1. **Question**

Let $A, B, C, D \in S^2 = \{x \in \mathbb{R}^3 \mid \|x\| = 1\}$. Two spherical triangles with vertices A, B, C and A, B, D are colinear if they share an edge and their other two edges belong to the same great circles.

(a) Triangles with vertices A, B, C and A, B, D are colinear, and $C = (0, 0, 1)$. Determine D.

(b) How many triangles are colinear to a given spherical triangle?

(c) Let γ be the parametrization of the shorter great circle arc connecting

$$A = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, B = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

Find an explicit formula for γ and show that its length satisfies

$$\cos(L(\gamma)) = \langle A, B \rangle.$$

Overview of results:

(a) $D = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}$.

(b) The number of triangles colinear to a given spherical triangle: 2 (not counting the triangle itself).

(c) $\gamma : \left[0, \frac{\pi}{4} \right] \rightarrow S^2, \quad \gamma(t) = \begin{pmatrix} 0 \\ \sin t \\ \cos t \end{pmatrix}$

Your work:

$$L(\gamma) = \int_0^{\frac{\pi}{4}} \sqrt{\langle \gamma'(t), \gamma'(t) \rangle} \ dt$$

$$\gamma'(t) = \begin{pmatrix} 0 \\ \cos t \\ \sin t \end{pmatrix} = 0, \quad \langle \gamma'(t), \gamma'(t) \rangle = 1$$

$$\Rightarrow L(\gamma) = \int_0^{\frac{\pi}{4}} dt = \frac{\pi}{4}$$

$$\langle A, B \rangle = \frac{1}{\sqrt{2}} = \cos \left(\frac{\pi}{4} \right).$$
2. Question

Let $H^2 = \{ x \in \mathbb{R}^3 \mid \langle x, x \rangle_{2,1} = -1 \}$ be the hyperboloid model of the hyperbolic plane, ℓ_1 and ℓ_2 be two hyperbolic lines and $h_i = \{ y \in H^2 \mid \langle y, n_i \rangle_{2,1} \geq 0 \}, \; i \in \{1, 2\}$, be halfplanes bounded by ℓ_1 and ℓ_2. A hyperbolic rotation of H^2 with centre $x \in H^2$ is a map $T \in SO^+(2,1)$ with $T(x) = x$.

Let

\[
x = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad n_1 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \quad n_2 = \begin{pmatrix} \sqrt{3} \\ -1 \\ 1 \end{pmatrix}.
\]

a) A hyperbolic rotation $T \in SO^+(2,1)$ with centre x maps h_1 to h_2. Find T. Show your work.

Let C be a Euclidean circle with radius $0 < r < 1$ and centre at the origin in the open unit disc D. Interpreting D as the Poincaré disc model makes C a hyperbolic circle.

b) Parametrize C by a curve γ.

c) The Riemannian metric on the Poincaré disc model is

\[
g_p(v, w) = \frac{4}{(1 - p_1^2 - p_2^2)^2} \langle v, w \rangle_{\mathbb{R}^2}, \quad p = (p_1, p_2), \; v, w \in D.
\]

Use the Riemannian metric on D to calculate the length of γ as a curve in the Poincaré disc model.

Overview of results:

a) $T = \begin{bmatrix}
\sqrt{3}/2 & \frac{1}{2} & 0 \\
-\frac{1}{2} & \sqrt{3}/2 & 0 \\
0 & 0 & 1
\end{bmatrix}$

Your work:
Let \(T = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \). Then

\[T x = x \implies i = 1, \quad c = f = 0. \]

Further, \(T \in SO(3,\mathbb{R}) \Rightarrow T^T \mathbf{I}_{2,1} T = \mathbf{I}_{2,1} \)

\[T^T \mathbf{I}_{2,1} T = \begin{bmatrix} a^2 + d^2 - e^2 & a b + d e - g f & a c + d f - e h \\ a b - d e + g f & b^2 + e^2 - h^2 & c b + e h - f g \\ a c - b f + e h & c b - e h + f g & c^2 + f^2 - h^2 \end{bmatrix} \]

\[a^2 + d^2 - e^2 > 0, \quad a^2 + d^2 = b^2 + e^2, \quad ab = -de \]

Since \(\det T = 1 \), \(\det \begin{bmatrix} a & b \\ d & e \end{bmatrix} = 1 \)

\[\Rightarrow T = \begin{bmatrix} \cos \delta & -\sin \delta & 0 \\ \sin \delta & \cos \delta & 0 \\ 0 & 0 & 1 \end{bmatrix}. \]

