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Abstract. Surfaces and curves in space are of central importance
in many application areas like Computer Graphics, Physics Simu-
lation or Architecture. While Differential Geometry is concerned
with smooth surfaces and curves, within a computer they are al-
ways represented as a finite set of points, connected by triangles
or line segments. This means that surfaces are really treated as
being polyhedral and curves are treated as polygons.

Discrete Differential Geometry is a very active area of research
where (instead of looking at discrete objects just as numerical ap-
proximations to the smooth ones) the goal is to develop a theory
of discrete curves and surfaces that has the same structure as the
corresponding smooth theory. Quite often this approach leads to
solutions that are “exact” on the discrete level rather than approx-
imations and provide highly efficient new algorithms.

These are the course notes of a sequence of six lectures held by
Ulrich Pinkall at “The 14th Summer School in Mathematics for
Graduate Students” at Peking University in 2009.

1. Introduction

An immersion
f : M → R3

is called a parametrized surface. Its Gauss map is given by

N = 1√
|fu|2+|fv |2

fu × fv.

The differential dN of N is tangent to f , since |N | = 1 and N is
orthogonal to f . Thus, there exists at each p ∈ M an endomorphism
A of R2, the so called shape or Weingarten operator, such that

dN = df ◦ A.
The permutability fuv = fvu implies that A is symmetric. Its eigenval-
ues are called the principal curvatures κ1 and κ2 of f , its determinant

K = detA = κ1κ2

is called the Gauss curvature, and half of its trace

H = 1
2
trA = 1

2
(κ1 + κ2)

Date: September 10, 2009.
Supported by DFG PI 158/4-6.

1



2 ULRICH PINKALL (NOTES BY G. PAUL PETERS)

is called the mean curvature of f at p.

2. Chebyshev nets and the wave equation

2.1. Definition. A smooth map f : M ⊂ R2 → Rn is called a Cheby-
shev net if all parameter lines are arc length parametrized, i.e., |fu| =
|fv| = 1. f is called a weak Chebyshev net if and only if there exists a

Chebyshev net f̃ such that f(u, v) = f̃(ϕ(u), ψ(v)).

2.2. Remark. f is a weak Chebyshev net if and only if |fu|v = |fv|u =
0, i.e., the partial derivative of f with respect to one parameter has
constant length along the parameter lines of the other parameter.

2.3. Planar Chebyshev nets. In this section we study planar Cheby-
shev nets. Chebyshev nets in space will be important for the surfaces
of constant Gaussian curvature in Section 3.
For a planar (i.e., R2 valued) Chebyshev net 0 = (|fu|2)v = 〈fu, fu〉v =
2〈fuv, fu〉 and similarly 0 = 〈fuv, fv〉 implies that

fuv = 0

at all points where the partial derivatives fu and fv of f are linearly
independent.
The partial differential equation fuv = 0 is easy to solve.

2.4. Lemma. fuv = 0 if and only if there exists functions ϕ and ψ
depending on u and v only such that

f(u, v) = ϕ(u) + ψ(v).

This implies in particular that planar immersed Chebyshev nets are of
the form f(u, v) = ϕ(u) + ψ(v).

Proof. (fu)v = 0 implies that there is a function g that depends on
u only, such that fu(u, v) = g(u). Integrating this equation implies
for all fixed v0 that f(u, v0) = ψ(v0) +

∫ u

0
g for some function ψ, thus

f(u, v) = ϕ(u)+ψ(v) if ϕ denotes the primitive of g with ϕ(0) = 0. ¤

2.5. Wave equation. In x, t coordinates, where u = x+t and v = x−t
one obtains 4fuv = f̃xx − f̃tt, where f̃(x, t) = f(u, v). Hence, fuv = 0
becomes the usual wave equation

f̃xx − f̃tt = 0.

In physics courses one often derives the wave equation as the continuum
limit of the following discrete problem. Consider a finite number of
identical massive balls fn ∈ R2 connected by identical springs. Then
Newton’s and Hook’s law imply that the acceleration f̃tt(t, n) of the
n–th ball satisfies

f̃tt(n, t) = k
m

(f̃(n− 1, t)− f̃(n, t)) + (f̃(n+ 1, t)− f̃(n, t)),
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where m denotes the mass and k the spring constant. In the continuum
limit

lim
ε→0

k

m
ε2 = c, c ∈ R

f̃x(x− ε
2
, t) = − lim

ε→0

f̃(n− 1, t)− f̃(n, t)

ε
, and

f̃x(x+ ε
2
, t) = lim

ε→0

f̃(n+ 1, t)− f̃(n, t)

ε
,

thus f̃tt = f̃xx.

2.6. Discrete wave equation. The discrete wave equation is the
piecewise linear case of the continuous wave equation. Consider as
in Lemma 2.4

f(u, v) = ϕ(u) + ψ(v),

with piecewise linear ϕ and ψ, i.e., linear on intervals [n, n + 1], n ∈
Z. Hence ϕ and ψ are completely determined by their values on the
integers Z and f solves the discrete wave equation

f(n,m) + f(n+ 1,m+ 1) = f(n+ 1,m) + f(n,m+ 1),

n,m ∈ Z. The piecewise linear map f maps fundamental squares
of the integer lattice Z × Z onto parallelograms. Since three vertices
of a parallelogram determine the fourth vertex, f is determined by its
values at time zero and time one, i.e., by f(n, n) and f(n+1, n), n ∈ Z.
These values thus constitute some Cauchy initial data for the discrete
wave equation a so called initial zigzag.

