pt w dtle-o A
d .
= d<d_t t:o(ptw) = dLyw.

. The proof follows (as for the product rule fdydt)
from a clever splitting of one élierence quotient into
two or more. We will write out the proof only for
k = 1, consideringu(Y). We find

Lx(@(Y)), = lim Hwap(Yup) = @p(Yp))
= It'g(]) %(“’s@tp(thp) - wp(‘#’—t*thp))
+ m %(‘”p(&ﬂ—t*Yw‘p) - ‘Up(Yp))’
Here the second limit clearly gives

d

d—tl ©-t.Ygp) = wp(LxY).

t=0

For the first limit, we can rewrite the first term as
(i eip)(#-t Yeup), SO that both terms are applied to
the same vector. The limit becomes

. ¢ (w, -—w
lim SDt( wp) p

150 t (@—t* Y«,Dx p)’

where the form clearly limits tol(xw), and the vec-
tor to Yp.

[}

End of Lecture 4 Jan 2016

Since the Lie derivatives of functions and vector fields ar

commutes withd. Furthermore it is a derivation: fap €
QKM we get

dex(w A 1) + ixd(w A 1)
= d((exw) A ) + (=1)d(w A xn)
+ ix((dw) A ) + (=1)tx(w A diy)
= (dixw) A+ (1)K (exw) A (dn) +---
= (dixw) A+ (txdw) A+ w A (dixn) + o A (1xdn).
Thus if the formula holds fow andn, it also holds for

w A nand fordw. By linearity and locality, this means it is
enough to check it for 0O-forms:

(dix + ixd) f = ixd f = (@F)(X) = Xf = Lyf. O

Proposition B10.3. Suppose X and Y are vector fields on
M™andw is a1-form. Then

dw(X,Y) = Xw(Y) = Yo(X) — o([X, Y]).

Proof. We use Cartan’s Magic Formula and the product
rule for Lyxw:

dew(X, Y) = (ixdw)(Y)
= (Lxw)(Y) — (dixw)(Y)
= X(@(Y)) — o([X, Y]) = d(w(X))(Y)
= X(@(Y)) = o([X, Y]) = Y(w(X)).

m]
Note that by linearity and locality it $fices to con-
siderw = fdg So an alternate proof simply computes

each term for this case, getting for instanke(Y) =
X(fdg(Y)) = X(fyg = (Xf)(Yg + fXYg

Theorem B10.4. Supposev € QK(M™) is a k-form and
Xo, ..., Xk € X(M) are k+ 1 vector fields. Then

(dw)(Xo, - - -, X&)

= D XX X5 X))
O<i<k

n Z(_1)i+jw([xi,Xj],X0,...,X\i,...,)’(\j,.--,xk))
oO<i<j<k

Note that the cask = 0 is simplyd f(X) = Xf, and the

casek = 1 is the last proposition. The general proof by

induction onk is left as an exercise; the hint is to use Car-

tan’s magic formula as in the proof of the proposition to
rite

known, we can rewrite the product formula as a formula

for Lyxw as follows:

(Lxw)(Y1, ..., Yk)

k
= X(w(Ya,. .., Yi)) - Zw(vl,...,[x,vi],...,vk).
i=1
Proposition B10.2 (Cartan’s magic formula). For any
vector field X we haveyd = dix + 1xd.

(dw)(Xo, ey Xk)

= (onw)(Xl, ey Xk) - (deow)(Xl, PN Xk)
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C. RIEMANNIAN GEOMETRY ExampleC1.2 Consider the round sphef# c R® and
let y(t) := (cost,sint,0) be the equator parametrized by
arclength. Consider the vector fiekdalongy given by the

To take derivatives of a vector field along a curve requires{
. . 4 ) angent vector
comparing tangent spaces affdient points. The Lie
derivative uses dieomorphisms to do this, which is not X, = ¥'(t) = (= sint, cost, 0).
entirely satisfactory since we need not just a curve but a
whole vector field. SincedX/dt = y”() = —y(t) is normal tos?, we find

Another approach is through connections or covarianDX/dt = 0.

derivatives. In particular, there is a natural connection onn general, a parametrized curye on M is called a

any Riemannian manifold, which is the starting point for geqdesidf its velocity vector fieldX = ¥ satisfieDX/dt =

studying its geometry. 0. On the sphere, the geodesics are exactly the great circles
parametrized at constant speed.