Alternatively, you can use the notion of orthogonality:

\[\langle T \mathbf{e}_1, T \mathbf{e}_1 \rangle = a^2 + d^2 \implies \exists \alpha \in \mathbb{R} \quad (a,d) = (\cos \beta, \pm \sin \beta) \]

\[\langle T \mathbf{e}_2, T \mathbf{e}_2 \rangle = b^2 + e^2 \implies \exists \beta \in \mathbb{R} \quad (b,e) = (\sin \beta, \cos \beta) \]

\[\langle T \mathbf{e}_3, T \mathbf{e}_3 \rangle = 1 \]

\[\Rightarrow 1 = \det \begin{bmatrix} a & b \\ d & e \end{bmatrix} = \cos^2 \beta - \sin^2 \beta \quad \Rightarrow \beta = \cos^{-1} (\frac{1}{a}) \]

\[\Rightarrow x = -\beta + 2\pi \]

Let \(\phi = x = -\beta + 2\pi \), then \(T = \begin{bmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \)

We know \(y \in \mathbb{R} \), \(\langle y \mathbf{e}_2, y \mathbf{e}_2 \rangle > 0 \), where

\[\langle \frac{y}{y_2} \mathbf{e}_1, y \mathbf{e}_1 \rangle = 2y_1 - y_3 \]

\[y \in \mathbb{R} \]

\[\langle y \mathbf{e}_2, y \mathbf{e}_2 \rangle > 0 \], where

\[\langle \frac{y}{y_2} \mathbf{e}_1, y \mathbf{e}_1 \rangle = 2y_1 - y_3 \]

\[\langle T \left(\begin{array}{c} \frac{y}{y_2} \\ \frac{y_3}{y_2} \end{array} \right), y \mathbf{e}_1 \rangle = (\frac{y}{y_2} \cos \phi - \frac{y_3}{y_2} \sin \phi) y_1 - (\frac{y}{y_2} \sin \phi + \frac{y_3}{y_2} \cos \phi) y_2 - y_3 \]

\[= \begin{bmatrix} \frac{y}{y_2} \cos \phi - \frac{y_3}{y_2} \sin \phi \\ \frac{y}{y_2} \sin \phi + \frac{y_3}{y_2} \cos \phi \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} - \frac{1}{2} \left(\frac{y}{y_2} \right)^2 y_1 + \frac{1}{2} \left(\frac{y_3}{y_2} \right)^2 y_2 = 0 \]

\[\Rightarrow \phi = \pi - \pi/4 \]

\[\Rightarrow \sin \phi = -\frac{1}{2}, \quad \cos \phi = \frac{\sqrt{3}}{2} \]
b) $\gamma : \left[0, 2\pi \right] \to \mathbb{C}, \quad \gamma(t) = r \left(\cos t, \sin t \right)$

c) $L(\gamma) = \int_0^b \sqrt{g(\gamma(t), \gamma'(t))} \, dt$

- $\gamma(0) = r \left(\cos 0, \sin 0 \right)$
- $\gamma(2\pi) = r \left(\cos 2\pi, \sin 2\pi \right)$
- $\gamma'(t) = r \left(\cos t, \sin t \right)$

$g(\gamma(t), \gamma'(t)) = \frac{4}{(1 - r^2 \cos^2 t - r^2 \sin^2 t)^2}$

$\int_0^{2\pi} \frac{2\pi}{1 - r^2} \, dt = \frac{4\pi r}{1 - r^2}$
3. Question

\[q : \mathbb{R}^3 \to \mathbb{R}, \quad q(x) = x_1^2 + 2x_1x_2 + x_1x_3 - 7x_3^2. \]

a) Find the symmetric bilinear form \(b : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}, (x, y) \mapsto b(x, y) \) such that \(q(x) = b(x, x) \).

b) What is the signature of \(q \)?

c) Is \(q \) non-degenerate? Show your work.

d) Let \(e_1, e_2, e_3 \) denote the canonical basis of \(\mathbb{R}^3 \). Let \(U = \text{span}\{e_1, e_1 + e_2\} \). Find \(U^\perp \) with respect to \(b \).

