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This course is an introduction to the geometry of smooth
curves and surfaces in Euclidean space Rn (in particular for
n = 2, 3). The local shape of a curve or surface is described
in terms of its curvatures. Many of the big theorems in the
subject – such as the Gauss–Bonnet theorem, a highlight at the
end of the semester – deal with integrals of curvature. Some
of these integrals are topological constants, unchanged under
deformation of the original curve or surface.

We will usually describe particular curves and surfaces
locally via parametrizations, rather than, say, as level sets.
Whereas in algebraic geometry, the unit circle is typically
be described as the level set x2 + y2 = 1, we might instead
parametrize it as (cos t, sin t).

Of course, by Euclidean space [DE: euklidischer Raum]
we mean the vector space Rn 3 x = (x1, . . . , xn), equipped
with with the standard inner product or scalar product [DE:
Skalarprodukt] 〈a, b〉 = a ·b :=

∑
aibi and its associated norm

|a| :=
√
〈a, a〉.

A. CURVES

Given any interval I ⊂ R, a continuous map α : I → Rn

is called a (parametrized) curve [DE: parametrisierte Kurve]
in Rn. We write α(t) =:

(
α1(t), . . . , αn(t)

)
.

We say α is Ck if it has continuous derivatives of order up
to k. Here of course C0 means nothing more than continuous,
while C1 is a minimal degree of smoothness, which is insuffi-
cient for many of our purposes. Indeed, for this course, rather
than tracking which results require, say, C2 or C3 smoothness,
we will use smooth [DE: glatt] to mean C∞ and will typically
assume that all of our curves are smooth.

Examples (parametrized on I = R):

• α(t) := (a cos t, a sin t, bt) is a helix in R3 (for a, b , 0);

• β(t) := (t2, t3) is a smooth parametrization of a plane
curve with a cusp;

• γ(t) := (sin t, sin 2t) is a figure-8 curve in R2;

• µ(t) := (t, t2, . . . , tn) is called the moment curve in Rn.

A simple curve [DE: einfache Kurve] is one where the map
α : I → Rn is injective. A closed curve [DE: geschlossene
Kurve] is one where α : R→ Rn is T -periodic for some T > 0,
meaning α(t + T ) = α(T ) for all t ∈ R. Of course no closed
curve is simple in the above sense; instead we define a sim-
ple closed curve [DE: einfach geschlossene Kurve] as a closed
curve where α is injective on the half-open interval [0,T ).

A smooth (or even just C1) curve α has a velocity vector
[DE: Geschwindigkeitsvektor] α̇(t) ∈ Rn at each point. The
fundamental theorem of calculus says this velocity can be in-
tegrated to give the displacement vector∫ b

a
α̇(t) dt = α(b) − α(a).

The speed [DE: Bahngeschwindigkeit] of α is |α̇(t)| ≥ 0. We
say α is regular [DE: regulär] if the speed is positive (that is,

if the velocity never vanishes). Then the speed is a (smooth)
positive function of t. (The cusped curve β above is not regular
at t = 0; the other examples given are regular.)

The length [DE: Länge] of a smooth curve α is defined as
len(α) =

∫
I |α̇(t)| dt. (For a closed curve, of course, we should

integrate from 0 to T instead of over the whole real line.) For
any subinterval [a, b] ⊂ I, we see that∫ b

a
|α̇(t)| dt ≥

∣∣∣∣∫ b

a
α̇(t) dt

∣∣∣∣ =
∣∣∣α(b) − α(a)

∣∣∣.
This simply means that the length of any curve is at least the
straight-line distance between its endpoints.

The length of an arbitrary curve can be defined (following
Jordan) as its total variation:

len(α) := TV(α) := sup
t0<···<tn∈I

n∑
i=1

∣∣∣α(ti) − α(ti−1)
∣∣∣.

This is the supremal length of inscribed polygons. (One can
show this Jordan length is finite over finite intervals if and only
if α has a Lipschitz reparametrization, e.g., by arclength. For
a Lipschitz curve, the velocity is defined almost everywhere,
so the integrals we used above – giving displacement as the
integral of velocity and length as the integral of speed – exist
in the sense of Lebesgue.)

If J is another interval and ϕ : J → I is an orientation-
preserving homeomorphism, i.e., a strictly increasing surjec-
tion, then α◦ϕ : J → Rn is a parametrized curve with the same
image (or trace) as α, called a reparametrization of α. (Note
that the reverse curve ᾱ : − I → Rn, defined by ᾱ(t) := α(−t),
traces the same image in reverse order; this could be called an
orientation-reversing reparametrization.)

When studying arbitrary continuous curves, it’s sometimes
helpful to allow more general reparametrizations via ϕ : J → I
which is monotonic but not strictly monotonic. That is, we
allow a reparametrization that stops at one point for a while –
or that removes such a constant interval.

We instead focus on regular smooth curves α. Then
if ϕ : J → I is a diffeomorphism [DE: Diffeomorphismus]
(a smooth map with nonvanishing derivative, so that ϕ−1

is also smooth) then α ◦ ϕ is again smooth and regular.
We are interested in properties invariant under such smooth
reparametrizations. Declaring a (regular smooth) curve to
be equivalent to any smooth reparametrization, this gives an
equivalence relation on the space of all parametrized curves.
Formally, we could define an unparametrized (smooth) curve
as an equivalence class. These are really the objects we
want to study, but we do so implicitly, using parametrized
curves and focusing on properties that are independent of
parametrization, switching to a different parametrization
when convenient.

For a fixed t0 ∈ I we define the arclength function s(t) :=∫ t
t0
|α̇(t)| dt. Here s maps I to an interval J of length len(α). If

α is a regular smooth curve, then s(t) is smooth, with positive
derivative ṡ = |α̇| > 0 equal to the speed. Thus it has a smooth
inverse function ϕ : J → I. We say β = α ◦ ϕ is the arclength
parametrization [DE: Parametrisierung nach Bogenlänge] (or
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unit-speed parametrization) of α. We have β(s) = α(ϕ(s)),
so β(s(t)) = α(ϕ(s(t))) = α(t). It follows that β has constant
speed 1, and thus that the arclength of β|[a,b] is b − a.

The arclength parametetrization is hard to write down ex-
plicitly for most examples – we have to integrate a square root,
then invert the resulting function. (There has been some work
in computer-aided design on so-called “pythagorean hodo-
graph curves”, curves with rational parametrizations whose
speed is also a rational function, with no square root. But this
still doesn’t get us all the way to a unit-speed parametrization.)

The fact that the arclength parametrization always exists,
however, means that we can use it when proving theorems,
and this is usually easiest. (Even when considering curves
with less smoothness, e.g., Ck, there is a general principle
that no regular parametrization is smoother than the arclength
parametrization.)

Although for an arbitrary parameter we have used the name
t (thinking of time) and written d/dt with a dot, when we use
the arclength parametrization, we’ll call the parameter s and
write d/ds with a prime. Of course, for any function f along
the curve, the chain rule says

d f
ds

ds
dt

=
d f
dt
, i.e., f ′ = ḟ /ṡ = ḟ /|α̇|.

Suppose now that α is a regular smooth unit-speed curve.
Then its velocity α′ is everywhere a unit vector, the (unit) tan-
gent vector [DE: Tangenten(einheits)vektor] T (s) := α′(s) to
the curve. (In terms of an arbitrary regular parametrization,
we have of course T = α̇/|α̇|.)

End of Lecture 8 Apr 2019

We should best think of T (s) as a vector based at p = α(s),
perhaps as an arrow from p to p + T (s), rather than as a point
in Rn. The tangent line to α at the point p = α(s) is the line
{p + tT (s) : t ∈ R}. (Of course, a nonsimple curve might pass
through a point p ∈ Rn more than once, with different tangent
vectors, so this language is not technically precise.)

Although we have agreed to consider mainly smooth (C∞)
curves, it is interesting to note that the tangent line is the the
limit (as h → 0) of secant lines through p and α(s + h), as
long as α has a first derivative at s. If α is C1 near s, then the
tangent line is even the arbitrary limit of secant lines through
α(s + h) and α(s + k).

While the velocity vectors of a curve depends on the
parametrization, the tangent line and unit tangent vector do
not; they are properties of an unparametrized curve. We are
really most interested in properties that are also independent
of rigid motion. It is not hard to show that a Euclidean mo-
tion of Rn is a rotation A ∈ SO(n) followed by a translation by
some vector v ∈ Rn: x 7→ Ax + v. Thus α could be considered
equivalent to Aα+ v : I → Rn, t 7→ Aα(t) + v. Of course, given
any two lines in space, there is a rigid motion carrying one to
the other. To find Euclidean invariants of curves, we need to
take higher derivatives. We define the curvature vector [DE:
Krümmungsvektor] ~κ := T ′ = α′′; its length is the curvature
[DE: Krümmung] κ := |~κ|.

Recall the Leibniz product rule for the scalar product: if v
and w are vector-valued functions, then (v ·w)′ = v′ ·w + v ·w′.

In particular, if v ⊥ w (i.e., v · w ≡ 0) then v′ · w = −w′ · v.
And if |v| is constant then v′ ⊥ v. (Geometrically, this is just
saying that the tangent plane to a sphere is perpendicular to
the radius vector.) In particular, we have ~κ ⊥ T .

Example: the circle α(t) = (r cos t, r sin t) of radius r
(parametrized here with constant speed r) has

T = (− sin t, cos t), ~κ =
−1
r

(cos t, sin t), κ ≡ 1/r.

Given regular smooth parametrization α with speed σ :=
ṡ = |α̇|, the velocity is σT , so the acceleration vector is

α̈ =
(
σT

)·
= σ̇T + σṪ = σ̇T + σ2T ′ = σ̇T + σ2~κ.

Solving for ~κ we get the formula

|α̇|2~κ = α̈ − 〈α̈,T 〉T = α̈ −
〈α̈, α̇〉 α̇

|α̇|2

for the curvature of a curve not necessarily parametrized at
unit speed.

Any three distinct points in Rn lie on a unique circle (or
line). The osculating circle to α at p is the limit of such circles
through three points along α approaching p. It is also the limit
of circles tangent to α at p and passing through another point
of the curve approaching p. Again, one can investigate the
exact degree of smoothness required to have such limits exist.

Note that the second-order Taylor series for a unit-speed
curve around the point p = α(0) (we assume without further
comment that 0 ∈ I) is:

α(s) = p + sT (0) +
s2

2
~κ(0) + O(s3).

These first terms parametrize a parabola agreeing with α to
second order (i.e., with the same tangent and curvature vec-
tor). Geometrically, it is nicer to use the osculating circle [DE:
Schmiegekreis], the unique circle agreeing with α to second
order at p (degenerating to a line if ~κ = 0). It has radius 1/κ
and center p + ~κ/κ2. Thus we can also write

α(s) = p + sin(κs)T/κ + cos(κs)~κ/κ2 + O(s3).

(Here T and κ are constants, the unit tangent and curvature at
s = 0.)

Comparing these two expansions, we note that a curve with
constant acceleration or second derivative is a parabola; its
points are equivalent by shearing. Geometrically more natu-
ral is a circle – a curve of constant curvature; its points are
equivalent by a rotation, a rigid motion.)

Considering T : I → Sn−1 ⊂ Rn, we can think of this as
another curve in Rn – called the tantrix (short for tangent in-
dicatrix) of α – which happens to lie on the unit sphere. As-
suming α was parametrized by arclength, the curve s 7→ T (s)
has speed κ. Thus it is regular if and only if the curvature of α
never vanishes. (Note on curves with nonvanishing curvature
– in R2 versus R3.)
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A1. Plane Curves

Now let’s consider in particular plane curves (n = 2). We
equip R2 with the standard orientation and let J denote the
counterclockwise rotation by 90◦ so that J(e1) = e2 and for
any vector v, J(v) is the perpendicular vector of equal length
such that {v, Jv} is an oriented basis.

Given a (regular smooth) plane curve α, its (unit) normal
vector [DE: Normaleneinheitsvektor] N is defined as N(s) :=
J(T (s)). Since ~κ = T ′ is perpendicular to T , it is a scalar
multiple of N. Thus we can define the (signed) curvature κg
of α by κgN := ~κ (so that κg = ±|~κ| = ±κ). For an arbitrary
regular parametrization of α, we find

κg =
det(α̇, α̈)
|α̇|3

.

From N ⊥ T and T ′ = κgN, we see immediately that N′ =

−κgT . We can combine these equations as(
T
N

)′
=

(
0 κg
−κg 0

) (
T
N

)
.

Rotating orthonormal frame, infinitesimal rotation (speed
κg) given by skew-symmetric matrix. The curvature tells us
how fast the tangent vector T turns as we move along the curve
at unit speed.

Since T (s) is a unit vector in the plane, it can be expressed
as (cos θ, sin θ) for some θ = θ(s). Although θ is not uniquely
determined (but only up to a multiple of 2π) we claim that we
can make a smooth choice of θ along the whole curve. Indeed,
if there is such a θ, its derivative is θ′ = κg. Picking any θ0 such
that T (0) = (cos θ0, sin θ0) define θ(s) := θ0 +

∫ s
0 κg(s) ds.

This lets us prove what is often called the fundamental the-
orem of plane curves [DE: Hauptsatz der lokalen Kurventhe-
orie] (although it really doesn’t seem quite that important):
Given a smooth function κg : I → R there exists a smooth
unit-speed curve α : I → R with signed curvature κg; this
curve is unique up to rigid motion. First note that integrat-
ing κg gives the angle function θ : I → R (uniquely up to a
constant of integration), or equivalently gives the tangent vec-
tor T = (cos θ, sin θ) (uniquely up to a rotation). Integrating T
then gives α (uniquely up to a vector constant of integration,
that is, up to a translation).
End of Lecture 12 Apr 2019

Now suppose α is a closed plane curve, that is, an L-
periodic map R → R2. As above, by integrating the signed
curvature, we get an angle function θ : R→ R. This, however,
is not necessarily periodic. Instead, θ(L) = θ(0)+2πn for some
integer n called the turning number [DE: Umlaufzahl] (or rota-
tion index or . . . ) of α. (It follows that θ(s+kL)−θ(s) = kn for
any integer k and any s.) Note that the total signed curvature
of α is ∫ L

0
κg ds = θ(L) − θ(0) = 2πn.

(If we reverse the orientation of α, we negate the signed cur-
vature and the turning number.)

A famous result in topology is the Jordan curve theorem
[DE: Jordan’scher Kurvensatz], saying that a simple closed
plane curve divides the plane into two regions, one of which
(called the interior [DE: Innere]) is bounded. Assuming the
curve is oriented so that its interior is on the left, then the “the-
orem on turning tangents”, more often known even in English
by the German name Umlaufsatz, says that its turning number
is always +1. Equivalently, the total signed curvature is 2π.
(This is a special case of the Gauss–Bonnet theorem, needed
as a lemma for the general case, so we will give a proof later.)

We will also later prove Fenchel’s theorem that for any
closed curve in Rn, the total (unsigned) curvature satisfies∫
κ ds ≥ 2π (with equality only for convex plane curves,

where κ = κg).

A2. The Four-Vertex Theorem

A vertex [DE: Scheitelpunkt] of a smooth plane curve is an
extremal point of κg, that is a point where κg achieves a lo-
cal minimum or maximum, so that κ′g = 0. Since any real-
valued function on a compact set achieves a global minimum
and maximum, any closed curve has at least two vertices.

The Four-Vertex Theorem [DE: Vierscheitelsatz] says that
any simple closed plane curve α has at least four vertices.
(Note counterexample r = 1 + 2 sin θ in polar coords if curve
not embedded.) We give a proof due to Bob Osserman (1985).

Lemma A2.1. Lemma: Given a nonempty compact set K in
the plane (which might be the trace of a curve α) there is a
unique smallest circle c enclosing K, called the circumscibed
circle [DE: Umkreis]. (If K consists of a single point then c
degenerates to that point.)

Sketch of proof. By compactness, K is contained in the closed
ball of radius R around the origin, for some R > 0. We
are looking for the smallest closed ball containing K; it suf-
fices to consider the compact family of balls of radius at most
R centered at points within distance 2R of the origin. The
balls containing K form a closed subfamily, thus also com-
pact. Therefore the continuous radius function achieves its
minimum and we have existence. Uniqueness follows almost
immediately: If there were two minimal ballss containing K,
then K would be contained in their intersection, which is con-
tained in a strictly smaller ball. �

We can immediately derive several properties of the cir-
cumscribed circle:

1. c must touch K (for otherwise we could shrink c);

2. c∩K cannot lie in an open semicircle of c (for otherwise
we could translate c to contradict (1);

3. c ∩ K thus contains at least two points, and if there are
only two they are antipodal on c.

We next need to consider the relation between the curva-
tures of two tangent curves. So suppose α and β are two reg-
ular curves with the same tangent vector at p. If καg > κ

β
g at p
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then α stays to the left of β in some neighborhood of p. A
weak converse statement follows immediately by exchanging
the curves: if α stays to the left of β, then at least the weak
inequality καg ≥ κ

β
g holds at p.

(Suppose p is a point along α where κ′g , 0 – so p is not a
vertex. Then that the osculating circle to α at p crosses α at p.
Most people’s sketches of osculating cicles are wrong!)