Now we want to work out coordinate expressions for the
covariant derivative. So letJ ) be a coordinate chart
for M™ c R" and writeV := ¢(U) ¢ R™ Write {U' :
SupposeM™ c R" is a submanifold. Ama: M — TR",  j = 1 ... m} for the coordinates o®™. BecauseM is

p > Xp € TpR" is called anR"-valuedvector field along  embedded ifR", we can also write the inverse map
M. Of courseT,R" = R", so we can identifyX with a

functionX: M — R". e lt=y=@w,. ... 4" VoUCMCR"
But T,R" also has an orthogonal decomposition (with re-

spect to the standard Euclidean inner product) into space&XPlicitly in coordinates. (Here we ugg” : a = 1,....n}
tangent and normal thl: for the coordinates o®R" and havey® = x* o y.) The

standard coordinate frame folJ is of course given by

o oy D
a'_w*(aui)_ i ou ox

C1. Submanifolds in Euclidean space

ToR" = T,M & NoM.

We letz! andz+ denote the orthogonal projections onto
these subspaces, so that= X, + 7+ Xp,.

Now if y: [a,b] — M is a curve (embedded) iNl, then A curvey in M will be given in coordinates as
we have the functioiX o y: [a,b] — R" and can take its ) "
derivative. We can view this derivative as &fi-valued Y1) = w(u(t)..... u"(b)
function on the 1-submanifold ¢ M c R" instead of on .
[a b] (technically we compose with1). Again such a Of Some real-valued functions(t).

map toR" can be identified with ai"-valued vector field A vector fieldY (tangent toM) alongy can be expressed

alongy (viewing its value at each poimtas lying inT,R").  in the coordinate basis as
We call this vector field the derivativeiX/dt of X alongy. i
Both the original fieldX and its derivativedX/dt can be Yy = Y(t) = Z b (),

decomposed (via' andz*) into parts tangent and normal

to M. These decompositions are not in any definite relafor some real-valued functioris(t). Its derivative and co-
tion to each other. Consider for instance vector fields alongariant derivative along are then

a surface inR? as we studied last semester. The deriva-

tives of the unit normal vector field are tangent vectors; the dy dp .do;
derivatives of tangent vector fields will usually have both at 2 Eai +b at’
tangent and normal components. ! ,
DY db i Do,
Definition C1.1. SupposeX is a smooth vector field on at 2 aai +b T
I

M™ c R" andy is a curve inM. Then the vector field
To compute the covariant derivati®; /dt of the coordi-

% = n“(%) nate basis vectors, we recall that a time derivative along
is a directional derivative in direction, so we get
alongy, which is tangent tav, is called thecovariant 5 .
derivativeof X alongy. Dai _ (E aﬂi) _ ZZ oY ﬂﬂll(i)
dt dt &4 ou' ox ey dulou dt” \gxe /)

Note that we only neef to be defined along. Note also

that we could apply this definition to ay/-valued field  Here thed/dx* are the standard basis vectorsih Their

X, but there is little reason to do so — our goal is to focus ortangent parts can of course be expressed in the coordinate
the geometry oM. Indeed, we will see that this covariant basis:

derivative can be defined in a way depending only on the

Riemannian metric oM and independent of the particular ﬂll(i) - Z Ko

embeddingVl c R™. oxr) 44"
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for some smooth functions € C*(U).
We now define the so-callgdhristgfel symbols

= oy

i Aul ou .

noting the symmetry = I'. We havel; € C™(U) for
1<i,j,k<m.

Using these, the expression above for the covariant deriva-

tive of ; becomes

Da. K dul
Zr,] o

e itis C®-linear inX:
VixY = fVxY;
e it satisfies a product rule iM:
Vx(fY) = (X)Y + fVxY;
e it is symmetric in the following sense:
VxY = VyX = [X, Y] = LxY;
e it is compatible with the Riemannian metric:

XYY = (VxY, Y'Y + (Y, VxY').

We can consider in particular the covariant derivative alongrhe first two properties are easny verified. The symmetry

a ul-coordinate curve, wherel = t and each otheu' is
constant. We write this as

Do,

— = erjak
k

oul

That is, the Christfiel symboll"}j. is thedx component of
the covariant derivative af; in directiong;.

Is equivalent to the fact that F The metric property
is left as an exercise.

C2. Connections

Let us now move to a very general situation. Supfose
a vector bundle over a manifold. A connectionv on E

We can now return to the general case of the covariangjiows us to take covariant derivatives of sectionsEof

derivative ofY alongy; our formula becomes
DY

= Sl D

Note here that we don't see the coordinateR'lrat all; the
vector fieldY and curvey on M are expressed in the stan-
dard instrinsic ways in the coordinate chast ¢). The em-
bedding ofM c R" enters only in the computation of the
Christdfel symboIsF and our goal is to show these re-
ally only depend on the Riemannian metric inducedvbn
by the embedding.

Now supposer = 3 bXdy is a vector field defined on all
of M (rather than just along) — its component®* are
now functions orlJ. We note that the covariant derivative
DY/dt at a pointp = y(tp) doesn’t depend on the whole
curvey but only on its velocity vectoX,, := y(to) there.

In particular, if we setl := du//dt thenX;, = algj, and
the time derivativedb®/dt appearing in the formula is the
directional derivativeX,(b).

These are directional derivatives in the direction of some
vector fieldX € X(M) and are again sections of the same
bundleE. That is, given a sectioor € T'(E), its covariant
derivative (with respect t&) in directionX is the section
Vxo € I'(E). The formal definition is as follows:

Definition C2.1. Given a vector bundl& — M, acon-
nectionon E is a bilinear mapv: X(M) x I'(E) — I'(E),
written (X, o) — Vxo, which is C*(M)-linear in X and
satisfies a product rule for:

Vixo = fVxo, Vx(fo) = (Xf)o + fVxo.

We call Vo thecovariant derivativeof o

Note that the tensorialityd™ M-linearity) implies that the
dependence oKX is pointwise: (Vxo), depends only on

Xp and can be written aSx o. This covariant deriva-
tive of course depends on more than jurgt but as for the
other derivatives we have studied, the product rule means
that the definition is local: ie- andt have the same germ

To emphasize this viewpoint, we introduce new notationat p (that is, agree in some open neighborhdsyithen

and write this covariant derivative dfat p in the direction
Xp asVy,Y. If X andY are vector fields oM, we write
VxY for the vector field whose value a@tis Vx,Y. The
formulas above mean that¥ = > alo; andY = 3 b*o
in some coordinate chart, then

VyY = Z (a9 |ok)+Zrk b'al)d

We have thus defineda@nnectionmeaning an operation
V: X(M) x X(M) - X(M), V:(XY) > VxY.

This is clearly bilinear (oveR) and we claim it satisfies
the following four properties:

Vx,0 = Vx,7. The trick is again to pick a bump function
f supported withilJ with f = 1 on some smaller neigh-
borhood ofp, so thenfo = fr. We calculate

Vx,0 = 1Vx,0 + 00 = f(p)Vx,0 + (Xpf)op = Vx, (fo)

with the same for. Indeed, it sffices thatr andr agree
locally along some curve with y(0) = X,; this can per-
haps most easily be seen in coordinates as below.

There are many other ways to rephrase this definition, for
instance in terms of sections of various induced bundles.
For any fixedo, we can consideVo as a map taking a
vector fieldX to the sectiorVyo. But the pointwise de-
pendence oiX means that this acts pointwise as a linear
mapT,M — E,. That is,Vo can be viewed as a section
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of the bundleL(T M, E) = E ® T*M; such a section can be of the properties we observed for the connection induced
called a vector-valued one-form. In this picture, the con-from an embedding/l c R".) In terms of Christéiel sym-
nectionV is a map fronT'(E) to I'(E ® T*M). While this  bols in a coordinate basis (whei,[9;] = 0), we find that

is the approach taken in many books, we will stick to ourV is torsion-free if and only ifikj = F‘J‘I

more down-to-earth approach. On a Riemannian manifold\, g) we can also ask whether
a connectioriv on T M is compatible with the metric. A

] metric connectiolis one satisfying
We have already seen one example of a connection: the

one onT M induced by an embeddingl — R", which
satisfied not only the properties in this definition but also

two further properties. As in that case, any connection cane interpretation of this equation is as saying that the

End of Lecture 11 Jan 2016

X(Y,Z) = (VxY,Z) + (Y, VxZ).

be expressed in coordinates via Chrfgbsymbols.