Overview of results:

a) \[b \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} , \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = x_1y_1 + x_1y_2 + y_1x_2 + \frac{1}{2}x_2y_3 + \frac{1}{3}y_2x_3 - 3x_3y_3 \]

b) The signature of \(q \) is \((1, 2, 0)\).

c) Is \(q \) degenerate? \(\text{No} \)

Your work: You can express \(b \) in the matrix

\[
\begin{pmatrix}
1 & 1 & 0 \\
1 & 0 & -3 \\
0 & -3 & 0
\end{pmatrix}
\Rightarrow \text{It is non-degenerate.}
\]

Calculating the minors of \(H \) \(\text{det } H = \begin{pmatrix} m_{11} & \cdots & m_{1n} \\
\vdots & \ddots & \vdots \\
m_{n1} & \cdots & m_{nn} \end{pmatrix} \)

where \(H = [e_j^T e_i]_{i,j=1,\ldots,n} \). Then:

\[
\text{det } H_0 = 0, \quad \text{det } H_1 = 1, \quad \text{det } H_2 = -1, \quad \text{det } H_3 = \text{det } H = 7
\]

\(\Rightarrow \) the signature is \((1, 2, 0)\).
d) $U^\perp = \text{span} \left\{ \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix} \right\}$

$U^\perp = \text{span} \{v_3\}$

$s.t. \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \text{ s.t. } v_1 = 0 \Rightarrow v = (v_1, v_2, v_3) = (0, 0, v_3) = b(v_1e_1 + b(v_2e_2))$

$^w b(v_1e_1) = v_1 + v_2 + \frac{1}{2}v_3$

$^{^w b}(v_1e_2) = v_1$

$\begin{cases} v_1 = 0, v_2 = -\frac{1}{2}v_3 \\ v = 0_1 \end{cases}$

Notes and calculations:
4. Question

Decide if the following statements are true or false. Briefly justify your answer if requested.

1. (1 point) The side lengths of the polar triangle are the interior angles of the original triangle and vice versa. (Justify your work.)

 True False
 [] [x]

 They are the **EXTERIOR** angles.

2. (1 point) The great circles connecting (1, 0, 0) and (−1, 0, 0) in the unit sphere $S^2 = \{ x \in \mathbb{R}^3 \mid \| x \| = 1 \}$ correspond to lines through the origin under the stereographic projection. (Justify your work.)

 True False
 [] [x]

 Stereographic projections maps circles on S^2 to circles or lines. Lines are images of lines circles that pass through the north pole. For $\varphi = \pi$ from the great circle in the west only the one passing through φ and π in addition will be mapped to a line.

3. (1 point) A symmetric bilinear form on a vector space V is non-degenerate if and only if the set $\{ v \in V \mid b(v, v) = 0 \} = \{0\}$. (Justify your work.)

 True False
 [] [x]

 The set $\{ v \in V \mid b(v, v) = 0 \}$ does not define the kernel. A symmetric bilinear form b on V is non-degenerate if and only if $b(v, v) \neq 0$.
4. (1 point) Let $L \subseteq \mathbb{R}^{2,1}$ be the light cone. Then \(\{x \in \mathbb{R}^3 \mid x \in L \} \) is a conic. (Justify your work.)

The points on L satisfy
\[
(g)_t = x \in L \iff \langle x, x \rangle_{11} = x_1^2 + x_2^2 - x_3^2 = 0
\]
Thus, \(\{x \} \in \mathbb{R}^2 \mid x \in L \) is a conic coming from
\[
q: \mathbb{R}^3 \to \mathbb{R}, (x_1, x_2, x_3) \mapsto x_1^2 + x_2^2 - x_3^2.
\]

5. (1 point) A hyperbolic line in the hyperboloid model of the hyperbolic space $H^n \subseteq \mathbb{R}^{n,1}$ is the shortest path in the Lorentz space $\mathbb{R}^{n,1}$ connecting two vectors $x, y \in H^n$. (Justify your work.)

This is VERY DIFFICULT since we did not talk about the metric on $\mathbb{R}^{n,1}$, but the trick is to notice that not only curves in H^n are considered.

6. (1 point) The Klein-Beltrami model of hyperbolic geometry is conformal.

7. (1 point) The projective linear group $PGL(n, \mathbb{R})$ is a projective space. (Justify your work.)

$GL(n, \mathbb{R})$ is not a vector space (for example, the neutral element of addition, \(\mathbf{0} \in \mathbb{R}^n \), is not in $GL(n, \mathbb{R})$).
8. (1 point) Let ℓ_1, \ldots, ℓ_4 be four lines in a projective plane Π intersecting in a point P. Let $a, b \subseteq \Pi$ be two lines not containing P. Then
\[\text{cr}(a \cap \ell_1, a \cap \ell_2, a \cap \ell_3, a \cap \ell_4) = \text{cr}(b \cap \ell_1, b \cap \ell_2, b \cap \ell_3, b \cap \ell_4). \]
(Justify your work.)

9. (1 point) For any five points in \mathbb{RP}^2, there is a unique conic section containing them. (Justify your work.)

Notes and calculations: