|
Project Home
Events
Matheon
TU Geometry
TU Discrete Geometry
|
|
|
People
Research
|
The aim of discrete differential geometry is the discretization
of classical differential geometry, that is, to find proper discrete
analogs of differential geometric notions and to develop at the discrete
level a corresponding theory. The classical theory of surfaces relies on
special parametrizations, such as curvature line parametrizations or
conformal
parametrizations. In applications, surfaces are often described by
surface meshes. In this project we search for practically relevant and
theoretically satisfying answers to questions like, for example:
“What does it mean for a surface mesh to be a curvature line
parametrization?”
|
Preprints
Publications
|
S. Sechelmann, T. Roerig, and A. I. Bobenko. Quasiisothermic Mesh Layout. In Hesselgren, L.; Sharma, S.; Wallner, J.; Baldassini, N.; Bompas, P.; Raynaud, J. (Eds.).
Advances in Architectural Geometry 2012.
2012, 344 p. 285 illus. in color. ISBN 978-3-7091-1250-2
|
|
E. Lafuente E, S. Sechelmann, T. Roerig, and C. Gengnagel. Topology Optimisation of Regular and Irregular Elastic Gridshells by means of a Non-linear Variational Method. In Hesselgren, L.; Sharma, S.; Wallner, J.; Baldassini, N.; Bompas, P.; Raynaud, J. (Eds.).
Advances in Architectural Geometry 2012.
2012, 344 p. 285 illus. in color. ISBN 978-3-7091-1250-2
|
|
Alexander I. Bobenko, Christian Mercat, and Markus Schmies.
Period matrices of polyhedral surfaces. In A. I. Bobenko and Ch. Klein, editors, Computational Approach to Riemann Surfaces, volume 2013 of Lecture Notes in Mathematics, pages 213-226. Springer, Berlin, 2011.
|
.
|
A. I. Bobenko, P. Schröder, J. M. Sullivan, G. M. Ziegler, editors.
Discrete
Differential Geometry. Oberwolfach Seminars, vol. 38,
Birkhäuser, Basel, 2008, 341 pages.
|
|
G. M. Ziegler.
Polyhedral surfaces
of high genus. Preprint, 2005. In: A. I. Bobenko, John
M. Sullivan, Peter Schröder (editors). Discrete
Differential Geometry. Oberwolfach Seminars vol. 38,
Birkhäuser, Basel, 2008, pp. 191-213.
|
|
G. M. Ziegler (with an appendix by Th. Schröder and N. Witte).
Convex Polytopes:
Extremal constructions and f-vector shapes. In: E. Miller,
V. Reiner, and B. Sturmfels, editors, Geometric
Combinatorics, Proc. Park City Mathematical Institute (PCMI)
2004, Amer. Math. Soc., Providence, RI, 2007, pages 617-691.
|
|
A. I. Bobenko.
Geometry of discrete integrability. The consistency approach,
pp. 43-53 in Faddeev et al. (eds.),
Bilinear Integrable Systems: From Classical to Quantum, Continuous to Discrete. Springer, 2006.
|
|
A. I. Bobenko, Peter Schröder.
Discrete Willmore flow.
Eurographics Symposium on Geometry Processing 2005, pp. 101-110.
|
|
A. I. Bobenko.
A conformal energy for simplicial surfaces,
pp. 133-143 in J. E. Goodman, J. Pach, Emo Welzl (eds.), Combinatorial and Computational Geometry, MSRI Publications
Vol. 52, Cambridge University Press, 2005.
|
|