SupposéJ is a coordinate neighborhood ff and a triv-
ializing neighborhood foE, with {g; : 1 <i < dimM} the
coordinate frame fol M and{e, : 1 < a < rkE} a frame
for E. Then a connectioN is expressed in coordinates by
the Christgffel symbold™, defined byvy e, = 3, T2 &, SO
that in general foX = Y, V'9; ando = Y 0%, we have

Vxo = Z \/i(aiO'b + Z l"i%o-a)eo.
i.b a

Any collection of smooth functiork?, describes a connec-
tion.

Any connection induces a notion gfarallel transport
along a curve. lIfy is a curve (fromp to g) in M, then
a sectiono- of E (defined at least om — more formally a
section ofy*E) is said to beparallel alongy (with respect
to the connectiorV) if V,yo = 0 alongy. This corre-

metric tensory is parallel with respect t&¥. Just as we
saw for the Lie derivative, a connection on one bundle nat-
urally induces connections on the dual bundle and its ten-
sor powers such that product rules hold. In particular, we
could define the covariant derivati¥g via

X(9(Y, 2)) = (Vx9)(Y.Z2) + 9(VxY, Z) + g(Y, Vx2).

Then clearlyV is a metric connection if and only if for
all X we havevxg = 0.

We will now show that any Riemannian manifold has a
unigue torsion-free metric connectidh this is called the
Levi-Civita connection Note that we have already con-
structed such a connection on any manifddc R" em-
bedded in Euclidean space. We give a proof due to Koszul,
using the fact that a vector fieldxY on a Riemannian
manifold is specified by its inner products with arbitrary
vector fieldsZ.

sponds to a first-order ODE , which has a unique solution

given any initial value. That is, given awy, € Ep, there is
a unigue extension to a parallel sectiwralongy. In par-
ticular, looking at its valuery at the endpoing, we get a
linear mapP, : E, — E, calledparallel transportalongy

(w.r.t. V).

If v is a closed curve — a loop basedmt then we call
P,: E; — Ep the holonomyof V aroundy. Note that

Theorem C3.1. Any Riemannian manifoldM, g) has
a unique Levi-Civita connection, characterized by the
Koszul formula

29(VxY, 2) = X(9(Y. 2)) + Y(9(X, 2)) - Z(9(X. Y))
+9([X.Y].2) - 9o([X. 2], Y) - o([Y. Z]. X).

this need not be the identity; instead it demonstrates thEroof. Because the metric is fixed, we wrige, -) as(:, -).

curvature of the connectiow.

The tangent space © at each point has a naturartical
subspacef dimensiork at each point: the tangent space to
the fiberE, or equivalently the kernel of thefiierential of
the projectionrE — M. Another way to view a connection
is as a choice of a complementdrgrizontal subspacef
dimensionm. A sectiono is parallel alongy if Do (y) lies

in these horizontal subspaces.

C3. The Levi-Civita Connection

Specializing to the case of connections on the tangent bun-

dleE = TM, we can compargyY andVyX. Itistoo much

to hope that these are the same for any vector fi¥ldad

Y —the behavior when we replageoy f X is different. But
this kind of efect is captured also in the Lie bracket of the
vector fields. We define th®rsion of the connection as
T(XY) := VxY — VyX = [X, Y]. This expression i€°M-
linear in each of its arguments. The connectiois said

to besymmetricor torsion-freeif T(X,Y) = 0 for all X and

Y, that is, if VxY — VyX = [X,Y]. (This is of course one

The uniqueness amounts to checking that any Levi-Civita
connection does satisfy the Koszul formula. We use the
metric property to expand each of the first three terms; the
first (for instance) becomea¥ Y, Z) + (VxZ,Y). We use

the symmetry to expand each of the last three terms; the
first (for instance) become¥ Y, Z) — (VyX, Z). Adding
everything we find that most terms cancel out; we are left
with 2(VxY, Z).

It remains to show that the formula does define a Levi-
Civita connection. First, we claim that the right-hand side
is tensorial (meanin@*M-linear) inZ:

X(Y, £Z) + Y(X, £Z) — £Z(X, Y)
+([X, Y], fZ) = ([X, fZ], Y) = {[Y. fZ], X)
= (XENY, Z) + £XCY, Z) + (Y (X Z) + TY(X, Z)
—fZ(X, Y) + f({X. Y].2)
- H{([X 2], Y) - (XTXZY)
= f{[Y. Z]. X) = (Y X2, X)
= £ (X(Y.2) + Y(X. Z) - Z(X.Y)

+ (X Y1, 2) = ([X.21,Y) = ([Y.Z]. X))

31



J.M. Sullivan, TU Berlin C: Riemannian geometry fbGeom Il, WS 2015L6

This means for any fixe andY, the right hand side alongy, meaningVxY = 0 = VxZ. Then the metric con-
is w(Z) for some one-formw. But using the metria, dition implies

this one-form equivalent to a vector fiel defined by
20(W.2) = w(2). X(Y.Z) = (VxY.Z) + (Y. VxZ) = 0,

This constructiorV: (X,Y) > W is clearly bilinear inX a1 is ¢y, 7) is constant along. In particular, the length

andY. The facts that it is tensorial iX and satisfies the 4t 50y parallel field is constant, as is the angle between two
product rule inY are verified by calculuations similar to parallel fields.

the one above. The the Koszul formula defines a conne(i—t]c I that llel fields al ith fto b
tion V. What remains to show is that it is symmetric and ;. oflows that paraflel ields along with respect to two
different metric connections will thusftér from one an-

compatible withg. : . S

) . other by some rotation — the torsion-free Levi-Civita con-
To check the symmetry, note that the right-hand side of,ection is in some sense the one for which parallel fields
the Koszul formula is symmetric i andY except forthe | i5te the least.

term{[X, Y], Z). Thus

End of Lecture 18 Jan 2016

AVxY.Z) = AVyX. Z) = ([X.Y]. Z) = {[¥. X]. Z) The metric condition means parallel transpgeyt T,M —
= A[X.Y].2). TgM is an orthogonal transformation between these inner
_ ) .. product spaces; the holonomy around any loop based at
que this hplds for alz, we conclude the connection is pis an element 0O(T,M). (If M is orientable, then the
torsion-free:VxY — VyX = [X, Y]. holonomy actually lives it QT,M). On an oriented sur-
To check the metric property, note that the right-hand siddace, for instance, the holonomy around any loop is rota-
is antisymmetric inY andZ except for the ternX(Y,Z).  tion by some anglé.) Note that it is easy to extend the no-

Thus tion of parallel transport to the case of a piecewise smooth
curvey, simply by transporting along each smooth piece
VXY, Z) + Y, VxZ) = 2X(Y,Z) in order.
i 3
as desired. Consider the example of the round sphgfec R3. Look

at a right-angled triangle; at a lune of angleat a general
triangle. In each case we find the holonomyss@nus the
sum of the exterior angles, which also equals the enclosed
area.

Now we want to consider what the Levi-Civita connection
looks like in coordinates. We know the Chriffel symbols

for a torsion-free connection will be symmetrld‘]. = F‘J(I _
In terms of the component; := g(é,d;) of the metric These are special cases of the Gauss—Bonnet theorem: for

tensor, we can express the metric property a follows: ~ any diskD on any surface, the holonomy aroufid is

kGij = kg(di, 0j) 27 — TC(9D) = f K dA
= 0(V49i,0j) + 9(di, V4, 0)) P
On the sphere we hav¢ = 1 so the right-hand side is just
- Z TG + T the area.p ’ J
4

_ _ ) The Gauss curvature at a pombn a surface can be mea-
We can express this more simply in terms of another formsyred by measuring the holonomy angle around a small

of Christdfel symbols. If we define loop based ap and dividing by the area of the loop.

Dij = Z I 0k = 9(V5,0j, 0k),
¢ C5. Riemannian curvature
then we gedygi; = I'vij + [kji. Using the symmetryi =
[jik, we can solve this system to give The idea of Riemannian curvature is that given a two-plane
in T,M, the holonomy around an infinitesimal loop in this
plane will give an infinitesimal rotation df,M. The two-
plane is specified by a two-vector, and the infinitesimal ro-
tation is given by an operator oM saying in which di-
ke rection each vector moves.
r =ngfri-(:Zg_(aig-[+a-gi[_a[gi-), So su h tor fielandY M. W
i j 2 j i j ppose we have vector fieldandY nearp € M. We
4 ¢ consider parallel transport for timealong X followed by
timet alongY, and compare this with going the other way
around. Of course ifX, Y] # O this isn't even a closed
C4. Parallel transport and holonomy loop, but let's assumeX Y] = 0. Then the holonomy
around this loop will be approximatelst times what we

Supposé is any metric connection on a Riemannian man-Call the curvaturdr(X,Y).

ifold M, andvy is a smooth curve fronp to g in M with In general, of course we need to correct By Y]. Re-
velocity vectorX = y. Suppose¥ andZ are parallel fields call that this Lie bracket is the commutator of directional

2l5jk = digjk + 9 Gk — OkGij-

Writing (g¥¢) for the matrix inverse ofg;;), we have

32



J.M. Sullivan, TU Berlin

C: Riemannian geometry

fbGeom Il, WS 201BL6

derivatives:
0= X(Y f) = Y(XT) - [X, Y]f.

This inspires the definition of thRiemannian curvature
operator

R(X.Y)Z := Vx(VyZ) = Vy(VxZ) - VixnZ.

Lemma C5.1. On any Riemannian manifold the curva-
ture operator RX, Y)Z is tensorial — its value at p depends
only on X, Yy and Z,. In particular, RXp, Yp) is a linear
operator on [M.

The proof proceeds by checking that
R(fX,Y)Z = R(X, fY)Z = R(X, Y)(f2) = fR(X Y)Z,

which follows from the product rules we have for the Lie

Add these two and subtract the remaining two cyclic per-
mutations. Using the antisymmetries (1) and (2), the result
follows.

End of Lecture 25 Jan 2016

Proof. It remains to show properties (2) and (3). By ten-
soriality, it sufices to prove (3) for the commuting basis
vector fieldsX = i, Y = 0j, Z = 0k. We will abbreviate
Vi :=V,,. First note thaR(Bi,aj)ak = Vi(Vjak)—Vj(Vié‘k).
Thus the sum of three terms can be written as

Vi(V]ﬂk - Vkaj) + V,—(Vkai - Viak) + Vk(Viaj - Vjai).

Because the connection is torsion-free, each of the expres-
sions in parentheses is a Lie bracket lilg pi], but these
all vanish.

For (2) it also stfices to consideK = d;, Y = d;. Since
the symmetric part of a bilinear form in determined by its

bracket and covariant derivative. The details are left as alssociated quadratic form, to show the antisymmetry (2) it

exercise.
The definition implies directly thaR(X,Y) = —R(Y, X).

This antisymmetry means that we can think of this linear

operator as depending o6hA Y.

On an inner product space likg,M, a linear operator is
equivalent to bilinear form. Hence we get tR&mannian
curvature tensor

R(X, Y, Z, W) := (R(X, Y)Z, W).

In coordinatesl, ¢), with respect to the coordinate frame
{0}, the curvature has components given by

Rk )0 =2 ) R, ),
(RO, 30)31,0;) = Rike = ), G-

Theorem C5.2. The Riemannian curvature satisfies the

following symmetries:

(1) RX)Y) = —=R(Y, X),

(2) (R(X, Y)Z,W) = —(R(X, Y)W, Z),
(3) RX, Y)Z + R(Y,Z)X + RZ X)Y = 0,
(4) (R(X, Y)Z, W) = (R(Z, W)X, Y).

sufices to prove
0=(R(,9))Z,Z) = (Vi(V;Z) - V{(Vi2), Z).