Now consider the circumcircle c of a closed cuve α. Since
α stays inside (that is, to the left of) c, at any point p ∈ c ∩ α
the curvature of α is at least that of c.

Theorem A2.2 (Four-Vertex Theorem). Any simple closed
plane curve α has at least four vertices.

Proof. Let the curvature of the circumcircle c be k. If c ∩ α
includes an arc, there is nothing to prove. Otherwise suppose
c∩α includes at least n ≥ 2 points pi. (At these points κg ≥ i.)
We claim each arc αi between consecutive pi and pi+1 contains
a point with κg < k. Along this arc, the minimum of κg is
achieved at an interior point qi, a vertex of α where κg < k.
Now the arc from qi−1 to qi includes the point pi with κg ≥ k,
so the maximum of κg is achieved at an interior point p′i , a
vertex of α with κg ≥ k. Thus we have found 2n ≥ 4 vertices
as desired.

To prove the claim, consider the one-parameter family of
circular arcs from pi to pi+1, with signed curvatures decreasing
from k. At the beginning, the arc αi lies (weakly) to the left
of the arc of c. As we decrease the curvature, there is a last
circular arc c′ that still touches the interior of αi; it is tangent
to αi at at least one interior point. Since αi stays to the right
of c′, its signed curvature is at most that of c′, which is strictly
less than k.

Where did we use the fact that the curve α is simple? (Re-
call that the theorem fails without this assumption!)

When two curves are tangent at p and don’t cross locally,
we got an inequality between their signed curvatures. But this
assumes their orientations agree at p. By the Jordan curve the-
orem, a simple curve α bounds a compact region K. Clearly,
α and K have the same circumcircle c. If both curves are
oriented to have the compact regions to the left, then these
orientations agree. Similarly, further application of the Jordan
curve theorem ensure that the oriented circular arc from pi to
pi+1 used above agrees in orientation with αi. �

End of Lecture 15 Apr 2019

A3. Evolutes and the Nesting Theorem

Given a curve α : I → Rn with nonvanishing curvature, its
evolute [DE: Evolute] β : I → Rn is the curve of centers of
osculating circles: β(t) := α(t) + ~κ(t)/κ(t)2. Let us consider in
particular a unit-speed plane curve αwith κ = κg > 0 and write
r = 1/κ for the radius of curvature. Then the evolute is β(s) =

α(s)+ r(s)N(s). Its velocity is β′ = T + r′N + rN′ = r′N, so its
speed is |r′(s)|. (The evolute is singular where α has a vertex.)
The acceleration of the evolute is r′′N + r′N′ = r′′N − r′T/r,
so its curvature is 1

r|r′ | . (Note that this approaches infinity as
we approach a vertex of α – the evolute has a cusp.)

Now consider a planar arc α with strictly monotonic, non-
vanishing curvature. By the formula above, its evolute also
has nonvanishing curvature, so in particular, the distance
|β(s2) − β(s1)| is stricly less than the arclength

∫ s2

s1
|r′(s)| ds =∣∣∣∫ r′ ds

∣∣∣ =
∣∣∣r(s2) − r(s1)

∣∣∣. This simply says the distance be-
tween the centers of two osculating circles to α is less than the
difference of their radii, that is, the circles are strictly nested.
This is the nesting theorem of Tait (1896) and Kneser (1914):
the osculating circles along a planar arc with stricly mono-
tonic, nonvanishing curvature are strictly nested.

A4. The Isoperimetric Inequality

Another global result about plane curves is the isoperimet-
ric inequality [DE: isoperimetrische Ungleichung]. If a sim-
ple closed curve of length L bounds a region of area A, then
4πA ≤ L2. (Equality holds only for a circle.)

If R ⊂ R2 is the region enclosed by the simple closed (C1)
curve α : [a, b] → R, α(t) = (x(t), y(t)), then we have by
Green’s theorem

A =

∫
R

dx dy =

∫
α

x dy =

∫ b

a
xẏ dt = −

∫ b

a
yẋ dt.

(Actually, the formula gives an appropriately defined alge-
braic area even if the curve is not simple; no change if
parametrization backtracks a bit.)

The trick suggested by Erhard Schmidt (1939) to prove the
isoperimetric inequality is to consider an appropriate compar-
ison circle. We deal with a smooth curve α. First find two
parallel lines tangent to α such that α lies in the strip be-
tween them. Choose coordinates to make these the vertical
lines x = ±r. (Here 2r is the width of α in the given direc-
tion.) Parametrize α by arclength over [0, L] by (x(s), y(s))
and parametrize the circle of radius r over [0, L] by β(s) =

(x(s), ȳ(s)): with the same function x(s) as for α, and thus
ȳ(s) = ±

√
r2 − x(s)2. (Note about non-convex curves, etc.)

Note that the unit normal vector to α is N = (−y′, x′), so
〈N(s), β(s)〉 = −xy′ + ȳx′. We have A =

∫ L
0 xy′ ds and πr2 =

−
∫ L

0 ȳx′ ds. Thus

A+πr2 =

∫ L

0
xy′− ȳx′ ds =

∫ L

0
〈−N, β〉 ds ≤

∫ L

0
|N | |β| ds = Lr.

Thus by the arithmetic-geometric mean inequality,
√

Aπr2 ≤ (A + πr2)/2 ≤ Lr/2.

Squaring and dividing by r2 gives the isoperimetric inequality.
It is not hard to check that if all these inequalities hold with

equality, then α must be a circle.

A5. The Cauchy–Crofton Formula

Given a unit vector u = u(θ) = (cos θ, sin θ) ∈ S1 ⊂ R2, the
orthogonal projection to the line in direction u is πu : R2 →
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R2, x 7→ 〈x, u〉 u. If α : I → R2 is a smooth plane curve, then
πuα = πu ◦ α is its projection (usually not regular!).

The Cauchy–Crofton formula says the length of α is π/2
time the average length of these projections. By average
length we mean?
S1

len(πuα) du =

? 2π

0
len(πu(θ)α) dθ :=

1
2π

∫ 2π

0
len(πu(θ)α) dθ

End of Lecture 26 Apr 2019

To prove this, first note that if α is a line segment, the aver-
age projected length is independent of its position and orienta-
tion and proportional to its length. That is, the theorem holds
for line segments with some constant c in place of π/2. (We
could easily compute c = π/2 by integrating a trig function,
but wait!) Next, by summing, it holds for all polygons (with
the same c). Finally, it holds for smooth curves (or indeed
for all rectifiable curves) by taking a limit of inscribed poly-
gons. (To know we can switch the averaging integral with
the limit of ever finer polygons, we can appeal for instance
to Lebesgue’s monotone convergence theorem.) To compute
c = π/2 it is easiest to consider the unit circle αwith length 2π
and constant projection length 4.

Note that everything we have said also works for curves in
Rn (projected to lines in different directions) – only the value
of c will be different. Similarly, for an appropriate c = cn,k
we get that the length of a curve in Rn is c times the average
length of projections to all different k-dimensional subspaces.

For any closed plane curve α, the length of πuα is at least
twice the width of α in the direction u. If α is a convex plane
curve, we have equality, so Cauchy–Crofton says the length is
π times the average width. For instance any curve of constant
width 1 (like the Reuleaux triangle on an equilateral triangle
of side length 1, named after Franz Reuleaux, Rector at TU
Berlin in the 1890s) has length π. A unit square has minimum
width 1 and maximum width

√
2; since its length is 4, the

average width is 4/π.
Writing the various different lines perpendicular to u as

`u,h := {x : 〈x, u〉 = h} for h ∈ R, we see that len πuα =∫
R

#(α ∩ `u,h) dh. Thus Cauchy–Crofton can be formulated as

lenα =
1
4

∫ 2π

0

∫
R

#
(
α ∩ `u(θ),h

)
dh dθ.

A6. Fenchel’s theorem

Fenchel’s theorem says the total curvature of any closed
curve in Rn is at least 2π. (Equality holds only for convex
plane curves.) To prove this, recall that the tantrix T (s) has
speed κ(s) and thus its length is the total curvature of α. On
the other hand, the tantrix lies in no open hemisphere of Sn−1,
for if we had 〈T (s), u〉 > 0 for all s then we would get

0 <
∫ L

0
〈T (s), u〉 ds =

〈
u,

∫ L

0
T (s) ds

〉
=

〈
u, α(L) − α(0)

〉
= 〈u, 0〉 = 0,

a contradiction. Fenchel’s theorem is thus an immediate corol-
lary of the theorem below saying that a short spherical curve
is contained in a spherical cap.

We will state all results for general n, but on first reading
one should probably think of the case n = 3 where α lies on
the usual unit sphere S2 ⊂ R3.

To investigate spherical curves in more detail note first that
for points A, A′ ∈ Sn−1 ⊂ Rn the spherical distance (the length
of the shortest spherical path, a great circle arc) between them
is

ρ(A, A′) = arccos
〈
A, A′

〉
= 2 arcsin

(
|A − A′|/2

)
≤ π.

The points are antipodal [DE: antipodisch] if A = −A′ (i.e.,
ρ = π, . . . ). A nonantipodal pair is connected by a unique
shortest arc, with midpoint M = (A + A′)/|A + A′|.

Lemma A6.1. Suppose A, A′ nonantipodal with midpoint M;
suppose ρ(X,M) < π/2. Then 2ρ(X,M) ≤ ρ(X, A) + ρ(X, A′).

Note that this can be used to show that the distance from
X to points along a great circle is a convex function, when
resticted to the semicircle where the distance is at most π2.

Proof. First note that A, A′, X all lie in some three dimensional
subspace of Rn, so we work there, and in particular on S2.
Consider a 2-fold rotation around M, taking A to A′ and X to
some point X′. Using the triangle inequality and the symme-
try, we get

2ρ(X,M) = ρ(X, X′) ≤ ρ(X, A) + ρ(A, X′) = ρ(X, A) + ρ(X, A′)

as desired. �

Theorem A6.2. Suppose α is a closed curve on Sn−1 of length
L < 2π. Then α is contained in some spherical cap {x ∈
Sn−1 : ρ(X,M) ≤ L/4} of (angular) radius L/4 < π/2, and in
particular in some open hemisphere.

Note that, as promised, Fenchel’s theorem is an immediate
corollary of this result.

Proof. Pick two points A, A′ on α dividing the arclength in
half. Then ρ(A, A′) ≤ L/2 < π. Let M be the midpoint and let
X be any point on α. If ρ(X,M) < π/2, then by the lemma,

ρ(X,M) ≤
(
ρ(X, A) + ρ(X, A′)

)
/2 ≤ len(αAXA′ )/2 = L/4.

Thus the distance from M to any point on α is either at most
L/4 or at least π/2. By continuity, the same possibility holds
for all X; picking X = A we see it is the first possibility. �

There are of course other approaches to proving Fenchel’s
theorem. One goes through an integral geometry formula
analogous to our last version of Cauchy–Crofton. (We’ll state
it just for curves in S2 but it holds – with the same constant π
– in any dimension.) For u ∈ S2, the great circle u⊥ is the set
of points orthogonal to u. Then the formula says the length
of α equals π times the average number of intersections of α
with these great circles. (When α itself is a great circle, this is
clear, since there are always 2 intersections.)

5
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First note that the length of a spherical curve is the limit
of the lengths of spherical inscribed polygons (made of great
circle arcs). (Indeed the spherical inscribed polygon always
has length larger than the euclidean polygon with the same
vertices, which is already approaching the length of the curve
from below.) Then just as for Cauchy–Crofton, we check this
formula first for great circle arcs, then for polygons and then
by a (trickier) limiting argument for smooth curves.

With this formula, one can prove Fenchel’s theorem for
smooth curves by considering height functions 〈α(s), u〉. Each
has at least two critical points (min, max), but critical points
satisfy T (s) ∈ u⊥. That is, the tantrix intersects every great
circle at least twice, and thus has length at least 2π.

Without giving precise definitions about knots, we can
understand the Fáry–Milnor theorem: a nontrivally knotted
curve in R3 has total curvature at least 4π. For suppose for
some height function 〈α(s), u〉 there was only one min and
one max. At each intermediate height, there are exactly two
points of α. Joining these pairs by horizontal segments gives
an embedded disk spanning α, showing it is unknotted. For
a knotted curve, every height function must have at least four
critical points, meaning four intersections of the tantrix with
every great circle.

End of Lecture 29 Apr 2019

A7. Schur’s comparison theorem
and Chakerian’s packing theorem

Schur’s theorem is a precise formulation of the intuitive
idea that bending an arc more brings its endpoints closer to-
gether.

Suppose α is an arc in Rn of length L, and consider a com-
parison arc α̃ in R2 ⊂ Rn of the same length, such that with
respect to a common arclength parameter s, the curvature of
α̃ is positive and everywhere at least that of of α̃: κ̃(s) ≥ κ(s).
Assuming that α̃ with its endpoints joined by a straight seg-
ment gives a convex (simple closed) curve, we conclude that
its endpoints are closer:∣∣∣α(L) − α(0)

∣∣∣ ≥ ∣∣∣α̃(L) − α̃(0)
∣∣∣.

Proof: by convexity, we can find s0 such that the tangent
T0 := T̃ (s0 to α̃ is parallel to α̃(L) − α̃(0). Move α by a rigid
motion so that α(s0) = α̃(s0) and they share the tangent vector
T0 there. We have

∣∣∣α(L) − α(0)
∣∣∣ ≥ 〈

α(L) − α(0),T0
〉

=

∫ L

0

〈
T (s),T0

〉
ds,

while for α̃, our choice of T0 gives equality:

∣∣∣α̃(L) − α̃(0)
∣∣∣ =

〈
α̃(L) − α̃(0),T0

〉
=

∫ L

0

〈
T̃ (s),T0

〉
ds,

Thus it suffices to show
〈
T (s),T0

〉
≥

〈
T̃ (s),T0

〉
(for all s).

We start from s0 (where both sides equal 1) and move out in
either direction. While T̃ moves straight along a great circle
with speed κ̃, a total distance less than π, we see that T moves

at slower speed κ and perhaps not straight. Thus is geometri-
cally clear that T is always closer to the starting direction. In
formulas,〈

T̃ (s),T0
〉

= cos
∫ s

s0

κ̃ ds ≤ cos
∫ s

s0

κ ds ≤
〈
T (s),T0

〉
.

(The last inequality follows since
∫
κ ds is the length of the

tantrix, while arccos
〈
T (s),T0

〉
is the distance between its end-

points.)
Note that this same proof can be made to work for arbitrary

curves of finite total curvature. The case of polygonal curves
is known as Cauchy’s arm lemma and was used in his proof
(1813) of the rigidity of convex polyhedra, although his proof
of the lemma was not quite correct.

Chakerian proved the following packing result (which again
can be generalized to all curves although we consider only
smooth curves): A closed curve of length L in the unit ball
in Rn has total curvature at least L. To check this, simply
integrate by parts:

lenα =

∫
〈T,T 〉 ds =

∫ 〈
−α,~κ

〉
ds ≤

∫
|α| κ ds ≤

∫
κ ds.

What about nonclosed curves? We just pick up a boundary
term in the integration by parts, and find that length is at most
total curvature plus 2.

A8. Framed space curves

We now specialize to consider curves in three-dimensional
space R3. Just as for plane curves we used the 4-fold rotation
J, in 3-space we will use its analog, the vector cross product.
Recall that v × w = −w × v is a vector perpendicular to both v
and w.

A framingRahmen along a smooth space curve α is a
(smooth) choice of a unit normal vector U(s) at each point
α(s). Defining V(s) := T (s) × U(s) we have an (oriented) or-
thonormal frame {T,U,V} for R3 at each point of the curve,
and the idea is to follow how this frame rotates. As before,
expressing the derivatives in the frame itself gives a skew-
symmetric matrix:T

U
V


′

=

 0 κU κV
−κU 0 τU
−κV −τU 0


T
U
V

 .
Here κU , κV and τU are functions along the curve which de-
pend on the choice of framing. We see that T ′ = ~κ =

κUU + κVV , so these are just the components of the curva-
ture vector in the chosen basis for the normal plane. (And
κ2 = κ2

U + κ2
V .) The third function τU measures the twisting or

torsion of the framing U.
Sometimes in physical problems a framing is given to us by

material properties of a bent rod. Mathematically, the curve α
might lie on a smooth surface in space; then we often choose
U to be the surface normal so that the conormal V is (like T )
tangent to the surface. (We will explore such Darboux frames
[DE: Darboux-Rahmen] in detail when we study surfaces.)
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But when no external framing is given to us, there are two
ways to choose a nice framing such that one of the entries in
the matrix above vanishes. The first has no twisting (τU = 0),
and such a {T,U,V} is called a parallel frame or Bishop frame.
Given any U0 at α(s0) we want U′ to be purely tangential,
indeed

U′ = −κUT = −
〈
~κ,U

〉
T.

But this ODE has a unique solution. Since it prescribes U′ ⊥
U the solution will have constant length, and since 〈U′,T 〉 =

− 〈T ′,U〉, the solution will stay normal to T . If we rotate a
parallel framing by a constant angle ϕ in the normal plane (that
is, replace U by cosϕU + sinϕV) then we get another parallel
framing (corresponding to a different U0). Indeed any two
parallel framings differ by such a rotation. Parallel frames are
very useful, for instance in computer graphics when drawing
a tube around a curve. One disadvantage is that along a closed
curve, a parallel framing will usually not close up.

The second special framing comes from prescribing κV = 0,
i.e., ~κ = κUU. That is, U should be the unit vector in the direc-
tion ~κ. Here the disadvantage is that things only work nicely
for curves of nonvanishing curvature κ , 0. Assuming this
condition, we rename U as the principal normal [DE: Haupt-
normaleneinheitsvektor] N and V as the binormal [DE: Bi-
normaleneinheitsvektor] B and call {T,N, B} the Frenet frame
[DE: Frenet-Rahmen]. We haveT

N
B


′

=

 0 κ 0
−κ 0 τ
0 −τ 0


T
N
B

 ,
where κ(s) is the curvature and τ(s) is called the torsion [DE:
Torsion] of α. In terms of a unit-speed parametrization, we
have α′ = T , α′′ = T ′ = ~κ = κN, so N = ~κ/κ. Finally,
N′ = −κT + τB so τ = 〈N′, B〉 = |N′ + κT |. The expansion of
the third derivative in the Frenet frame is

α′′′ = (κN)′ = κ′N + κN′ = −κ2T + κ′N + κτB.

Expressions in terms of an arbitrary parametrization of α
with speed σ(t) are left as an exercise. Here the nonvanishing
curvature condition just says that α̇ and α̈ are linearly indepen-
dent, so that {α̇, α̈, α̇×α̈} is an oriented basis. The orthonormal
frame {T,N, B} is the result of applying the Gram–Schmidt
process to this basis.

End of Lecture 3 May 2019

Of course N and B span the normal plane [DE: Nor-
malebene] to α at p = α(s). The curve stays to second order in
the osculating plane [DE: Schmiegeebene] spanned by T and
N, which contains the osculating circle. The plane spanned by
T and B is called the rectifying plane [DE: Streckebene] (since
the projection of α to that plane has curvature vanishing at p).

The Taylor expansion of α to third order around p = α(0) is

α(s) ≈ p +
(
s − s3

6 κ
2
)
T +

(
s2

2 κ + s3

6 κ
′
)
N +

(
s3

6 κτ
)
B

where of course T , N, B, κ, τ and κ′ are all evaluated at s = 0.
Exercise: look at the projections to the three planes above,

and see which quadratic and cubic plane curves approximate
them.

The “fundamental theorem of space curves” says that given
functions κ, τ : I → R with κ > 0 determine a space curve
(uniquely up to rigid motion) with that curvature and tor-
sion. This is basically a standard theorem about existence and
uniqueness of solutions to an ODE. For any given {T0,N0, B0}

the matrix ODE above has a solution, which stays orthonor-
mal and thus gives a framing. (Changing the initial condition
just rotates the frames by a constant rotation.) As in the case of
plane curves, integrating T (s) recovers the curve α (uniquely
up to translation).

Example: a curve with constant curvature and torsion is a
helix. Its tantrix traces out a circle on S2 at constant speed κ.
Any curve whose tantrix lies is a circle on S2 (i.e., makes con-
stant angle with some fixed vector u) is called a generalized
helix. Exercise: this condition is equivalent to τ/κ being con-
stant.

Suppose now α is a unit-speed curve with κ > 0. If {T,N, B}
is the Frenet frame and {T,U,V} is a parallel frame, then how
are these related? We have of course(

N
B

)
=

(
cos θ sin θ
− sin θ cos θ

) (
U
V

)
for some θ = θ(s). Then ~κ = κN = κ cos θU + κ sin θV
meaning that κU = κ cos θ and κV = κ sin θ. Differentiating
B = − sin θU + cos θV gives

−τN = B′ = −θ′
(
cos θU + sin θV

)
+0T = −θ′N

so that θ′ = τ or θ =
∫
τ ds. (The constant of integration

corresponds to the freedom to rotate the parallel frame.) We
see that the twisting or torsion τ of the Frenet frame really
does give the rate θ′ at which it rotates relative to the twist-
free Bishop frame. Sometimes it is useful to use a complex
curvature κ(s)eiθ(s) = κU(s) + iκV (s). Well defined up to global
rotation by eiθ0 in the complex plane (corresponding again to
the freedom to rotate the parallel frame).

It is clear that a space curve lies in a plane if and only if
τ ≡ 0, if and only if θ is constant, if and only if the complex
curvature stays on some fixed line through 0.

As another example, the complex curvature of a helix traces
out the circle |z| = κ at constant speed.

Bishop (1975) demonstrated the usefulness of the parallel
frame by characterizing (C2 regular) space curves that lie on
some sphere. Indeed, α lies on a sphere of radius 1/d if and
only if its complex curvature lies on a line at distance d from
0 ∈ C. In an appropriately rotated parallel frame, this line
will be the line κU ≡ d. (The characterization in terms of the
Frenet frame is more awkward, needing special treatment for
points where τ and κ′ vanish.)

To prove this, note that by translating and rescaling we can
treat the case of α ⊂ S2, i.e., 〈α, α〉 ≡ 1. It follows that α ⊥ T
so U := −α is a framing of α. Because U′ = −T is purely tan-
gential, we see that this framing is parallel. That is, U = −α,
V = α × T is a Bishop frame. The equation U′ = −T means
κU ≡ 1, as desired. (Note that since the position vector on S2

is also the normal vector to the spherical surface, {T,U,V} is

7
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also a Darboux frame for α as a curve in S2.) Conversely, sup-
pose α has a parallel frame {T,U,V}with κU ≡ 1, i.e., U′ = T .
Then α − U is a constant point P, meaning α lies on the unit
sphere around P.

A9. Framings for curves in higher dimensions

A framing along a smooth curve α in Rn is a choice of ori-
ented orthonormal basis {E1, E2, . . . , En} at each point of α,
where E1(s) = T (s) is the unit tangent vector, and each Ei(s)
is a smooth function. Of course the other Ei (for i ≥ 2) are
normal vectors. The infinitesimal rotation of any framing is
given, as in the three-dimensional case, by a skew-symmetric
matrix, here determined by the

(
n
2

)
entries above the diagonal.

Again it is helpful to choose special framings where only n−1
of these entries are nonzero.

In a parallel framing, these are the entries of the top row.
That is, the curvature vector T ′ is an arbitrary combination∑
κiEi of the normal vectors Ei, but each of them is parallel

with derivative −κiT only in the tangent direction. Given any
framing at an initial point, solving an ODE gives us a parallel
frame along the curve.

The generalized Frenet frame exists only under the (some-
what restrictive) assumption that the first n − 1 derivatives α̇,
α̈, . . . , α(n−1) are linearly independent, and {T, E2, . . . , En} is
then the Gram–Schmidt orthonormalization of these vectors.
For this frame, it is only the matrix entries just above the di-
agonal that are nonzero. Thus

E′i := τiEi+1 − τi−1Ei−1

In particular T ′ = τ1E2 so τ1 = κ is the usual curvature and E2
is the principal normal (the unit vector in the direction of ~κ).
The τi are called Frenet curvatures. A “fundamental theorem”
says that for any functions τi(s) with τi > 0 for i < n−1, there
is a curve with these Frenet curvatures; it is unique up to rigid
motion.
End of Lecture 6 May 2019
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B. SURFACES

Given an open set U ⊂ Rm and a map f : U → Rn we write
Dp f for the derivative of f at p ∈ U, the linear map Rk → Rn

such that f (p + v) ≈ f (p) + Dp f (v). We say p ∈ U is a
critical point of f if Dp f is not surjective (which is automatic
if m < n); and we say q = f (p) ∈ Rn is a critical value.
Any other q ∈ Rn is called a regular value of f . We say f
is an immersion if Dp f is injective at every p (which requires
m ≤ n).

Intuitively, a subset M ⊂ Rn is a smooth embedded k-
dimensional submanifold if every point p ∈ M has an open
neighborhood U ⊂ Rn in which M looks like an open set in
Rk. From analysis we recall several equivalent precise formu-
lations:

1. Diffeomorphism: There is an open V ⊂ Rn and a
diffeomorphism ϕ : U → V ⊂ Rn taking U ∩ M to
V ∩ (Rk × {0}).

2. Level set: There is a smooth map h : U → Rn−k such
that 0 is a regular value of h and U ∩ M = h−1(0).

3. Parametrization: There is an open set V ⊂ Rk and a
smooth immersion f : V → Rn that is a homeomor-
phism from V onto U ∩ M.

4. Graph: There is an open set V ⊂ Rk and and a smooth
map h : V → Rn−k such that U ∩ M is the graph of h –
up to permutation of coordinates in Rn.

Here of course, a diffeomorphism gives a level set represen-
tation, and a graph is a special kind of parametrization.

For the rest of this semester, we will consider surfaces
(k = 2) in R3. An example is the graph of a smooth func-
tion f : U → R, parametrized by (u, v) 7→

(
u, v, f (u, v)

)
or

given as the zero-set of F(x, y, z) := f (x, y) − z.
Another example would be the unit sphere S2, the level

set x2 + y2 + z2 = 1. It can be covered by six open hemi-
spheres on which it is a graph in one of the coordinate direc-
tions. Using stereographic projection we can parametrize all
but a single point of the sphere by an immersion from R2.
The usual geographic coordinates (lattitude and longitude)
(ϕ, θ) 7→

(
cos θ cosϕ, sin θ cosϕ, sinϕ

)
give an immersion

(−π/2, π/2) × R → R3, which is injective if restricted to
θ ∈ (−π, π).

We will typically use parametrizations to describe our sur-
faces. Let x : U → R3 be a smooth map defined on an open
subset U ⊂ R2. At a point (u, v) ∈ U we write

xu(u, v) =
∂x
∂u

= D(u,v)x(∂u), xv(u, v) =
∂x
∂v

= D(u,v)x(∂v)

for the partial derivatives. (Here we are thinking of D(u,v)x as
a linear map on T(u,v)R

2; of course this is naturally isomorphic
to R2, but it is helpful to think this way, since we will put a
scalar product on it that depends on (u, v). Partly because the
standard basis vectors for T(u,v)R

2 = R2 will not be orthonor-
mal, we call them ∂u, ∂v rather than e1, e2.) The derivative

D(u,v)x is injective if and only if xu and xv are linearly inde-
pendent (if and only if xu × xv , 0). If this is true at all points
of U, then x is an immersion.

Note that an immersion need not be one-to-one; even if it
is, it need not be a homeomorphism onto its image (figure 8,
spiral examples). If it is, then of course its image is a smooth
submanifold. Given an immersion x, any point in U has a
neighborhood V such that x|V is a homeomorphism onto its
image. (We prove this as part of Lemma B2.1 below.)

Given an immersion x parametrizing a surface M, the span
of xu and xv (the image of Dx) is two-dimensional, and is
called the tangent plane TpM at p = x(u, v). Orthogonal to
this is the normal line NpM, spanned by xu × xv.

Note that we typically blur the distinction between a point
(u, v) ∈ U and its image p = x(u, v) ∈ M = x(U). We write,
for instance, xu(p) = xu(u, v) interchangeably.

Example (surfaces of revolution): Suppose we have a regu-
lar curve α(t) = (r(t), 0, z(t)) in the x > 0 half of the xz-plane.
Consider the map

x(t, θ) =
(
r(t) cos θ, r(t) sin θ, z(t)

)
.

This is an immersion (domain I × R, but injective only on
smaller pieces), parametrizing a surface of revolution. Con-
sider injectivity issues, tangent, normal, etc. – see homework.

Example (ruled surface): A surface swept out by straight
lines (a ruled surface) can be parametrized by a base curve
β(t) and a director field δ(t) by setting x(t, u) = β(t) + uδ(t).

End of Lecture 10 May 2019

B1. Curves, length and area

How do we describe a curve in a surface M? If x : U → R3

is a surface patch and α : I → U ⊂ R2 is a (regular smooth)
curve in U then β = x ◦ α is a (regular smooth) curve in R3

lying on the surface M. Conversely, any curve on M can be
described this way. We postpone a discussion of the details
and of the effects of changing coordinates (to an overlapping
surface patch).

Writing α(t) = (u(t), v(t)) we have α̇ = (u̇, v̇) and by the
chain rule the velocity vector β̇ of β = x ◦ α is thus u̇xu +

v̇xv. We see that the tangent plane TpM spanned by {xu, xv} is
exactly the set of all velocity vectors to smooth curves in M
through p = x(u, v).

The speed of β is of course given by the Euclidean norm
of its velocity vector; the tangent space TpM inherits an inner
product 〈·, ·〉 as a subspace of TpR

3 = R3. The basis {xu, xv}

is of course in most cases not orthonormal. The inner product
is a symmetric bilinear form and is expressed with respect to
this basis by the symmetric matrix

gp :=
(
E F
F G

)
:=

(
〈xu, xu〉 〈xu, xv〉

〈xv, xu〉 〈xv, xv〉

)
.

(Here, E, F and G are traditional names for the entries of this
matrix.) The matrix representation means that if a = auxu +

avxv and b = buxu + bvxv are two tangent vectors, then their

9
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inner product is

〈a, b〉 =
(
au av

) (〈xu, xu〉 〈xu, xv〉

〈xv, xu〉 〈xv, xv〉

) (
bu
bv

)
.

Of course the associated quadratic form a 7→ 〈a, a〉 is given
by the same matrix. This is called the first fundamental form
of the surface, and we use g = gp as a name for the matrix and
for the bilinear/quadratic form. (Often I = Ip, from the roman
numeral one, is used instead.)

Returning to the curve β, we get

|β̇|2 = gp(β̇) =
(
u̇ v̇

)
gp

(
u̇
v̇

)
= Eu̇2 + 2Fu̇v̇ + Gv̇2.

The length of the curve β is of course then the integral of
speed: len β =

∫ √
g(β̇) dt.

Note that the velocity (u̇, v̇) of α has the same expres-
sion (in the standard basis of R2) as the velocity of β (in
our basis {xu, xv}). We often blur the distinction between
T(u,v)U = T(u,v)R

2 and TpM, and that between α and β, etc. We
can think, for instance, of gp as defining a new inner product
on T(u,v)R

2, whose matrix is
( E F

F G
)

with respect to the standard
basis {∂u, ∂v}. (Technically, this inner product is the pullback
of the inner product on TpM under the linear map D(u,v)x.)

We can use the first fundamental form to measure not only
length but also area. The parallelogram spanned by xu and xv
has area |xu × xv| and we note

|xu × xv|
2 = |xu|

2|xv|
2 − 〈xu, xv〉

2 = EG − F2 = det g.

The area of the surface patch is then∫
U
|xu × xv| du dv =

∫
U

√
det g du dv.

Note also that a surface patch x(u, v) is regular (an immersion)
if and only if EG − F2 = det g is nonvanishing; this is often
the easiest way to test the linear independence of xu and xv.

Although it is easy to arrange that {xu, xv} is an orthonormal
basis – so that g is the identity matrix – at one given point of
interest (say, (0, 0) ∈ U), it is too much to hope that a general
surface have a parametrization in which {xu, xv} is an orthonor-
mal basis everywhere. (We will later classify the “intrinsically
flat” surfaces for which this is possible. As an example think
of generalized cylinders – ruled surfaces with constant direc-
tor δ.)

There are, however, various special classes of parametriza-
tions which have some of the same advantages. We say a sur-
face patch x is orthogonal if xu ⊥ xv, that is if F = 〈xu, xv〉 = 0
or equivalently if g =

( E 0
0 G

)
is a diagonal matrix. An orthogo-

nal parametrization is conformal if |xu| = |xv|, that is, if E = G
or equivalently if g is a scalar multiple of the identity matrix.
This means exactly that the map x : U → R3 preserves angles
between tangent vectors (or equivalently between curves). It
is known that any surface admits a conformal parametriza-
tion locally. (This is a version of the uniformization theo-
rem from complex analysis.) Conformal coordinates are also
called isothermal coordinates.

We have already mentioned the normal line NpM spanned
by xu × xv. The parametrization x has an implicit orientation
which allows us to pick out a unit normal vector

ν = νp :=
xu × xv∣∣∣xu × xv

∣∣∣ .
Note that a different parametrization (like y(u, v) := x(v, u))
may give the opposite normal vector ν. Some surfaces are
globally nonorientable, meaning that no continuous choice of
ν across the whole surface is possible.

B2. Smooth maps, change of parametrization, differentials

We usually talk about smoothness of maps defined on an
open subset ofRm. If A ⊂ Rm is an arbitrary subset, then a map
f : A → Rn is said to be smooth if it has a smooth extension
f̄ to some open U ⊃ A. (It suffices to check this locally in a
neighborhood of each point. Standard properties – like the fact
that the composition of two smooth maps is smooth – follow
immediately.) In the case when A is a surface, we’d like to
check that is the same as requiring smoothness in coordinates.

Lemma B2.1. If x : U → M is a regular parametrization then
x−1 : x(U)→ U is smooth. (Thus we say x is a diffeomorphism
onto its image.)

Proof. Assume (without loss of generality) that (0, 0) ∈ U.
We will check smoothness near p = x(0, 0). Consider the
function y : (t, u, v) 7→ x(u, v)+tνp, y : R×U → R3. At the ori-
gin, its partial derivatives (νp, xu, xv) are linearly independent.
That is, D0y is bijective. By the inverse function theorem, y
is injective and has a smooth inverse on some neighborhood
of p = y(0). But of course this inverse is locally the desired
extension of x−1, showing that x−1 is smooth. �

Suppose M ⊂ R3 is a surface parametrized by x : U → M =

x(U). The fact that x and x−1 are both smooth immediately
shows:

1. f : M → Rn is smooth ⇐⇒ f ◦ x is smooth.

2. f : Rn → M is smooth ⇐⇒ x−1 ◦ f : Rn → R2 is
smooth.

Combining these facts, if N ⊂ R3 is a second surface
parametrized by y : V → N = y(V) then we can also consider
a map f : M → N. It is smooth if and only if y−1 ◦ f ◦ x is a
smooth map U → V . (Note also that in this case, the smooth
extension f̄ to a neighborhood of M in R3 can be chosen to
take values in N.)

Now suppose we have two parametrizations x : U → M
and y : V → M with overlapping images. That means on the
open subset W = x(U) ∩ y(V) of M we have two different
systems of coordinates. Then the map ϕ := y−1◦x : x−1(W)→
y−1(W) is a diffeomorphism between these open subsets of U
and V (with inverse ϕ−1 = x−1 ◦ y): Being a composition of
homeomorphisms, ϕ is a homeomorphism, but we also see
that ϕ (and symmetrically ϕ−1) is smooth.

10
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End of Lecture 13 May 2019

If f : Rn → M ⊂ R3 with f (a) = p then of course Da f is a
linear map from Rn to TpM ⊂ R3. Similarly, given a smooth
map f : M → Rn we get a differential Dp f : TpM → Rn, the
restriction of Dp f̄ for any extension f̄ . (Different extensions
will have different derivatives in the normal direction νp but
not in tangent directions, since the derivative in any tangent di-
rection can be computed as the derivative along a curve in M,
where f̄ = f is determined.) Finally, combining these two
observations, the derivative of a map f : M → N between sur-
faces in R3 is of course a linear map Dp f : TpM → T f (p)N ⊂
R3.

B3. The Gauss map and the shape operator

A key tool for studying curves was the unit tangent vector
and its derivatives. A similar role for surfaces is played by the
unit normal ν. Given a smooth surface M, the map ν : p 7→
νp ∈ S

2 ⊂ R3 is called the Gauss map of the surface M, and
is a smooth map ν : M → S2. Note that the Gauss map of S2

itself is the identity map. (Or the antipodal map, if we oriented
S2 with the inward normal.)

Going back to the general case, the differential of the Gauss
map at p ∈ M is a linear map Dpν : TpM → TνpS

2. But
these are the same plane – the plane in R3 with normal ν. (Of
course any two planes are isomorphic vector spaces, but these
are naturally isomorphic.) Thus we can view Dpν as a linear
operator on TpM. Its negative S p := −Dpν : TpM → TpM is
called the shape operator (or Weingarten operator).

Recall that an operator A : V → V on an inner product
space V is called self-adjoint if 〈Av,w〉 = 〈v, Aw〉 for all
v,w ∈ V . This is equivalent to saying that the bilinear form
(v,w) 7→ 〈Av,w〉 is symmetric (and thus induces a quadratic
form v 7→ 〈Av, v〉). Note that if A is 2-dimensional with basis
{e, f } then it suffices to check 〈Ae, f 〉 = 〈e, A f 〉.

Proposition B3.1. The shape operator S p on TpM is self-
adjoint.

Proof. Consider a parametrization x : U → M of a neighbor-
hood of p and use {xu, xv} as a basis for TpM. The claim
is that

〈
Dpν(xu), xv

〉
=

〈
Dpν(xv), xu

〉
. Write νu := Dpν(xu)

and νv := Dpν(xv) for these partial derivatives of ν ◦ x (and
write xuv for the mixed second partial of x). Differentiating
〈ν, xu〉 ≡ 0 in the xv direction gives 〈νv, xu〉 = − 〈ν, xuv〉,
while differentiating 〈ν, xv〉 ≡ 0 in the xu direction gives
〈νu, xv〉 = − 〈ν, xuv〉. Thus 〈νu, xv〉 = 〈νv, xu〉, proving the
claim. �

Given this proposition, the shape operator S p defines a
quadratic form v 7→

〈
S pv, v

〉
on TpM, called the second funda-

mental form hp of M, often written using the Roman numeral
as IIp(v) := hp(v). Note that arguments as in the proof show

〈νu, xu〉 = − 〈ν, xuu〉 , 〈νv, xv〉 = − 〈ν, xvv〉 .

Thus the matrix of the second fundamental form w.r.t. the ba-
sis {xu, xv} is

hp :=
(

L M
M N

)
:=

(
− 〈νu, xu〉 − 〈νu, xv〉

− 〈νv, xu〉 − 〈νv, xv〉

)
=

(
〈ν, xuu〉 〈ν, xuv〉

〈ν, xvu〉 〈ν, xvv〉

)
.

We see that to compute the first and second fundamental
forms of a parametrized surface, we start by computing the
first and second partial derivatives (xu, xv; xuu, xuv, xvv), then
compute the cross product xu × xv and its length |xu × xv|. The
scalar products among the first derivatives give the matrix gp.
The scalar products of the second derivatives with xu × xv,
divided by the length of this normal vector, give the matrix hp.

As usual, it is easier to find the matrix for the bilin-
ear/quadratic form hp than to find the matrix for the associ-
ated operator, the shape operator S p. (Since {xu, xv} is not
generally orthonormal, it is easier to find the scalar products
of νu with the basis elements than to find its expression in the
basis.) But by linear algebra we know hp = gpS p, or equiva-
lently S p = g−1

p hp. Of course the inverse of a 2 × 2 matrix is
easy to compute:

g−1
p =

(
E F
F G

)−1

=
1

EG − F2

(
G −F
−F E

)
.

The first and second fundamental forms are emphasized in
many textbooks because they are easiest to compute in coor-
dinates. But the shape operator S p at a point p ∈ M is more
directly meaningful. It encodes all the different notions of cur-
vature of the surface M at the point p, capturing the second-
order behavior of the surface, or more precisely, exactly those
parts which are independent of parametrization and invariant
under rigid motion.

B4. Curvatures of a surface

Recall a few facts about a self-adjoint linear operator A on
an inner product space V . Its eigenvalues are all real; its eigen-
vectors are perpendicular (since 〈λv,w〉 = 〈Av,w〉 = 〈v, Aw〉 =

〈v, µw〉 implies 〈v,w〉 = 0 for λ , µ). That is, we can choose
an orthonormal basis of eigenvectors, and then A is of course
represented by a diagonal matrix. The largest and smallest
eigenvalues are the minimum and maximum of the quadratic
form 〈Av, v〉 over the unit sphere in V . (Of course, if v is a unit
eigenvector with eigenvalue λ then 〈Av, v〉 = λ.)

Especially important are the symmetric functions of the
eigenvalues. (These are the coefficients of the characteristic
polynomial det(λI − A), whose roots are the eigenvalues.) In
particular, the product of the eigenvalues is the determinant
det A and their sum is the trace tr A. The average eigenvalue
tr A/ dim V is also the average of 〈Av, v〉 over the whole unit
sphere.

Now let’s consider the shape operator S p on TpM. Its
eigenvalues k1 and k2 are called the principal curvatures (of M
at p); the eigenvectors are the principal curvature directions,
forming two orthogonal lines in TpM. We can choose unit
eigenvectors e1 and e2 such that {e1, e2, ν} is an oriented or-
thonormal basis. We define the Gauss curvature

K := k1k2 = det S p

11
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and the mean curvature.

H :=
k1 + k2

2
=

1
2

tr S p.

Note that K is independent of orientation, while H changes
sign if we switch the sign of ν; more intrinsic is the mean
curvature vector ~H = Hν. (Note also that some authors define
the mean curvature with the opposite sign and/or without the
factor 1/2 – despite the name “mean”.)
End of Lecture 17 May 2019

As we will see, the intrinsic local shape of the surface is de-
termined by the Gauss curvature K, in particular, qualitatively
by its sign. We say p ∈ M is an elliptic point if K(p) > 0 (that
is, the principal curvatures have the same sign) or a hyperbolic
point if K(p) < 0 (. . . opposite signs). A point where K(p) = 0
is called a parabolic point.

A point where k1 = k2 is called an umbilic point; in par-
ticular a planar point has k1 = k2 = 0. (Nonplanar umbilic
points are of course elliptic.) At umbilic points, the princi-
pal directions are not uniquely defined and the normal curva-
ture defined below is constant. Note that some authors use
“parabolic” to mean what we call “parabolic but not planar”;
this no longer depends just on K, so it is not an intrinsic no-
tion.

The Gauss curvature K and the mean curvature H are
smooth functions on any smooth surface. The principal curva-
tures k1 and k2 are the two roots H ±

√
H2 − K of the charac-

teristic polynomial k2 − 2Hk + K of the shape operator. These
are smooth functions only away from umbilic points (where
they coincide because the square root vanishes).

For a unit tangent vector w ∈ TpM, the normal curvature
of M in direction w is hp(w) =

〈
S pw,w

〉
. Note that for an

arbitrary nonzero vector w ∈ TpM,

hp

(
w
|w|

)
=

〈
S pw,w

〉
〈w,w〉

=
hp(w)
gp(w)

.

We can write any unit normal vector as w = cos θ e1 + sin θ e2
and we find the normal curvature of M in this direction is
cos2 θ k1 + sin2 θ k2, a weighted average of the principal cur-
vatures. Of course, the mean curvature is the average normal
curvature over the whole circle of directions; the principal cur-
vatures are the minimum and maximum of the normal curva-
ture.

The intersection of M with a normal plane at p – a plane
spanned by νp and some unit tangent vector w ∈ TpM – is a
curve α with T = w and ~κ = hp(w)ν. Orienting this normal
plane such that {w, ν} is an oriented basis, we can check that
hp(w) = κg: the normal curvature is the (signed) curvature
of the normal slice α. We save the detailed calculation for
later, when we will show that the normal curvature hp(w) is
the component normal to M of the curvature of an arbitrary
curve through p in direction w.

Let us now consider a surface given as a graph: x(u, v) =(
u, v, f (u, v)

)
, in particular at a point p where grad f = 0 so

that the surface is horizontal there. We have xu = (1, 0, fu),
xv = (0, 1, fv) so that at p this is an orthonormal basis for
TpM, meaning gp = I. Of course νp = (0, 0, 1). Since the

normal (vertical) components of the second derivatives of x
are the second derivatives of f , we see that

hp = hess f =

(
fuu fuv
fvu fvv

)
.

Of course, since we have an orthonormal basis, this is also
the matrix of the shape operator. Thus we have K = fuu fvv −

f 2
uv and 2H = tr(hess f ) = fuu + fvv = ∆ f . (In general, one

should think of mean curvature as a geometric version of the
Laplacian; in terms of the intrinsic Laplace–Beltrami operator
∆M , we have for instance ∆Mx = 2 ~H.)

If we start with any point p on an arbitrary surface M, we
can apply a rigid motion (or equivalently, choose new Eu-
clidean coordinates) to put it into a standard position as fol-
lows. First translate so that p = 0 is the origin, then rotate
so that νp = (0, 0, 1) is vertical. Note that the surface is then
locally a graph z = f (x, y) with grad f = 0 at p as above. Fi-
nally, rotate around the vertical axis until the x- and y-axes are
principal directions. As above, with respect to the standard
basis for TpM = R2, the matrix for S p is hess f ; this is now
the diagonal matrix

( k1 0
0 k2

)
. This means the second-order Tay-

lor expansion of f around 0 is f (x, y) = 0 + k1x2 + k2y2 + · · · ,
where the remainder terms are third-order.

Thus we see that at any point p ∈ M there is a uniquely
determined paraboloid (z = k1x2 + k2y2 in the rotated coordi-
nates) that has second-order contact with M at p. Two surfaces
tangent at p have second-order contact if and only if they have
the same principal curvatures and directions there (i.e., have
the same ocsulating paraboloid). Up to rigid motion, two sur-
faces agree to second order (at given points) if and only if they
have the same Gauss and mean curvatures there.

Note: for curves we preferred to talk about osculating cir-
cles (with constant curvature κ) rather than osculating parabo-
las (with constant acceleration vector). For surfaces, we might
want to use a surface with constant principal curvatures (or
equivalently, constant K and H). But we will see later this
happens only for spheres and planes and cylinders. (Similarly,
you will show in homework that spheres and planes are the
only totally umbilic surfaces.) Although surfaces are in some
sense determined by their curvatures, this is much more com-
plicated than saying space curves are determined by κ(s) and
τ(s). First there are compatibility conditions (PDE not ODE:
compatibility basically says νuv = νvu) and second there’s no
standard parametrization (like arclength).

From the Taylor series or osculating paraboloid, we do see
for instance that near an elliptic point p, the surface is locally
convex – it stays to one side of its tangent plane. This is not
true at a hyperbolic point; instead TpM cuts M locally in two
curves crossing at p; their tangent vectors at p are exactly the
directions with vanishing normal curvature, called asymptotic
directions.

We could also consider the intersections with nearby par-
allel planes (say at distances ±ε2 to either side of the tangent
plane). Unless p is a planar point, these planes will intersect
M approximately in the curves k1x2 + k2y2 = ±ε2, which are
scaled (by ε) versions of the Dupin indicatrix, defined to be
the set of w ∈ TpM such that

〈
S pw,w

〉
= ±1. This is an el-

lipse at an elliptic point, a pair of hyperbolas (with common

12
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asymptotes in the asymptotic directions) at a hyperbolic point,
and a pair of parallel lines at a nonplanar parabolic point.

End of Lecture 20 May 2019

B5. Curves on surfaces and the Darboux frame

Let’s now consider an arbitrary curve α on a surface M.
The Darboux frame along the curve is {T, η, ν} where T is
of course the unit tangent to α, ν is the surface normal, and
η := ν×T is called the conormal. As for our other frames, the
derivative (with respect to an arclength parameter for α) gives
a skew-symmetric matrix:Tη

ν


′

=

 0 κg κn
−κg 0 τg
−κn −τg 0


Tη
ν

 .
Of course ν depends only on the surface M, and so ν′ =

Dpν(T ) = −S p(T ). Comparing with the above, we find
κn =

〈
S p(T ),T

〉
and τg =

〈
S p(T ), η

〉
. Thus κn = hp(T ) is

the normal curvature of M in the direction T . It is the normal
part of the curvature ~κ = κgη + κnν of α. The tangential part
κg is called the geodesic curvature. The remaining derivative
τg, the twisting of the Darboux frame, is called the geodesic
torsion. Like the normal curvature κn, the geodesic torsion
τg = hp(T, η) = hp(η,T ) depends only on M (and T ). Curves
in M having tangent T at p differ (to second-order) only in
having different geodesic curvatures. (Walking in the moun-
tains, we have a choice of turning left or right; whether we
curve up or down is fixed by staying on the earth’s surface.)

Curves α on M for which one of these quantities vanishes
special. Curvature lines are curves for which τg = 0, meaning
that T is always a principal direction. (This is no condition
at an umbilic point.) We have ν′ = −κnT , where κn is one
of the principal curvatures. The Darboux frame is a paral-
lel (Bishop) frame along a curvature line. Curvature-line co-
ordinates are (necessarily orthogonal) coordinates for which
the coordinate lines are curvature lines. Locally away from
umbilic points, this happens exactly when both the first and
second fundamental forms have diagonal matrices in the basis
{xu, xv}. (The coordinates we used for surfaces of revolution
had this form.) This makes many computations much easier.

Asymptotic curves are those for which κn ≡ 0, that is, T is
always an asymptotic direction. (This of course requires K ≤
0.) The conormal η is the principal normal N of an asymptotic
line; the Darboux frame is the Frenet frame. Locally near
a hyperbolic point, asymptotic coordinates always exist, and
are characterized by the second fundamental form having an
off-diagonal matrix h =

( 0 M
M 0

)
.

Geodesics are curves for which κg = 0. Given a starting
point p and a starting direction T , there is always a unique
geodesic, the solution to the ODE T ′ = κnν. We will consider
this in more detail later. (The surface normal is the principal
normal ν = N and the curvature equals the normal curvature.)

Any straight line contained in a surface (for instance, the
rulings on a ruled surface) has constant T and is both an
asymptotic line and a geodesic. (The geodesic torsion τg gives

the speed at which the surface normal and conormal rotate
around the line.)

A curvature line which is also a geodesic has constant
conormal η; equivalently it is the intersection of M with a
plane meeting M perpendicularly (like the generating curves
on a surface of revolution).

The surface normal ν is constant along a curvature line
which is also asymptotic; such a curve is the intersection of M
with a plane always tangent to M and consists of course of
parabolic points. (Example: top or bottom of round torus – or
of tube around any plane curve.)

B6. Vector fields and line fields

A (smooth) vector field X on U ⊂ R2 is a smooth map
U → R2 interpreted as p 7→ Xp ∈ TpR

2 = R2. That is, we
think of Xp as an arrow based at p. A flow line (or integral
curve or trajectory) of X is a curve α in U whose velocity is
given by X, that is, α̇(t) = Xα(t) for all t. This is a system of
ODEs in the two variables u and v. The standard theorems
on ODEs say give not only existence and uniqueness of flow
lines, but also smooth dependence on the initial point. That is:

Theorem B6.1. Let X be a smooth vector field on U ⊂ R2.
For any p ∈ U there exists a neighborhood V 3 p, a time
interval I = (−ε, ε), and a unique smooth map α : V × I → R2

(called the local flow of X) such that for each q ∈ V the curve
t 7→ α(q, t) is an integral curve of X through q, meaning that
α(q, 0) = q and ∂α(q, t)/∂t = Xα(q,t). �

For fixed t ∈ I the map q 7→ α(q, t) is called the flow of X by
time t. Note that the uniqueness of integral curves implies that
flowing by time s and then by time t is the same as flowing by
time s + t, i.e., α

(
α(q, s), t

)
= α(q, s + t) (whenever both sides

are defined). Taking s = −t we see that the flow by time t is
invertible: it is a diffeormorphism from V to its image in U.

Corollary B6.2. If X is a vector field on U and Xp , 0 for
some p ∈ U, then there exists a neighborhood W 3 p and a
smooth function f : W → R which is constant along each flow
line of X but has D f , 0 everywhere. (Such an f is called a
local first integral for X.)

Proof. Assume without loss of generality that p = (0, 0) and
Xp = (1, 0). Let α : V × I → U be a local flow and con-
sider its restriction ᾱ to the two-dimensional cross-section
{u = 0} (transverse to Xp). This restriction ᾱ(v, t) has non-
singular derivative at 0, so it locally has an inverse on some
open neighborhood of (0, 0), mapping this diffeomorphically
to some W 3 p. We can take f to be the v-coordinate of this
inverse. �

End of Lecture 24 May 2019

Definition B6.3. A (smooth) vector field X on a surface M
is a function M → R3 such that Xp = X(p) ∈ TpM for each
p ∈ M.

With respect to a parametrization x : U → M, we can write
Xp = a(p)xu + b(p)xv = D(u,v)x(a, b) for smooth real-valued
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functions a, b on M. (Smoothness in these coordinates is
equivalent to smoothness in R3.) We see that, just as D(u,v)x
gives a pointwise isomorphism between T(u,v)R

2 and Tp(M),
the derivative Dx overall gives a one-to-one correspondance
between vector fields on U ⊂ R2 and those on x(U) ⊂ M.

Thus all local results about vector fields hold also on sur-
faces. (We can literally just replace U by M in the theorem
or corollary above.) A stronger way to express the corollary
is to say that around a point where Xp , 0 there are coordi-
nates such that X = xu. (The restriction α(v, t) gives a new
parametrization of W in terms of coordinates (v, t); the func-
tion f used above is the v coordinate and we rename t as u to
get X = xu.) Summarizing, we can say: any nonzero vector
field is locally constant in appropriate coordinates.

Theorem B6.4. Suppose X and Y are two vector fields on M
which are linearly indpendent at some point p. Then there
exists a parametrization x : U → M of some neighborhood
W 3 p such that xu||X and xv||Y on W.

Note that it is too much to ask that xu = X and xv = Y;
coordinate vector fields always commute (in the sense that the
time-t flow along X and the time-s flow along Y are commut-
ing diffeomorphisms). But general vector fields X and Y do
not have this property.

Proof. Let u and v be first integrals of Y and X (respectively)
on some neighborhood V 3 p. The map (u, v) : V → R2

has nonsingular differential at p. (Since u̇ = 0 only along
curves tangent to Xp while v̇ = 0 only tangent to Yp, these can
never both vanish.) Thus it locally has an inverse, the desired
parametrization. �

The theorem only depends on the equivalence classes of X
and Y under X ∼ f X (where f is a nonvanishing scalar func-
tion). These equivalence classes are called line fields (or di-
rection fields). Note that globally, a line field may be nonori-
entable. Locally, however, we can always pick a consistent
orientation for the lines, so a line field always arises as above
from a nonvanishing vector field. The theorem is really about
a pair of (nowhere equal) line fields. (Line fields have un-
parametrized integral curves.)

We apply this theorem to derive local existence of various
special kinds of coordinates.

Corollary B6.5. Any p ∈ M has a neighborhood with an
orthogonal parametrization.

Proof. We just need to find a pair of orthogonal vector fields.
Start with an arbitrary parametrization x of some neighbor-
hood of p. Set X = xu and Y = ν × xu (that is, Yp = νp × Xp)
and apply the theorem. The new parametrization has coordi-
nate lines in the (orthogonal) X and Y directions. �

Corollary B6.6. If p ∈ M is a nonumbilic point, then some
neighborhood of p can be parametrized by curvature-line co-
ordinates.

Proof. In a orientable neighborhood without umbilics, we can
distinguish the principal curvatures (say k1 < k2). Then we get

two line fields – along the eigenspaces for k1 and k2 respec-
tively, and we can simply apply the theorem to get curvature-
line coordinates. (We omit the details that show the principal
directions are smooth functions.) �

Corollary B6.7. If p ∈ M is a hyperbolic point, then some
neighborhood of p can be parametrized by asymptotic coor-
dinates.

Proof. In an orientable neighborhood where K < 0 we have
two asymptotic lines at each point, and can distinguish them
globally (one, say, is to the left of the negative principal cur-
vature direction). Thus we get two line fields and can apply
the theorem. �

B7. First variation of length

We want to understand the geometric meaning of the mean
curvature H. In particular, if we consider variations of a sur-
face, we will see how to express the derivative of area in terms
of H. If a surface has H ≡ 0 then it is a critical point for area,
called a minimal surface.

First we consider the simpler case of the length of a (com-
pact) curve. Suppose αt(s) is a smoothly varying family
of smooth curves in Rn. We assume that α(s) = α0(s) is
parametrized by its arclength s. (But s is not an arclength
parameter for the other curves αt.) If α is not closed, we as-
sume the variation is supported on a compact subinterval K
away from the endpoints. (That is, αt(s) is independent of t
for s outside of K.)

We can take a Taylor series in t and get

αt(s) = α(s) + tξ(s) + O(t2),

where ξ is a variation vector field along α. We will see that the
derivative of length depends only on this infinitesimal varia-
tion, and not on the higher order terms we have omitted. (One
could think of the vector field ξ as being a tangent vector to
the infinite dimensional space of curves at the “point” α.)

We find the velocity of αt is α′t = T + tξ′ + O(t2), and hence

|α′t |
2 = |T + tξ′|2 + O(t2) = 1 + 2t

〈
ξ′,T

〉
+ O(t2).

Therefore d
dt

∣∣∣
t=0 |α

′
t | = 〈ξ

′,T 〉. Using len(αt) =
∫ L

0 |α
′
t | ds we

find

d
dt

∣∣∣∣∣
t=0

len(αt) =
d
dt

∣∣∣∣∣
t=0

∫
|α′t | ds

=

∫
d
dt

∣∣∣∣∣
t=0

(
|α′t |

)
ds =

∫ 〈
ξ′,T

〉
ds.

Here smoothness justifies interchanging the derivative and in-
tegral. Next we integrate by parts, recalling that T ′ = ~κ = κN;
our assumptions mean that the endpoint terms vanish. We find

δξ len(α) :=
d
dt

∣∣∣∣∣
t=0

len(αt) = −

∫ 〈
ξ,~κ

〉
ds.

We can think of the right-hand side as the inner product
on the function space L2(I,R3), the tangent space at α to the

14
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infinite dimensional space of curves, to which the vector fields
ξ and ~κ along α belong. Thus the formula can be thought of as
saying that ~κ is the negative gradient of the length functional.

End of Lecture 27 May 2019

A curve is length-critical if no variation changes its length
to first order. That is, if we have δξ len = 0 for all ξ, which is
the case exactly when κ ≡ 0. Of course we know that straight
lines minimize length.

We see that (as claimed above) the derivative δξ len only
depends on ξ and not on the higher-order terms. Also, it is
independent of the tangential part of ξ – if we keep the same
family of curves αt but change their parametrizations, that cor-
responds to changing ξ by a tangential field but clearly has no
effect on (the derivative of) length. Any family of curves can
be reparametrized so that the variation field ξ is normal.

Note furthermore that δξ len depends only the component
of ξ in the principal normal direction. The so-called Hasi-
moto flow is the PDE ξ = T ×~κ = κB for a moving curve αt in
R3, which physically is an approximation to smoke-ring flow.
Since we move only in the binormal direction, this flow pre-
serves length; indeed is it a so-called integrable system which
also preserves a whole hierarchy of other invariants.

Curve-shortening flow is the PDE ξ = ~κ for a moving curve
αt whose length decreases as fast as possible, since we follow
the (negative) gradient direction. It is one of the earliest exam-
ples studied of a geometric flow, and has interesting properties
like preserving embeddedness of plane curves.

Of course, if α lies on a surface M ⊂ R3, then our for-
mula δξ len(α) = −

∫ 〈
ξ,~κ

〉
ds holds for all variations, includ-

ing those that keep α on M. Their variation vector fields ξ
are tangent to M. As before, up to reparametrization, we can
assume ξ is normal to α. Thus ξ = ϕη is a varying multiple
of the conormal vector η. We get δξ lenα = −

∫
ϕκg ds. Al-

though only straight lines are length-critical with respect to
all variations in space, we see that, considering only varia-
tions within M, a curve α is length-critical if and only if it has
κg ≡ 0, that is, if and only if it is a geodesic.

Here are a few facts without proof. We will return to them
next semester for more general manifolds. First, sufficiently
short arcs of any geodesic are length-minimizing. On any sur-
face, we can define a metric by setting d(p, q) to be the infi-
mal length of paths from p to q. (One shows that this infi-
mum never vanishes for p , q and that the metric topology
coincides with the usual topology on M.) If the infimum is
realized, that is, if a shortest path along M from p to q exists
then it is a geodesic. If M is closed, then shortest paths always
exist.

B8. Minimal surfaces

We now want to do the similar calculation to find the first
variation of surface area. A more sophisticated approach
would use the characterization 2 ~H = ∆Mx and an intrisic ver-
sion of Stokes’ theorem. We will take a more hands-on ap-
proach in coordinates.

Consider an initial surface with an orthogonal parametriza-
tion x : U → M. Let ϕ : U → R have compact support in U
and describe a normal variation of M. That is, we consider the
family of surfaces xt := x + tϕν. (Guided by our experience
with curves, we realize that nothing would change if we added
tangential terms or higher-order terms.)

We find xt
u = xu + tϕνu + tϕuν and xt

v = xv + tϕνv + tϕvν.
Recalling that we have assumed 〈xu, xv〉 = 0, this gives〈

xt
u, x

t
u
〉

= 〈xu, xu〉 + 2tϕ 〈xu, νu〉 + O(t2),〈
xt

u, x
t
v
〉

= tϕ 〈xu, νv〉 + tϕ 〈xv, νu〉 + O(t2),〈
xt

v, x
t
v
〉

= 〈xv, xv〉 + 2tϕ 〈xv, νv〉 + O(t2).

This can be written as gt = g − 2tϕh + O(t2).
Since in our orthogonal coordinates g =

( E 0
0 G

)
is a diagonal

matrix, the off-diagonal entries are irrelevant for the first-order
calculation of det gt. Writing h =

( L M
M N

)
we get in fact

det gt = (E − 2tϕL)(G − 2tϕN) + O(t2)

= EG − 2tϕ(LG + NE) + O(t2).

Taking the square root gives√
det gt =

√
EG

(
1 − tϕ

LG + NE
EG

)
+ O(t2),

but we recognize the fraction LG+NE
EG = 2H as twice the mean

curvature. Thus

δϕ
√

det g =
d
dt

∣∣∣∣∣
t=0

√
det gt = −2ϕH

√
det g.

To find the first variation of area, we simply integrate this
over U:

δϕ area(x) = δϕ

∫
M

dA = δϕ

∫
U

√
det g du dv

=

∫
U

(
δϕ

√
det g

)
du dv =

∫
U
−2ϕH

√
det g du dv

= −2
∫

M
ϕH dA

We see that the mean curvature is the negative gradient for
area – to save area one should move the surface in the direction
of the mean curvature vector. A surface is area-critical if and
only if δϕ area is zero for every variation ϕ, that is, if and only
if H ≡ 0. Such a surface is called a minimal surface. Least-
area surfaces spanning a given boundary are known to exist
and be smooth; they are thus minimal surfaces. (It can also
be shown that, given a minimal surface M, any sufficiently
small piece of M – indeed any piece which is a graph in some
direction – is the least-area way to span its boundary.)

Minimal surfaces have many interesting properties. For in-
stance the Gauss map ν : M → S2 is (anti)conformal, since
its differential has matrix

( k 0
0 −k

)
in an orthonormal basis of

principal directions at a point with K = −k2. One can check
that in any conformal parametrization x : U → M of a mini-
mal surface, the coordinate functions – or more generally all
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height functions 〈x, u〉 : U → R for constant u ∈ S2 – are har-
monic functions. Thus they can be thought of as the real parts
of complex holomorphic functions, leading to the so-called
Weierstrass representation. (Thinking of S2 as the Riemann
sphere Ĉ, the Gauss map itself is a meromorphic function.)

End of Lecture 31 May 2019

B9. Isometries

What do we mean when we talk about intrinsic properties
of a surface, properties that only depend on the intrinsic ge-
ometry of the surface and not on how it sits in space? More
precisely, these are properties that are the same for any two
isometric surfaces.

Definition B9.1. An isometry is a diffeomorphism ϕ : M →

N between two surfaces which preserves the scalar product
on tangent spaces. That is, for any p ∈ M and any v,w ∈
TpM, we have

〈
Dpϕ(v),Dpϕ(w)

〉
= 〈v,w〉. It follows that ϕ

preserves the length of curves: len(ϕ ◦ α) = len(α) for any
curve in M.

As a trivial example, if ϕ is a rigid motion of Rn then
of course it restricts to any surface M to give an isometry
M → ϕM. Less trivially, R × (−π, π) is isometric to the unit
cylinder in R3 with one vertical line removed. (We see from
this simple example that the mean curvature H, for instance,
is not an intrinsic notion; the surprising result later will be that
the Gauss curvature K is intrinsic.)

Note that if x : U → x(U) = M is a parametrization
and ϕ : M → N is a diffeomorphism then of course y :=
ϕ ◦ x : U → N is a parametrization. We see that ϕ = y ◦ x−1

is an isometry if and only if, at corresponding points, the first
fundamental forms for x and y have the same matrix with re-
spect to the coordinate bases. That is,

〈
xu, xv

〉
=

〈
yu, yv

〉
, etc.

Definition B9.2. We say surfaces M and N are locally isomet-
ric if each point in either surface has a neighborhood isometric
to an open subset of the other surface.

Note that we can assume the neighborhoods are small
enough to be parametrized patches. Then we test local isome-
try by finding parametrizations with the same first fundamen-
tal form g(u, v) = g =

( E F
F G

)
.

The cylinder and plane form an example of locally isomet-
ric surfaces, as do the catenoid and helicoid. (In each case the
second surface is topologically the universal covering of the
first.)

Relaxing the condition of isometry, we can consider con-
formal (angle-preserving) maps ϕ : M → N. Here the con-
dition is that there is a positive function λ : M → R (called
the conformal factor) such that for any v,w ∈ TpM we have〈
Dpϕ(v),Dpϕ(w)

〉
= λ(p)2 〈v,w〉.

We have seen the sense in which two surfaces are locally
isometric if and only if they have the same first fundamental
form g. A somewhat surprising result is that all surfaces are
locally conformal. (By transitivity, it suffices to prove that any
surface has conformal parametrizations. This is a PDE result

that we won’t try to prove here.) The analog is not true for
higher-dimensional manifolds – only certain special metrics
are conformally flat.

B10. Covariant derivatives

If M is a surface, and Y is a (vector-valued) function on M,
then we know what the directional derivative of Y at p ∈ M in
direction w ∈ TpM means: ∂wY(p) = DpY(w) is the derivative
of Y along any curve (in M through p) with velocity vector w.
Now suppose Y : M → R3 is a tangent vector field (meaning
Yp ∈ TpM for each p). In general, its directional derivatives
∂wY will not be tangent to M. Indeed, since the tangent spaces
change as p ∈ M moves, a tangent vector is forced to change
in the normal direction just to stay tangent. We can make this
precise using the second fundamental form – since 〈Y, ν〉 ≡ 0,
we get (omitting the subscript p, where all values are taken):〈
∂wY, ν

〉
=

〈
DY(w), ν

〉
= −

〈
Dν(w),Y

〉
=

〈
S (w),Y

〉
= h(w,Y).

This normal change in Y is forced by the geometry of M.
The intrinsic change in Y is given by the tangential parts

of its directional derivatives, called covariant derivatives. We
write

∇wY = (∂wY)|| = ∂wY−
〈
∂wY, ν

〉
ν = DpY(w)−h(w,Yp) ∈ TpM.

To define ∂wY and ∇wY it of course not necessary that Y be
defined on a whole neighborhood of p (in M) – it suffices if
Y is a vector field (tangent to M) along some curve α : I →
M through p with velocity (parallel to) w. If Y is defined
along α sometimes we write ∇

dt Y := ∇α̇(t)Y for the tangential
part of the derivative DpY(α̇) = Ẏ = d

dt Y
(
α(t)

)
of Y along the

curve α. (Whenever we talk about t-derivatives of Y , we are
really differentiating the composition Y ◦ α.)

If α is parametrized at unit speed, then ∇

ds Y = ∇T Y is the
tangential part of Y ′. In particular, one example of a vector-
field along α is Y := T ; comparing the expression for the co-
variant derivative with the Darboux equation T ′ = κgη + κnν,
we see that ∇T T = κgη gives the geodesic curvature. The
equation κg = 0 for a geodesic can be written ∇T T = 0. (A
curve satisfies ∇α̇α̇ = 0 if and only if it is a geodesic in M
parametrized at constant – not necessarily unit – speed.)

We say the vector field Y is parallel along α if ∇dt Y ≡ 0.
Given Yp at any initial point p = α(0), there is a unique way
to extend it to a parallel field Y along α (solving the ODE
∇T Y = 0). Any curve α from p to q thus gives a map TpM →
TqM called parallel transport – taking an initial vector at p
to the value at q of the parallel field along α. It is important
to note that this parallel transport from p to q does depend
on the choice of the curve α from p to q – it is not a natural
identification of the distinct tangent spaces.

Important properties are include the following: a parallel
vector field has constant length; a pair of parallel fields make
constant angle; thus, parallel transport is an orthogonal map
TpM → TqM, a map respecting the scalar products. This is
easy to confirm: parallel fields have derivatives only in the
normal direction ν, so 〈X,Y〉′ = 〈X′,Y〉 + 〈X,Y ′〉 = 0.
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Given two vector fields X and Y on M, the covariant deriva-
tive ∇Xp Y is defined at every point p ∈ M, thus defining a new
vector field ∇XY . Note that ∇XY is R-linear in each argument:

∇X+X′Y = ∇XY + ∇X′Y, ∇X(Y + Y ′) = ∇XY + ∇XY ′,
∇aXY = a∇XY = ∇X(aY) ( f or) a ∈ R.

If f : M → R is a smooth function, then of course f X means
the vector field whose value at p ∈ M is ( f X)p := f (p)Xp.
Since ∇XY at p depends only on Xp, we find that ∇ f XY =

f∇XY . But on the other hand, the Leibniz product rule gives

∇X( f Y) =
(
∇X f

)
Y + f∇XY,

where we adopt the convention that ∇X f := ∂X f , the direc-
tional derivative of f in the direction X. Since any vector field
is a combination f xu +gxv, these formulas will allow us to ex-
press covariant derivatives of arbitrary vector fields in terms
of the covariant derivatives of the coordinate vector fields.

If X and Y are two vector fields on M, then in general ∇XY
and ∇Y X are unequal. The difference is called the Lie bracket:

[X,Y] := ∇XY − ∇Y X.

A special property of coordinate vector fields is that they have
vanishing Lie bracket: [xu, xv] = 0. To verify this, note that
∇xu xv is by definition the tangential part of xuv. Thus [xu, xv] =

0 is a trivial consequence of xuv = xvu. Given two linearly
independent vector fields X and Y , we discussed the fact that
we cannot always find coordinates with X = xu and Y = xv.
Indeed the condition [X,Y] = 0 is exactly what is needed –
this is part of the Frobenius Theorem (covered next semester).

B11. Christoffel symbols

For ease of writing equations in coordinates, we will change
notation a bit: we write (u1, u2) := (u, v) and use the subscript i
for a partial derivative with respect to ui, so for instance xi :=
xui = ∂x/∂ui. Then we can write the entries of the matrices
for the first and second fundamental forms as gi j =

〈
xi, x j

〉
and hi j =

〈
ν, xi j

〉
= −

〈
νi, x j

〉
.

We now want to explicitly calculate covariant derivatives in
coordinates. We start with the covariant derivatives ∇xi x j of
the coordinate vector fields; since these are tangent vectors,
they can be expressed in terms of the coordinate basis. We in-
troduce the Christoffel symbols Γk

i j as their components. That
is, the Γk

i j are defined by

∇xi x j =:
2∑

k=1

Γk
i jxk = Γ1

i jx1 + Γ2
i jx2.

(The vanishing of the Lie bracket can now be expressed as
the symmetry Γk

i j = Γk
ji.) Since we already know the normal

component hi j =
〈
xi j, ν

〉
of xi j, we could write the equations

above as

xi j = ∂xi x j = Γ1
i jx1 + Γ2

i jx2 + hi jν.

(This is called the Gauss formula.)
At every point in the surface, we have a (nonorthonormal)

frame {x1, x2, ν}. The derivatives of ν expressed in this frame
– and the normal components of the derivatives of the xi –
are given by the second fundamental form and shape operator.
The tangential parts of the derivatives xi j are new – given by
the Christoffel symbols.

Of course, as we saw with S and h, when dealing with
nonorthonormal bases, it is easier to compute scalar products
than components. Here we have〈

x ji, xk
〉

=
〈
∇xi x j, xk

〉
=

〈∑
`

Γ`i jx`, xk

〉
=

∑
`

Γ`i jg`k =: Γi jk.

Here we multiply by the matrix g = (gi j) to “lower an index”.
It is customary to write the inverse matrix as

(
gi j) := g−1 =

1
EG − F2

(
G −F
−F E

)
.

Then multiplying by g−1 “raises the index” again: Γk
i j =∑

` gk`Γi j`. Of course we still have the symmetry Γi jk = Γ jik.
Suppose we write X and Y in coordinates as X =

∑
αixi and

Y =
∑
βixi (for smooth functions αi, βi). Then by linearity and

the product rule, we have

∇XY =
∑
i, j

αi∇xi

(
β jx j

)
=

∑
i,k

αi
(
∂xiβ

k +
∑

j

β jΓk
i j

)
xk

=
∑
i,k

αi
(∂βk

∂ui +
∑

j

β jΓk
i j

)
xk.

Now we consider derivatives of the coefficients of the first
fundamental form:

gi j,k := ∂xk gi j = ∂xk

〈
xi, x j

〉
=

〈
∂xk xi, x j

〉
+

〈
∂xk x j, xi

〉
=

〈
xik, x j

〉
+

〈
x jk, xi

〉
= Γki j + Γk ji.

This is a set of eight equations. We could write them out
explicitly in the classical notation, getting Eu = 2Γ111, etc.
But let’s just cyclically permute the equation above and use
the symmetry of the Christoffel symbols:

gi j,k = Γki j + Γk ji = Γki j + Γ jki,

g jk,i = Γi jk + Γik j = Γi jk + Γki j,

gki, j = Γ jki + Γ jik = Γ jki + Γi jk.

Subtracting the top equation from the sum of the other two
gives g jk,i + gki, j − gi j,k = 2Γi jk. More important than the exact
form of this equation is the fact that it confirms the intrinsic
nature of the covariant derivative: The Christoffel symbols,
and thus all our formulas for covariant derivatives, can be ex-
pressed in terms of the first fundamental form (and its deriva-
tives) alone.

After this excursion into very abstract notation, let’s look
concretely at these equations in more classical notation. We
specialize to the case of an orthogonal parametrization (where
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g12 ≡ 0); this makes all the equations a bit simpler. The equa-
tions 2Γi jk = g jk,i + gki, j − gi j,k become:

2Γ111 = g11,1 = Eu, −2Γ112 = g11,2 = Ev,

2Γ121 = g11,2 = Ev, 2Γ122 = g22,1 = Gu,

−2Γ221 = g22,1 = Gu, 2Γ222 = g22,2 = Gv.

Of course multiplying by the inverse of a diagonal matrix
is easy, so Γk

i j =
∑
` gk`Γi j` becomes Γ1

i j = Γi j1/E and Γ2
i j =

Γi j2/G. That is, we get

Γ1
11 = Eu/2E, Γ1

12 = Ev/2E Γ1
22 = −Gu/2E

Γ2
11 = −Ev/2G, Γ2

12 = Gu/2G Γ2
22 = Gv/2G

End of Lecture 10 June 2019

B12. Compatability conditions

Suppose we are given symmetric matrices gi j and hi j vary-
ing smoothly on a given domain U ⊂ R2. Is there some
parametrization x : U → R3 with these as first and second
fundamental form, respectively? Of course from g and h we
know the Christoffel symbols and the matrix for the shape op-
erator. Thus we try to solve the Gauss/Weingarten system

xi j = Γ1
i jx1 + Γ2

i jx2 + hi jν, νi = −S (xi).

(Of course we also need that ν is the unit normal vector to the
surface given by x. As long as that holds at some initial point,
the Gauss/Weingarten system is set up to ensure it stays true,
since the scalar products of ν with itself and with the xi will
be constant.)

Unlike for ODEs, solutions to PDEs exist only if compat-
ibility equations are satisfied. (The basic idea is that given
functions g and h, the system fx = g, fy = h can have a solu-
tion f only if gy = fxy = fyx = hx.) We will write down the
compatibility equations for our system (equating xi jk = xik j);
these are clearly necessary.

Using the notation ∂k := ∂xk = ∂/∂uk for partial derivatives,
differentiating the Gauss formula gives

xi jk =
(
∂khi j

)
ν + hi jνk +

∑
`

((
∂kΓ

`
i j
)
x` + Γ`i jx`k

)
.

The Gauss/Weingarten system shows us how to write the
right-hand side in the basis {x1, x2, ν}. Each xi jk = xik j then
gives us three scalar compatibility equations; since the equa-
tion is nontrivial only when j , k, the two cases of interest are
x112 = x121 and x221 = x212. We first consider the normal com-
ponents ∂khi j+

∑
Γ`i jh`k of xi jk. These normal components give

the two (Mainardi–)Codazzi equations (evidently first discov-
ered by Peterson), the first of our compatibility conditions:

∂2h11 + Γ1
11h12 + Γ2

11h22 = ∂1h12 + Γ1
12h11 + Γ2

12h21,

∂1h22 + Γ1
22h11 + Γ2

22h12 = ∂2h12 + Γ1
12h12 + Γ2

12h22.

Here of course, the Christoffel symbols should be viewed as
functions of the gi j.

Recalling that the shape operator has matrix g−1h, we write
this in index notation as h j

i :=
∑

k g jkhki, so that νi = −S (xi) =

−
∑

j h j
i x j. This lets us express, say, the x2 component of the

equation x112 = x121. We get

−h11h2
2 + ∂2Γ2

11 +
∑
`

Γ`11Γ2
`2 = −h12h2

1 + ∂1Γ2
12 +

∑
`

Γ`12Γ2
`1.

This can be written as

∂2Γ2
11−∂1Γ2

12+Γ1
11Γ2

12+Γ2
11Γ2

22−Γ1
12Γ2

11−Γ2
12Γ2

21 = h11h2
2−h21h2

1.

Expanding h11 = h1
1g11 + h2

1g21 and h21 = h1
2g11 + h2

2g21, the
right-hand side becomes

g11
(
h1

1h2
2 − h2

1h1
2
)

= g11 det S = g11K.

Since the left-hand side is intrinsic (expressible in terms of the
first fundamental form alone), so is the Gauss curvature K.
That is, we have proved Gauss’s Theorema Egregium (“re-
markable theorem”): The Gauss curvature K is an intrinsic
notion, remaining unchanged under local isometries, as when
a surface is bent without stretching.

The equation above in the form

∂2Γ2
11 − ∂1Γ2

12 + Γ1
11Γ2

12 + Γ2
11Γ2

22 − Γ1
12Γ2

11 − Γ2
12Γ2

21 = g11
det h
det g

,

again with the understanding that the Christoffel symbols
should be expressed as functions of the gi j and their deriva-
tives, is the Gauss equation, the last compatibility condition.

A theorem of Bonnet (basically using standard results about
first-order PDEs) now says these compatibility conditions are
also sufficient. If symmetric matrix functions gi j and hi j (with
g positive definite) satify the Gauss and Codazzi equations,
then there is a surface with these fundamental forms, unique
up to rigid motion. We will not go into the details of the proof.

Let us return to the special case of orthogonal coordinates,
and write the intrinsic formula for Gauss curvature more ex-
plicitly. In classical notation, we get

2EK = −∂v

(Ev

G

)
− ∂u

(Gu

G

)
+

EuGu

2EG
−

EvGv

2G2 +
E2

v

2EG
−

G2
u

2G2 ,

or equivalently

−2EGK = Evv −
EvGv

G
+ Guu −

G2
u

G

−
EuGu

2E
+

EvGv

2G
−

E2
v

2E
+

G2
u

2G

=
√

EG
(
∂v

( Ev
√

EG

)
+ ∂u

( Gu
√

EG

))
.

For conformal coordinates with conformal factor λ = eϕ >
0 we have E = G = λ2 and the formula becomes

K = −
1
λ2

(
∂v

(λv

λ

)
+ ∂u

(λu

λ

))
= −e−2ϕ∆ϕ.

End of Lecture 14 June 2019
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Bonnet’s theorem leaves many related open questions. One
is the following: to what extent the compatibility conditions
determine the second fundamental form from the first funda-
mental form? This is a rigidity question: when does a sur-
face admit a unique isometric embedding into R3? Unlike hy-
persurfaces in higher dimensions – see Kühnel’s book – sur-
faces can always be locally embedded in many ways. Glob-
ally, however, there are often rigidity results (like for convex
surfaces) and other (abstract) surfaces cannot be globally em-
bedded at all. We may return to these results later.

For curves, of course, there is no intrinsic geometry – any
two curves are locally isometric, for instance by choosing ar-
clength parametrizations for both of them. Two plane curves
are related by a rigid motion if and only if they have the same
(extrinsic) curvature κ (as a function of arclength). Note, how-
ever, that specifying curvature as a given function κ(t) of an
unspecified parameter t gives hardly any information about
the shape of the curve. Any arc of monotonic curvature can
be parametrized by κ = t for instance.

What is the situation for surfaces? Two surfaces are lo-
cally isometric (intrinsically equivalent, one might say) if and
only if they have the same first fundamental form g in corre-
sponding coordinates. This implies that they have the same
Gauss curvature K(u, v) in such coordinates. By Bonnet’s the-
orem, two surfaces are related by a rigid motion (extrinsically
equivalent, one might say) if and only if they have the same
first and second fundamental forms g and h in corresponding
coordinates. This implies that they have the same Gauss and
mean curvatures K and H (or equivalently, the same principal
curvatures) in such coordinates.

If we ask when surfaces with the same K are isometric, then
we are faced with the same problem as for curves of not know-
ing what parametrization is being used to compare the curva-
ture functions. For instance, as long as p ∈ M is not a critical
point of the function K, then a neighborhood of p is foliated
by lines of constant K and we can use v := K as one of the two
coordinates in a regular parametrization of this neighborhood.
One case where this problem doesn’t arise is that of surfaces
with constant Gauss curvature.

Suppose we have two isometric surfaces with the same
mean curvature (or equivalently the same principal curva-
tures). This does not always imply that that they are related by
a rigid motion. What happens is that, even though the eigen-
values of the shape operator are the same on both surfaces,
the eigenvectors (the principal directions) can rotate. An im-
portant example is that of minimal surfaces: it turns out that
any minimal surface has an isometric conjugate minimal sur-
face. Here the curvature directions have become asymptotic
directions and vice versa. (In fact, these sit in a one-parameter
family of isometric minimal surfaces with all possible asymp-
totic directions.)

B13. Surfaces of constant curvature

There are many interesting facts about surfaces with con-
stant Gauss curvature or constant mean curvature. Our first
goal is a thereom of Minding saying any two surfaces with

the same constant K ≡ c are locally isometric. Then we turn
to theorems of Liebmann that characterize the round sphere as
the unique closed surface of constant K and the unique convex
surface of constant H.

We will use one further special kind of parametrization:

Definition B13.1. An orthogonal parametrization x : U → R3

gives geodesic parallel coordinates if |xu| ≡ 1.

Using the notation a = |xv|, we have in geodesic parallel
coordinates E ≡ 1 and G = a2. Specializing our formula for K
to this case gives −2a2K = a∂u(2aau/a), that is, K = −auu/a.

Clearly, in geodesic parallel coordinates, the u-curves are
parametrized at unit speed: any pair of v-curves cut segements
of equal length from all the u-curves. We claim the u-curves
(for each constant v) are geodesics, so that the v-curves should
really be considered as parallel curves at constant distance
from each other. (The name “geodesic parallel coordinates”
then comes from the fact that the u- and v-coordinate lines are
geodesics and parallels, respectively.)

To check the claim, we must show ∇xu xu = 0. This is equiv-
alent to Γ1

11 = 0 = Γ2
11, or to Γ111 = 0 = Γ112. But in orthogoal

coordinates, we had Γ111 = Eu/2 and Γ112 = −Ev/2.

Lemma B13.2. Any surface M locally admits geodesic par-
allel coordinates. Indeed we can choose any given curve
α : v 7→ α(v) ∈ M as the v-curve u ≡ 0.

Proof. Each u-curve v ≡ c is determined as the geodesic start-
ing at α(c) in the conormal direction. The only thing that one
needs to check is that the coordinates stay orthogonal. But
since the u-curves are geodesics, xuu is normal to M, so in
particular 〈xuu, xv〉 = 0. Thus

0 = Ev = ∂v 〈xu, xu〉 = 2 〈xu, xuv〉

= 2
(
〈xv, xuu〉 + 〈xu, xuv〉

)
= 2∂u 〈xu, xv〉 = 2Fu.

This implies F ≡ 0 since we know F vanishes along α. �

The special case where the initial curve α is itself a
unit-speed geodesic gives what are called Fermi coordinates
(along α), often used in Lorenzian geometry for general rel-
ativity (choosing α to be the wordline of some particle). In
this case, not only is the first fundamental form the identity
matrix along the whole starting curve, but also its derivative
in the conormal direction vanishes, so all the Christoffel sym-
bols vanish along that curve. (In particular our claim is that
Eu = 0 = Gu along α and this follows from calculations
like the one above for Fu, using the additional fact that α is
a geodesic. These are left as an exercise.)

Theorem B13.3 (Minding). Two surfaces with the same con-
stant Gauss curvature K are locally isometric. Indeed, give a
point in each surface and orthonormal frames at these points,
the local isometry can be chosen to map the one frame to the
other.

Note that this implies that a surface of constant Gauss cur-
vature has lots of (local) intrinsic symmetries: any two points
have isometric neighborhoods.
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Proof. Construct Fermi coordinates in each surface, starting
with a unit-speed geodesic (through the given point in the di-
rection of the first frame vector). The first fundamental form
in these coordinates will be given by

( 1 0
0 a2

)
and we have that

K = −auu/a with a(0, v) ≡ 1. This can be viewed as the (ordi-
nary!) differential equation auu = −Ka for a, which of course
has a unique solution given the initial conditions a(0) = 1,
au(0) = 0. Thus a is independent of v and is the same on both
surfaces. �

Note that of course we can solve this ODE explicitly. For
K = 0 we have a ≡ 1 (as for the standard coordinates on R2,
while for K > 0 we get a = cos(

√
Ku), and for K < 0 we

get a = cosh(
√
−Ku). (Parallels on a sphere get shorter as we

move away from the initial geodesic, whereas parallels in the
hyperbolic plane get longer.)

Note that ordinary spherical coordinates (latitude, longi-
tude) are Fermi coordinates (around the equator) for the round
sphere with K ≡ 1. The pseudosphere is an example of a sur-
face with K ≡ −1, but no such surface is complete.

Lemma B13.4. In curvature-line coordinates with g =
( E 0

0 G
)

and h =
( L 0

0 N
)
, the Codazzi equations become

Lv = HEv, Nu = HGu.

In terms of the principal curvatures, with L = k1E, N = k2G,
the equations can be written as

Ev =
2E∂vk1

k2 − k1
, Gu =

2G∂uk2

k1 − k2
.

Proof. Dropping the terms involving h12, the Codazzi equa-
tions are

∂2h11 + Γ2
11h22 = Γ1

12h11, ∂1h22 + Γ1
22h11 = Γ2

12h22.

Substituting the values we computed for the Christoffel sym-
bols in arbitrary orthogonal coordinates gives

Lv − NEv/2G = LEv/2E, Nu − LGu/2E = NGu/2G.

Recalling that the mean curvature is H = L/2E + N/2G gives
the first form.

Now differentiating the equations L = k1E, N = k2G yields
(∂vk1)E + k1Ev = Lv = HEv, etc., which simplifies to the final
equations in the statment. �

Lemma B13.5 (Hilbert). Suppose p is a nonumbilic point
with k1 > k2 and suppose k1 has a local maximum while k2
has a local minimum at p. Then K(p) ≤ 0.

Proof. Choose curvature-line coordinates in a neighborhood
of p and use the classical notation of the last lemma. By
assumption the derivatives of the principal curvatures vanish
at p, so by the final formulas of the last lemma, Ev = 0 = Gu
there. Differentiating those formulas (and dropping terms in-
volving first derivatives of ki to evaluate at p), we find that

Evv =
2E∂2

vvk1

k2 − k1
, Guu =

2G∂2
uuk2

k1 − k2

at p. By assumption, at p we have k1 > k2 and also ∂2
vvk1 ≤

0 ≤ ∂2
uuk2. Thus Evv ≥ 0 and Guu ≥ 0 at p. The Gauss equation

in orthogonal coordinates gave a nice formula for K involving
√

EG. At a point where Ev = 0 = Gu, it is easy to reduce this
formula to −2EGK = Evv + Guu. It follows immediately that
K(p) ≤ 0. �

Recall our earlier claim that the only surfaces with constant
H and K (or equivalently, with constant principal curvatures)
are (pieces of) planes, spheres and cylinders. If k1 = k2 then
we are in the totally umbilic case of planes or spheres. Other-
wise, we can use the calculations from the proof of Hilbert’s
lemma. We have ∂2

vvk1 = 0 =⇒ Evv = 0 and similarly
Guu = 0, giving K ≡ 0. Surfaces with K ≡ 0 are called devel-
opable. We will study these later and our first few results will
suffice to conclude that the developable surfaces with constant
H are round cylinders.

So far our study of surfaces has been local, working in one
coordinate chart and ignoring the global topology of the sur-
face. We now turn to some global results about closed sur-
faces, meaning connected compact surfaces (without bound-
ary).

Lemma B13.6. Any closed surface in R3 has at least one
point (and hence an open set) where K > 0.

Proof. Since M is compact, it is contained in some ball around
the origin. Let BR(0) be the smallest such ball. Its boundary
sphere (with normal curvatures 1/R) must be tangent to M.
Since M stays inside, its normal curvatures – in particular both
principal curvatures – are at least 1/R. Thus at the point of
tangency K > 1/R2 > 0. �

Theorem B13.7 (Liebmann 1899). A closed surface M ⊂ R3

with constant Gauss curvature K is necessarily a round sphere
(of radius 1/

√
K).

Proof. By the lemma, we have K > 0. Denote the two prin-
cipal curvatures of M by k1 ≥ k2. By compactness k1 attains
a maximum at some p ∈ M (where k2 has a minimum, since
k1k2 ≡ K). If k1 > k2 at p, then we are in the situation of
Hilbert’s lemma, so K ≤ 0, a contradiction. Thus we may as-
sume k1(p) =

√
K = k2(p), By the choice of p we then have

√
K ≥ k1 ≥ k2 ≥

√
K everywhere, meaning that equality holds

and the surface M is totally umbilic. As we have seen already,
M is thus a piece of a sphere, indeed the whole sphere since it
is closed. �

Theorem B13.8 (Liebmann 1900). A smooth closed surface
M ⊂ R3 with K > 0 and constant mean curvature H is neces-
sarily a round sphere (of radius 1/H).

Proof. We proceed exactly as before, letting k1 attain its max-
imum at p. Again we just need to rule out the nonumbilic case
k1 > k2. But here again Hilbert’s lemma applies to give the
contradiction K ≤ 0. �

One might ask if there are any other closed surfaces of
constant mean curvature (CMC), perhaps even allowing “im-
mersed” surfaces with self-intersections. Heinz Hopf (1955)
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conjectured not, and proved this in the case the surface is
simply connected (topologically a sphere). A.D. Alexandrov
proved (1962) there are no embedded examples of any genus.
It was a surprise then in 1986 when Henry Wente found an im-
mersed CMC torus. Since then, general methods for finding
many such examples have been developed.

B14. The Umlaufsatz for smooth curves

At the beginning of the semester, we mentioned the “the-
orem on turning tangents”, also known (even in English) as
the Umlaufsatz: a simple closed plane curve has turning num-
ber 1 (or equivalently total signed curvature 2π). This is actu-
ally the planar case of the Gauss–Bonnet Theorem. The local
version of Gauss–Bonnet talks about a simple closed curve γ
enclosing a disk R on a surface M, and says the total geodesic
curvature of γ in M equals 2π minus the total Gauss curvature
of R: ∫

γ

κg ds = 2π −
∫

R
K dA.

When M = R2 then of course K ≡ 0 and the geodesic curva-
ture κg is the signed curvature of the plane curve, so Gauss–
Bonnet does reduce to the Umlaufsatz; conversely, we use the
Umlaufsatz as a lemma in our proof of Gauss–Bonnet.

Hopf was not the first to prove the Umlaufsatz, but it is his
proof that we will sketch. See Do Carmo’s book for more
details.

Theorem B14.1 (Umlaufsatz). Let γ be a simple closed plane
curve bounding a region R ⊂ R2. Orient γ so that R is to its
left (that is, so that its normal vector N = J(T ) points into R).
Then the turning number of γ is 1.

Sketch of proof. Let the curve γ be parametrized at unit speed
as an L-periodic map γ : R → R2. Shift the parameter if nec-
essary, to ensure that γ(0) is an extreme point on the convex
hull. For convenience, rotate so that γ(0) is a point with lowest
y-coordinate along γ. Then T (0) = γ′(0) = e1 is horizontal.

Now define the secant map

f (s, t) :=
γ(t) − γ(s)∥∥∥γ(t) − γ(s)

∥∥∥ ∈ S1.

Because γ has no self-intersections, this is well defined on
the diagonal strip s < t < s + L in the (s, t)-plane. On the
lower boundary s = t it is extended smoothly by f (s, s) =

T (s), while on the upper boundary it is extended smoothly by
f (s, s + L) = −T (s). We will be interested in f restricted to
the triangle

∆ :=
{
(s, t) : 0 ≤ s ≤ t ≤ L

}
.

Just as we lifted the S1-valued map T (s) to a real-valued an-
gle function θ(s) when we defined turning number, here we
can lift the map f : ∆ → S1 to a map θ : ∆ → R such that
f (s, t) =

(
cos θ(s, t), sin θ(s, t)

)
. (For smooth functions like we

have here, this is easiest to do by considering what the deriva-
tives of θ must be. But such a lift exists for any continuous f ,
as one learns in algebraic topology.) The lift is unique up to
adding a constant multiple of 2π. We choose the lift for which
θ(0, 0) = 0.

Along the diagonal, this θ(s, s) is the lift of T , so θ(L, L) is
by definition 2π times the turning number: our goal is to show
θ(L, L) = 2π. Now consider the other sides of the triangle
∆, recalling that γ(0) was chosen to be a lowest point on the
curve.

Along the vertical side, f (0, t) must point upwards, that is,
it stays in the (closed) upper semicircle. Thus the angle func-
tion θ(0, t), starting at θ(0, 0) = 0 must stay in the interval
[0, π]. When we reach t = L, where f (0, L) = −e1 we know
θ(0, L) is π (modulo 2π) so the only possibility in the interval
is θ(0, L) = π.

Continuing along the horizontal side, f (s, L) always points
downwards, staying in the lower semicircle. Thus, starting
at θ(0, L) = π, we see that θ(s, L) stays in the interal [π, 2π].
When we reach θ(L, L), which must be a multiple of 2π, we
see it must be 2π as desired. �

It is known that there are no knotted curves in the plane:
any simple closed curve can be deformed into a round cir-
cle while staying embedded. (An explicit deformation can
be found for instance with a rescaled curve-shortening flow.)
Using the basic idea here is that a continuous function with
discrete (integer) values is constant, this gives another proof
of the Umlaufsatz.

This is a recurring theme in topology. Algebraic topology
associates to any topological space X various algebraic ob-
jects (fundamental groups, homology groups, etc.) and to any
continuous map f : X → Y homomorphisms between the as-
sociated groups. For the circle S1, the fundamental group (or
the first homology group) is the integers; a map f : S1 → S1

induces a homomorphism f∗ : Z → Z – this must be given by
multiplication by some d ∈ Z, called the degree of f .

Given a smooth closed plane curve α, its tangent vector can
be viewed as a map T : S1 → S1. The turning number of α
is the degree of this map. For smooth maps like this, one can
also bypass the machinery of algebraic topology and define
the degree via differential topology, as we did by lifting to the
angle function. Equivalently, the degree of f can be computed
by integrating the derivative of f around the circle – just as we
computed turning number as 1

2π

∫
κ ds.

An alternative approach to degree is to note that almost ev-
ery value in the range of f is a regular value, attained only at
points where the differential of f is surjective. In particular, it
is attained only finitely many times, and each time has a well-
defined sign ±1 depending on the orientation. The degree can
be computed at any regular value as the sum of these signs.

(Another possibly familiar example of degree is the winding
number used in complex analysis. If α is a closed curve in
R2 r {0}, then the winding number of α around 0 is the degree
of α/|α| : S1 → S1.)

End of Lecture 2019 June 21
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B15. The Umlaufsatz for piecewise smooth curves

We will want the Umlaufsatz not just for smooth curves
but for all piecewise smooth curves. As a warmup, consider
what it should say for simple polygons. The tangent vector
T is constant along each side of a polygon but then jumps
at each corner. If the interior angle is θi, then the exterior
or turning angle is τi := π − θi ∈ (−π, π), the signed angle
between the incoming and outgoing tangent vectors. The total
signed curvature should be replaced by

∑
τi; this will be 2π

times the turning number.
Of course, the fact that

∑
τi = 2π (or equivalently,

∑
θi =

(n − 2)π for an n-gon) is standard in elementary geometry. To
prove it by induction starting from the known case of a trian-
gle, we just need to cut a larger polygon into pieces. (The one
nontrivial lemma is that any simple polygon has some interior
diagonal that can be drawn without crossing any edges. In fact
one can always find an “ear”, such a diagonal that cuts of just
a triangle. Note that this is also the key lemma for a polygonal
version of the Jordan curve theorem.)

How about piecewise smooth curves? (Note: important to
have smooth on closed subintervals to get well-defined one-
sided tangents.) Definition:

∫
κ over smooth parts plus turning

angles at junctions. But how do we choose the sign at cusps
where τ = ±π? (Note: do Carmo’s definition here doesn’t
always work.) Right definition: +π if cusp points out from
bounded region, −π if cusp points into bounded region. From
now on, we will write τi ∈ [−π, π] for this turning angle at the
ith corner (with the correct choice of sign at cusps).

To prove the Umlaufsatz in this generality, one could try
to take a limit of smooth or polygonal approximations – but
preserving embeddedness and controlling the limiting value
of total curvature is quite tricky. Hopf does it as follows: the
secant map on the open triangle still limits to the tangent di-
rection on all smooth points of the diagonal. The lifted map
θ will jump at the points (s, s) corresponding to corners. We
just need to show that the lifted map jumps by no more than
π at each corner – and that the sign is right where the jump
is ±π. (The sign that naturally comes up here is given by the
orientation of a triangle consisting of the cusp and two nearby
points chosen such that the curve avoids the segment between
them. One can check that this is equivalent to our definition
above.)

B16. More on parallel transport

Now consider two nonvanishing vector fields X and Y , tan-
gent to M along some curve α. As in our discussion of the
total curvature of plane curves, even though the angle θ be-
tween X and Y is only defined up to multiples of 2π, given a
choice of θ at the basepoint α(0), there is a unique smooth an-
gle function along α. For consideration of the angle, we might
as well assume that both vector fields have unit length.

So suppose X is a unit parallel field along α, meaning ∇dt X =

0, and Y is any unit field. Let θ(t) be the angle from X to Y
at α(t). As we observed earlier, parallel transport preserves
the angle between two vectors, so θ is constant if Y is also

parallel. In general, we claim that the rate of change in angle
θ measures the covariant derivative of Y , in the sense we will
now explain.

Any unit Y is perpendicular to its derivative. In particular,
the covariant derivative ∇dt Y , being perpendicular to ν as well,
is a scalar multiple of ν×Y , the scalar being given by the triple
product

〈 ∇
dt Y, ν × Y

〉
=

〈
Ẏ , ν × Y

〉
.

In terms of the parallel field X, we can write Y = cos θ X +

sin θ (ν × X). Taking the covariant derivative, we get

∇

dt
Y = θ̇

(
− sin θ X + cos θ (ν × X)

)
= θ̇ (ν × Y).

Equivalently, θ̇ =
〈 ∇

dt Y, ν × Y
〉
.

B17. Gauss–Bonnet: local form

Now we want to turn towards Gauss–Bonnet. As a first
result for curves on surfaces, consider a parametrized surface
patch x : U → M = x(U) and a simple closed (piecewise
smooth) curve γ ∈ M. Consider the angle that T = γ′ makes
with xu. Then we claim this changes by 2π as we go around
γ. (Same convention as above for corners.)

Proof: pull everything back to U. If the metric g were stan-
dard, this would just be the Umlaufsatz. But we can con-
tinuously deform g to the Euclidean metric (through convex
combinations) – an integer value must remain constant.

Let us define the total geodesic curvature TC(γ) of a piece-
wise smooth curve γ as

∫
κg ds +

∑
τi, where the integral is

taken over each smooth subarc. We have not yet formally de-
fined integrals over regions in a surface, but for any coordinate
chart x(U) and any region D ⊂ U, we have (just as for surface
area) ∫

x(D)
K dA =

"
D

K
√

det g du dv,

and can check that this is independent of coordinates. The
local version of Gauss–Bonnet then says (for a piecewise
smooth curve γ enclosing a disk R ⊂ M to its left):∫

R
K dA = 2π − TC(γ).

