TU Berlin Fakultät II
Institut für Mathematik
     

Geometry I

       

  

Geometry Group

Members

Projects


Lehre
Verlaufspläne:
  Bachelor
  Diplom
Vergangene Semester

Seminare

Images, Videos, and Games

Virtual Math Labs

Software

Contact



      

Geometry I (Winter 2019 / 2020)

Lectures Alexander Bobenko Mon 14-16 MA 141
Thu 12-14 MA 141
Tutorials Jan Techter Wed 12-14 MA 648
Wed 14-16 MA 042

Contents

Non-euclidean geometry: projective, hyperbolic, Möbius.

This is a course of the Berlin Mathematical School held in english or deutsch (depending on the audience).

News

[2019, October 15]
See below for the homework policy.
The first exercise sheet will be online on Monday, October 21, and due Thursday, October 31.
[2019, October 01]
First lecture on October 14.
First tutorials on October 23.

Exercise sheets

Homework policy

  • To get a certificate for the tutorial, you need to satisfactorily complete 50% of the homework assignments.
  • The exercises are to be solved in groups of two people.
  • Your hand-ins have to be stapled together and contain names and matriculation numbers of all members of the group.
    We strongly reccommend you to hand in the homework in readable writing, since unreadable writing will not be graded.
  • The homeworks are due weekly on Thursday before(!) the start of the lecture.

Literature

  • Lecture notes by Boris Springborn
  • Blog Geometry I WS12 by Thilo Rörig
  • Nigel Hitchin's lecture notes on Projective Geometry.
  • V. V. Prasolov & V. M. Tikhomirov. Geometry. Translations of Mathematical Monographs, 200. American Mathematical Society, Providence, RI, 2001.
  • Felix Klein. Vorlesungen über höhere Geometrie. Grundlehren der Mathematischen Wissenschaften, 22. Springer-Verlag, Berlin, 1968.
  • Wilhelm Blaschke. Projektive Geometrie. Birkhäuser, Basel, 1954.
  • Dmitry Fuchs & Serge Tabachnikov. Mathematical Omnibus: Thirty Lectures on Classic Mathematics. American Mathematical Society, Providence, RI, 2007. Preprint.
  • Marcel Berger. Geometry. I & II. Springer-Verlag, Berlin, 1987.
  • Michèle Audin. Geometry. Springer-Verlag, Berlin, 2003.
  • H. S. M. Coxeter. Non-Euclidean Geometry. Mathematical Association of America, Washington, DC, 1998.
  • J. W. Cannon, W. J. Floyd, R. Kenyon, R. Parry. Hyperbolic Geometry. In: S. Levy (editor). Flavors of Geometry. Mathematical Sciences Research Institute Publications 31. Cambridge University Press, Cambridge, 1997. Pages 59-115. Download PDF from the MSRI.
  • D. V. Alekseevskij, E. B. Vinberg, A. S. Solodovnikov. Geometry of spaces of constant curvature. In: E. B. Vinberg (editor). Geometry II. Encyclopedia of Mathematical Sciences 29. Springer, Berlin, 1993. Pages 1-138.

(This list is not ordered according to any relevant criteria.)

Office hours

Alexander Bobenko Thu 14-15 MA 881
Jan Techter TBA

Jan Techter . 21.10.2019.