That is, it sufices to prove thatVi(V;Z), Z) is symmetric
ini andj. To do so, consider second derivatives of the
function(z, Z):
0i(0i (Z, 2)) = 0;(AZ,ViZ))
= 2<Z, Vj(ViZ» + 2<ij, ViZ).
The last term is clearly symmetric, and the left-hand side
is symmetric sinced, dj] = 0, so we are done. O

The antisymmetry properties (1) and (2) mean that the cur-
vature tensor really can and should be thought of as a bi-
linear form on the space of two-vectors:

S(XAY,Z AW) = —~(R(X, Y)Z, W)

(extended by bilinearity to nonsimple two-vectors). Prop-
erty (4) is then simply the symmetry &f

SXAY,ZAW)=S(ZAWXAY);

this symmetry of course holds for arbitrary two-vectors,
not just simple ones. In these terms, property (3) gets no

Note that we have already proved the antisymmetry (1)Simpler:

The further antisymmetry (2) is equivalent to saying that

R(X,Y) is an infinitesimal rotation.
All four symmetries involve dferent permutations of the

SXAY,ZAW)+S(YAZXAW)+S(ZAX,YAW) =0.

If X, Y is an orthonormal basis for a two-plafiec TyM,

vector fieldsX, Y, Z, W, and are related to each other. (A {yen KD = S(XA Y, X AY) = RXY,Y,X) is called
more sophisticated approach would study them in terms ofhe sectional curvatureof T1. It turns out that this equals

representations of the symmetric graBp) For instance,

it is easy to see that, given (4), properties (1) and (2) are

equivalent.

the Gauss curvature of the “flattest” surfadec M with
pN = TI, say foliated by geodesics throughtangent
toIl.

Instead, we start by observing that (4) is an algebraic congjnce any symmetric bilinear form is determined by the

sequence of the first three. For this, write (3) as
(R(X, Y)Z, W) + (R(Y, Z)X, W) + (R(Z, X)Y, W) = 0.
Then cyclically permut&XY ZWto get
(ROY, Z)W X) + (RZ W)Y, X) + (R(W, Y)Z, X) = O.

associated quadratic form, it is not surprising that the sec-
tional curvatures of two-planes determiRe&ompletely —

but note that here we are considering only simple two-

vectors. The following lemma (applied to theffdrence

of two possible tensors with the same sectional curvatures)
takes care of this problem.
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Lemma C5.3. Suppose S is a symmetric bilinear form on Suppose the geodesistarting atp with velocity X, exists
A2V satisfying for at least unit time. Then we define eXpf := ¥(1) to be
the point at time 1 along this geodesic. For any Rieman-

SXAY,ZAW) +S(YAZ XAW)+S(ZAX,YAW)=0.  njan manifoldM, thisexponential majs defined on some
open neighborhooW of the zero-section of M and is a
smooth map expW — M. Note thatt — exptX,) is

the parametrized geodesic with constant spp&dl; the
length of this curve fronp to expXy) is || Xpll.

0=S((X+Y)AZ(X+Y)AZ) We use the notation exjfor the restriction of exp td,MN
S S(XAZYAZ)+S(YAZXAZ) W. Since the d-‘fen.antlall_Dpexpp is the identity map, for
smalle > 0, exp, is a difeormorphism from the-ball

=2S(XAZY A 2). in T,M to a neighborhood,(p) called ageodesic ball
Choosing an orthonormal basis fB5M to identify it with
R™, the map exp': U — T,M = R™ is callednormal

IFS(XAY,XAY)=0forall Xand Y, then S 0.

Proof. First compute

Now using this we get

0= S(XA(Z+W),Y A (Z+W)) coordinatesaroundp on thenormal neighborhood U
_ ’ Similar considerations show that the mapexp): X, —
= SXAZYAW) +SXAWY AZ). (p, expXp) is a local difeomorphisnT M — M x M. For
Then we use this to show anyp € M ande > 0, we deduce the existence of a neigh-

borhoodN such that any two points iN are joined by a
S(YAZXAW)=S(XAWYAZ)=-S(XAZYAW) unique geodesic of length less than
=S(ZAXYAW). In normal coordinates aroung all geodesics througp
are the images of straight lines through the origin. Fur-
That is,S is invariant under a cyclic permutation 8YyZ  thermore, ap we haveg;;(0) = &;; andl"ikj = 0. The image
But we have assumed the sum of all three cyclic permutas, := {exp, Xp 1 Xl = r} of a sphere irT,M is called
tions is zero, so we fin8 = 0. O  ageodesic spheraroundp € M. It is easy to check that
geodesics througlp meet each of these sphere orthogo-
Note that actually there is a formula with 16 terms giving nally and that (for smalt < r’) any curve fromS; to S,
has length at least—r. Thus geodesics are locally shortest