Additivity under splitting a region.
Following do Carmo, we prove this directly under the as-

sumption that R is contained in a orthogonally parametrized
neighborhood x(U). (The case of larger disks is then a spe-
cial case of one of the global versions of Gauss–Bonnet.) We
write D := x−1(R) ⊂ U and write α for the piecewise smooth
boundary curve of D with γ = x ◦ α.

Let us first examine the right hand side. By the extension
to the Umlaufsatz, 2π is the total turning of the tangent vector
relative to xu (with the appropriate convention at corners). By
definition, TC is the total turning of the tangent vector relative
to a parallel field (with the same convention at corners). Thus
2π − TC is the total turning of xu relative to a parallel field.
Passing to the orthogonal unit vectors e1 := xu/

√
E and e2 :=
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xv/
√

G, we find that the rate of turning of xu (relative to a
parallel field) is

〈
∇T e1, e2

〉
=

1
√

EG

〈
∇T xu, xv

〉
.

With T = u̇xu + v̇xv, we have〈
∇T xu, xv

〉
= u̇Γ112 + v̇Γ122.

But in orthogonal coordinates we computed Γ112 = −Ev/2 and
Γ122 = Gu/2. Thus the total turning, the integral of the rate of
turning, is ∫

Guv̇ − Evu̇

2
√

EG
dt.

On the other hand, using our formula for K, we get∫
D

K dA =

"
R

K
√

EG du dv

=

"
R
∂v

( Ev

2
√

EG

)
+ ∂u

( Gu

2
√

EG

)
du dv.

Now we recall Green’s theorem in the plane: if P and Q are
two functions on a region R bounded by a (piecewise smooth)
curve α, then"

R
∂uQ − ∂vP du dv =

∫
α

P du + Q dv =

∫
α

(Pu̇ + Qv̇) dt.

(This is a special case of Stokes’ Theorem, of course already
known to Gauss in other forms.) We apply Green’s theorem
with P = −Ev/2

√
EG and Q = Gu/2

√
EG to give∫

D
K dA =

∫
α

−Evu̇ + Guv̇

2
√

EG
dt.

This agrees with the expression we got above for 2π − TC, so
we have proved the Gauss–Bonnet theorem.

Interpretation in terms of holonomy of parallel transport.
Gauss curvature as density – limit over small disks around p.
Special case of sphere – spherical polygons (esp. triangles).

So far we have Gauss–Bonnet in the local form
∫

R K dA =

2π−TC(∂R) for any disk R contained in an orthogonal coordi-
nate patch and with peicewise smooth boundary. A comment
on orientation is in order. Of course any coordinate patch is or-
intable. If we switch orientation, then K is unchanged, so the
whole Gauss–Bonnet equation must be unchanged. Indeed,
our convention that ∂R is oriented with R to the left depends
on the surface normal, so T switches sign. That means how-
ever that the conormal η is unchanged, so the total geodesic
curvature of ∂R is unchanged. A better way to express the ori-
entation convention for ∂R might be to simply say the conor-
mal η should point inwards towards R.

B18. Global topology of surfaces

To consider the global forms of Gauss–Bonnet, we need
to discuss the topology of surfaces. A regular region R on

a smooth surface will mean a compact subset R which is the
closure of its interior and whose boundary is a finite disjoint
union (possibly empty) of simple closed, piecewise smooth
curves. Topologically, R is therefore a compact 2-manifold
with boundary, a compact Hausdoff space locally homeomor-
phic to the closed half-plane

{
(x, y) : y ≥ 0

}
. (That is, each

point p ∈ R has a neighborhood homeomorphic either to the
plane or to the half-plane.)

One way to build such a topological space is to start with a
finite collection of triangles and “zip” certain pairs of edges
together. (Any edge that is not paired remains part of the
boundary.) This is called a triangulation of the surface. A
difficult theorem of Radó (1925) says that any topological 2-
manifold with boundary can be triangulated. For our smooth
regions R in space, this is not so difficult. Although we skip
the details, the idea is that if we tile R3 with a fine enough
cubic lattice – adjusted to be transverse to R – then each small
cube contains just a single disk of R with piecewise smooth
boundary: a polygon. Of course it is easy to cut an n-gon into
n − 2 triangles. Given an atlas of coordinate charts for a sur-
face, note that we may assume the triangulation is fine enough
that each triangle lies in one of the charts.

We now want to give a topological classification of regu-
lar regions R, that is, of compact 2-manifolds with boundary,
that is, of spaces obtainable by zipping triangles together. For
this discussion, we use the word surface to mean such a topo-
logical space (rather than a smooth surface in R3 as usual).
We follow the description by Francis and Weeks of Conway’s
“ZIP proof”.

Let us first describe the statement. To “perforate” a surface
is to delete an open disk. (A sphere with one perforation is
a closed disk; a sphere with two perforations is an annulus –
also called a cylinder.) To add a “handle” or “cross-handle”
to a surface is to perforate it twice, and then sew in an an-
nulus connecting the new boundaries. (Or equivalently, then
zip these boundaries to each other.) To add a “cross-cap” to a
surface is to perforate it once and then sew in a Möbius band
along the new boundary. (Or equivalently, then zip the two
halves of the boundary together.)

Adding a cross-handle is the same as adding two cross-
caps. (The Klein bottle is the union of two Möbius bands.)

Thm: Any surface is a finite union of components, each
being a sphere with a certain number of perforations, handles,
and cross-caps.

Pf: The starting collection of triangles is of this form. It
suffices to show that a single zipping (involving one or two
components) preserves this. First consider the case where en-
tire boundary components are zipped together: either join two
components or add a (cross-)handle. If the two edges to be
zipped are instead the two halves of one boundary compo-
nent, we add a cross-cap or remove a perforation. Finally, if
the edges to be zipped are just subarcs of the cases considered
so far, then the effect is the same except that we are left with
one or two more perforations.

Note that adding a cross-cap (or a cross-handle) makes a
component non-orientable. An orientable component is thus
Σg,k, a sphere with g ≥ 0 handles and k ≥ 0 perforations.
On a non-orientable component there is no way to distinguish
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handles from cross-handles. Thus it is has the form Nh,k, a
sphere with h ≥ 1 cross-caps and k ≥ 0 perforations. We can
restate the classification as follows.

Thm: A connected surface has the form Σg,k if orientable or
Nh,k if nonorientable.

Note that the closed nonorientable surfaces Nh,0 cannot be
embedded in R3, while all the other types can be.

The Euler number of a triangulation is χ := V − E + F.
This is clearly the sum of the Euler numbers of the compo-
nents. For a single triangle χ = 1. Zipping a pair of edges
leaves F unchanged and decreases E by one; the effect on V
varies. But tracing through the cases considered above shows
that the Euler number depends only on the topology. Indeed
χ
(
Σg,k

)
= 2 − 2g − k while χ

(
Nh,k

)
= 2 − h − k. When thought

of as an invariant of a topological space, χ is called the Euler
characteristic.

Note that the topological type of a connected surface is thus
determined by its orientability, its Euler number χ, and its
number k of boundary components.

B19. Gauss–Bonnet: global forms

Recall that a regular region R on a smooth surface M in R3

is compact with piecewise smooth boundary. Every point in R
has a neighborhood with an orthogonal parametrization, and
R can be triangulated by triangles, each containted in such a
parametrized neighborhood. To integrate a function f over R,
we sum over the triangles:∫

R
f dA =

∑∫
Tk

f dA =
∑∫

x−1
k (Tk)

f
√

det gk duk dvk.

Note that our local form of Gauss–Bonnet applies to each tri-
angle:

∫
T K dA = 2π − TC(∂T ).

Consider first a closed surface R = M. Counting edges
of triangles gives 2E = 3F, so χ(M) = V − F/2. Now we
sum the Gauss–Bonnet relation over all triangles. Each edge
is used twice, with opposite orientations, so the terms

∫
κg ds

cancel out. Thus
∫

M K dA equals the sum over all triangles of
a + b + c − π, where a, b, c are the interior angles. This is the
sum of all interior angles minus πF. But grouping the angle
sum around the vertices, it is 2πV . Thus we get∫

M
K dA = 2π(V − F/2) = 2πχ(M).

An alternative way of doing the bookkeeping is to start with
total charge 2πχ(M) by putting charges +2π at each vertex and
in each face and −2π on each edge. Then move the charges
from the vertices and edges into the faces, based on angles and
total curvatures. We are left with charge in each face, equal
(by the local form of Gauss–Bonnet) to

∫
K.

For a general region R, we do the same thing. But along
boundary edges,

∫
κg ds does not cancel out. Similarly, at

boundary vertices, the sum of interior angles is not 2π. Also
2E = 3F must be corrected by the number of boundary edges.
Putting it all together, we get:∫

R
K dA = 2πχ(R) − TC(∂R).

This is the most general form of Gauss–Bonnet, with the pre-
vious versions (for disks and closed surfaces) as special cases.
There are several immediate applications.

• Any closed surface in R3 with K > 0 has χ > 0 so it is
homeomorphic to a sphere or a projective plane; if it is
embedded it must be a sphere.

• If there are two closed geodesics on a surface with K >
0, then they intersect (because otherwise they would
bound an annulus with χ = 0). (Note that Lyusternik
and Shnirelman proved that any sphere has at least three
different simple closed geodesics.)

• A simple closed geodesic on a surface with K ≤ 0 can-
not bound a disk to either side (because such a disk has∫

K = 2π).

• There is no geodesic 1-gon or 2-gon (disk) on a surface
with K ≤ 0 (because geodesics that are tangent coin-
cide, so the exterior angles are not π but strictly less).

• The angle excess of a geodesic triangle has the same
sign as the average (or total) Gauss curvature in the tri-
angle.

B20. The Gauss image and total absolute curvature

The Gauss–Bonnet theorem shows that K is a density – im-
portant is its integral over a region. There is also an extrinsic
interpretation.

Near any point p ∈ M where K , 0 the Gauss map ν is
locally an immersion M → S2 – orientation-preserving if K >
0 and orientation-reversing if K < 0. Its Jacobian determinant
K = det Dν gives the factor by which area is stretched – here
we mean an “algebraic” signed area. (Think about curvature-
line coordinates.)

We can say
∫

R K dA equals the signed area of ν(R) ⊂ S2.
(And we can recover K(p) as the limit of area

(
ν(R)

)
/ area(R)

as the region R shrinks down to the point p.)
Using the appropriate notion of area with multiplicities, we

can say
∫

R K dA = area(ν|R) for any region R ⊂ M.
Consider a closed surface M ⊂ R3. An analog of the Jor-

dan curve theorem says that it divides space into one bounded
and one unbounded region; we can orient it with the outward
unit normal (pointing into the unbounded region). Thus M is
necessarily an orientable surface of some genus g ≥ 0.

By Gauss–Bonnet, the area of the Gauss image ν(M) in S2

equals 2πχ = 4π(1 − g). That is, the Gauss map covers the
sphere 1 − g times (in an oriented sense) – the degree of the
Gauss map is 1 − g. By degree theory, almost every point
w ∈ S2 has finitely many preimages, 1 − g of them if counted
with signs. That is, if there are k preimages with K > 0 then
there are k + g − 1 with K < 0.

(Note that the points with normal ν = ±w are exactly the
critical points of the function 〈·,w〉 : M → R.)

Now consider bringing a plane with given normal w ∈ S2

in from infinity until it first touches M. Any point of contact
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p ∈ M has K ≥ 0, since M stays stays to one side of the plane.
This means every point w ∈ S2 has at least one preimage with
K ≥ 0. (That is, k ≥ 1 in the counts above.) Let M± denote the
regions where ±K > 0. Then we have

∫
M+

K dA ≥ 4π. With
Gauss–Bonnet, this gives

∫
M−

K dA ≤ −4πg. Subtracting these
gives

∫
M |K| dA ≥ 4π(1 + g).

Equality holds in these last three inequalities if and only if
all points p ∈ M with K > 0 are extreme on the convex hull.
Such a surface is called tight. An interesting theory of tight
surfaces characterizes them, for instance, as exactly those sur-
faces having the two-piece property of being cut into no more
than two pieces by any plane.

Now consider the case that K > 0 holds on all of M. (So by
Gauss–Bonnet, M is a sphere and

∫
K dA =

∫
|K| dA = 4π.)

The Gauss map is bijective, indeed a diffeomorphism M →

S2. Each point p ∈ M is an extreme point on the convex hull,
that is, M is globally convex (as we mentioned before.

The results above on total absolute curvature do not hold
for abstract surfaces. For instance, R2/Z2 is a torus with a flat
(K ≡ 0) metric. An abstract surface of genus g > 1 can be
given a hyperbolic metric with K ≡ −1. By Gauss–Bonnet its
area is then −2πχ = 4π(g − 1).

B21. Developable Surfaces

We now want to consider a surface M ⊂ R3 with K ≡ 0.
Each point on M is parabolic – a closed subset P ⊂ M consists
of planar points; the open complement U := M r P consists
of nonumbilic points. (Note the example of a triangle joined
to three cylinders as in do Carmo; the example of a cylinder
where P is, say, a Cantor set (×R); and the example of two
cones where P is a single line at which the ruling is Lipschitz
but not C1 as in Kühnel.)

We follow a paper of Massey, as summarized in do Carmo’s
book.

At each p ∈ U there is a unique asymptotic direction. Inte-
grating these, we foliate U by a unique family of asymptotic
lines. The first claim is that these curves are straight lines in
space. Of course, along these asymptotic curves which are
also lines of curvature, the surface normal ν is constant. (But
compare top curve of round torus – asymptotic=curvature line
of parabolic points, but not straight – need to know conormal
derivative of K vanishes.)

Proof: Locally on U we can use curvature-line coordinates
where, say, the u-curves are the asymptotics. Then ν is a func-
tion of v alone. Now consider the real-valued function 〈x, ν〉
on U. Since xu ⊥ ν and νu ≡ 0, its u-derivative vanishes,
so it is a also function of v alone: 〈x, ν〉 = ϕ(v). Differenti-
ating gives 〈x, νv〉 = ϕ′(v). Note that νv , 0 since we are at
nonplanar points; of course νv (like ν) is constant along each
asymptotic curve. Thus each of these equations is the equa-
tion of some plane in space (depending on v); the planes are
orthogonal. The u-curve v = const. lies in the intersection line
of these planes.

We next claim that we may assume u is the arclength pa-
rameter along each u-curve (asymptotic line).

Proof: Recall that in curvature-line coordinates with g =( E 0
0 G

)
and h =

( L 0
0 N

)
, the Codazzi equations become Lv =

HEv and Nu = HGu. Here we have L ≡ 0, so Ev ≡ 0, meaning
that E is a function of u alone. Thus defining s =

∫ √
E du

(independent of v), this is arclength along each u-curve. Then
(s, v) are equally valid curvature-line coordinates, where g =( 1 0

0 G
)

and h =
( 0 0

0 N
)
.

The condition E ≡ 1 means that the new coordinates are
not only curvature-line coordinates but also simultaneously
geodesic parallel coordinates. As before we write G = a2

(with a = |xv|) and have K = −auu/a. Thus here auu = 0,
meaning that a is a linear function along each asymptotic line
(that is, for each v).

Now consider again the Codazzi equation Nu = HGu =

2Haau, where the mean curvature satisfies 2H = N/G =

N/a2. Combining these gives

Nu

N
=

au

a
,

meaning that for each v (i.e., along each asymptotic curve), N
is a constant multiple of a. That is N = c(v)a. Finally consider
the principal radius of curvature r = 1

2H = a2

N = a
c(v) in the xv

direction. This (like a and N) is a linear function along each
asymptotic line.

Lemma: An asymptotic line through a point p ∈ U, even if
extended indefinitely, never reaches P.

Proof: The mean curvature H is continuous on M. It van-
ishes on P but along any asymptotic line in U is the (nowhere
vanishing) reciprocal of a linear function.

Prop: The boundary ∂U = ∂P ⊂ M is a union of open line
segments. (Note: might be infinite union!)

Proof: Consider a boundary point p and some neighbor-
hood V parametrized as a graph over TpM. The set U ∩ V is
foliated by lines, which in the projection do not cross. Thus in
a smaller neighborhood V ′ of p their directions are given by a
Lipschitz function. Thus (consider the lines `pi through points
in U ∩ V ′ approaching p) there is a a well-defined limiting
direction at p. Any point in V along the resulting line `p is a
limit of points along the `pi and in particular is in ∂U (but it
cannot be in U because then all of `p would be).

Thm: A complete surface with K = 0 is a cylinder over
some plane curve.

Proof: First we claim that the direction of the asymptotic
lines is locally constant on U. Along any line, the radius of
curvature is a linear function, which can never vanish on a
smooth surface. Thus r is constant on each line. It follows
from the equations above (in local coordinates) that a = |xv|

is also constant, implying that xv is constant along each line.
That is, 0 = xvu = xuv. Thus xu (which we know is constant
along each line, of course) is locally constant as claimed.

At points of ∂U we defined lines whose direction was a
limit; using the Lipschitz condition, we find the direction is
actually locally constant on U ∪ ∂U. (We don’t get, say, a
Cantor function!)

Finally consider the interior Pr∂U of P. It consists of open
pieces of planes, bounded by complete lines. Each such piece
must then be an infinite strip, bounded by two parallel lines.
We can foliate it by further parallel lines.
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Thus, as claimed, all of M is foliated in this way by parallel
lines.
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