6S(XAY,ZAW) curves.
=S((X+2) A (Y +W),(X+2) A (Y +W)) Note that for smalf, the geodesic sphe®;(p) is topo-
—S(X+ DAY, X+ AY) +---. logically a sphere and is the boundary of the geodesic ball

B (p), which is a topological ball. For larger the expo-
nential map may still exist but no longer be déomor-
C6. The exponential map phism; these spheres and balls will start to overlap and in-
tersect themselves. The geodesic IBa(lp) is always the
) _ metric ball in (M, d), the set of points at distance less than
Any tangent vectorX, € T,M determines a unique r from p.

geodesic starting gt with velocity X; this is the solution So far, we have only discussed local existence of

go>a(')5econd order ODE and WlIIeX|statIeastforsometlmegeodesicsl A manifold is callegeodesically completié

every geodesic can be extended indefinitely, that is, if exp
More precisely, we can consider the equation for &js defined on all off M. The Hopf-Rinow theorem says
geodesic(t) in a coordinate charlf, ¢). In terms of the  this happens if and only if the metric spadd. () is met-
Christdfel symbols we get rically complete. In particular, every compact manifold is

o geodesically complete.
X+ Z I (XX = 0.
ij

The existence theorem we have used before then says: For C7. Ricciand scalar curvatures

anyq € U there is a neighborhodd > g ande, § > 0 such
that, given any initial conditionp € V andX, € T,Mwith  If IT c T,M is a two-plane, its image under the exponen-

IXoll < & (meaning of course(0) = phi(p) and X(0) = tial map exp is locally a two-dimensional submanifold
©.Xp), @ unique solution as above exists withirfor |t < throughp. One can show that its Gauss curvaturepat
¢, and it depends smoothly on the initial conditions. is the sectional curvatut€(IT). (See for instance Boothby,

Of course if we rescal, to 1X,, the geodesic is still Theorem VIIl.4.7.)

the same curve, simply parametrizedidimes the speed. SupposeX € T,M™ is a unit vector. We define the Ricci
Thus there is a tradéobetweens and d; the statement curvature in directiorX to be the average sectional curva-
above is also true say fér = 2. Note also that we can ture of two-planes including:

piece together geodesic arcs and the resulting curve is still .

a geodesic, so we can apply the existence results indepen- Ric(X, X) = (m - 1) avapx K(II).
dent of any coordinate chart. A manifold with constant Ricci curvature is called an Ein-

34



J.M. Sullivan, TU Berlin C: Riemannian geometry

fbGeom Il, WS 201BL6

stein manifold, because of the way this condition arises in
general relativity.

The Ricci curvature is a quadratic form; the associated
symmetric bilinear form o ;M is called the Ricci ten-
sor; if {g} is an orthonormal frame, we have

m
Ric(X,Y) = Z S(XAe,YA8).
i=1

In coordinates, Ri¢ = Xk I%kj. On an Einstein manifold,
Ric(X,Y) = cg(X, Y).

Form = 3, but not in higher dimensions, the Ricci curva-
ture determines the full Riemannian curvature tensor.

End of Lecture 1 Feb 2016

The Ricci flow dg;/dt = -2Rig; is a nonlinear heat
flow of Riemannian manifolds which tries to smooth out
the Ricci curvature. Perelman’s proof of Thurston’s ge-
ometrization conjecture (including the Poincaré conjec-
ture) used Ricci flow on 3-manifolds.

The average Ricci curvature in all directionspegives the
scalar curvature $p) = 3. g'R;.

The images under the exponential map of round balls and
spheres inT,M are called geodesic balls and spheres —
B:(p) is the set of all points at distance less thidrom p.

The scalar curvature measures the volume growth rate of
geodesic balls or spheres aroupd- positive curvature
means the volume grows more slowly than in Euclidean
space, which negative curvature means it grows faster.

The Ricci curvature Ri¢{, X) measures in a similar sense
the rate of spreading of geodesics emerging fiom di-
rections neak.
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