2.7. Project. Implement the discrete wave equation so that the move-
ment of the initial string is visualized. Use linear interpolation to get
a smooth movement.

3. K–Surfaces

3.1. Definition. The osculating plane of a curve γ : I ⊂ R → R3 at
s ∈ I is the linear space spanned by γ′(s) and γ′′(s). A curve on a
surface is called an asymptotic line if the osculating planes of the curve
are the tangent planes of the surface, i.e., γ′(s) and γ′′(s) span the
tangent plane.

3.2. Three theorems from Differential Geometry. We only state
the following three theorems from differential geometry.

3.3. Theorem. Every surface with Gauss curvature K < 0 allows as-
ymptotic line parametrizations f : M ⊂ R2 → R3, i.e., a parametriza-
tion whose parameter lines u 7→ f(u, v) and v 7→ f(u, v) are asymptotic
lines.
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3.4. Theorem. If f is an asymptotic line parametrization of a surface
with K < 0, then f is weak Chebyshev if and only if its Gauss curvature
K is constant.

Scaling the surface we may restrict to K = −1.

3.5. Corollary. If K = −1 then the surface allows Chebyshev asymp-
totic line parametrizations.

3.6. Theorem. If f is a Chebyshev asymptotic line parametrization of
a surface with Gaussian curvature K = −1 with Gauss map N , then
N is also a Chebyshev net.

3.7. Lorentz harmonic maps. If f : R2 → R2 is a weak Chebyshev
net, i.e., |fu|v = |fv|u = 0.This is equivalent to fuv = 0, if det(fu, fv) 6=
0. A map satisfying

fuv = 0

is called Lorentz harmonic, since the usual equation for harmonic maps
f̃xx + f̃tt becomes f̃xx − f̃tt = 0 if one chooses the standard Lorentzian
metric in the coordinates x = 1

2
(u+ v), t = 1

2
(u− v).

If f : M ⊂ R2 → R3 is an asymptotic line parametrization with K =
−1. Then f and its Gauss map N are weak Chebyshev nets. Hence

0 = 〈Nu, Nu〉v = 2〈Nu, Nuv〉 and 0 = 〈Nv, Nu〉v = 2〈Nv, Nuv〉,
which is, if N is an immersion, equivalent to

N ×Nuv = 0.

Am S2–valued map N : M ⊂ R2 → S2 ⊂ R3 that satisfies this equation
will be called Lorentz harmonic, since N × Nuv = 0 implies that the
tangential part of Nuv vanishes.
We will now prove that this condition already ensures that N is the
Gauss map of a surface of constant Gaussian curvature K = −1.

3.8. Theorem. Let M ⊂ R2 be simply connected, N : M → S2 with

N ×Nuv = 0

Then there exists f : M → R3, uniquely up to translations, such that

fu = N ×Nu, fv = −N ×Nv,

and f is (away from the points where it fails to be an immersion)
an asymptotic line parametrization of a surface of Gaussian curvature
K = −1 with Gauss map N .

Proof. A map f : M → R3 with df = (N ×Nu)du− (N ×Nv)dv exists
if and only if (N × Nu)v = (N × Nv)u = 0, which is equivalent to
N ×Nuv = 0.
Let p ∈ M and Jp the endomorphism of R2 which is mapped by df to
the rotation by π

2
, i.e.,

df ◦ J = N × df.
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Then det J = 1 and, since N × fu = −Nu and N × fv = Nv, we get

N × df = dN ◦ ( −1 0
0 1 ) = df ◦ A ◦ ( −1 0

0 1 )

and hence K = detA = − det J = −1.
The map f is an asymptotic line parametrization, because fuu = N ×
Nuu and fvv = −N ×Nvv is tangent to f . ¤

Theorem 3.8 above justifies the following definition.

3.9. Definition. A smooth map f : M ⊂ R2 → R3 is called a K–surface
(shorthand for surface of negative constant Gaussian curvature) if there
exists N : M → S2 such that

fu = N ×Nu and fv = −N ×Nv.

3.10. Remark. Note that this definition allows that f and N have sin-
gularities, i.e., points at which f or N fails to be an immersion.

4. Discrete Lorentz Harmonic Maps

In 3.7 we saw that Lorentz harmonic maps in S2 are, away from sin-
gular points, the same as weak Chebyshev nets in S2. That implies
that small coordinate quadrilaterals are spherical parallelograms. This
property translates easily into the discrete situation, and as we know
from Theorem 3.8 it also captures a characterizing property of K–
surfaces.

4.1. Spherical parallelograms. Let Nd, Nr, Nu, Nl ∈ S2 be a non
degenerated spherical quadrilateral whose edges are shorter than π

2
.

Such four points form a spherical parallelogram (a quadrilateral such
that opposite edges have the same length) if and only if (Nu + Nd) ×
(Nl +Nr) = 0, i.e., rotation by π about (Nu +Nd) or (Nl +Nr) maps
the quadrilateral onto itself.
The restriction to edges shorter than π

2
ensures that the entire quadri-

lateral lies in one hemisphere.

4.2. Definition. A discrete map N : Z2 → S2 is called Lorentz har-
monic if and only if

(Nu +Nd)× (Nl +Nr) = 0

and all edges are shorter than π
2
.

4.3. Notation. For discrete maps subscripts denote points in Z2. Spe-
cial subscripts are d = (m,n), u = (m + 1, n − 1), l = (m,n − 1),
r = (m + 1, n) for some m,n ∈ Z. The letters express the fact that if
one reflects Z2 at the line that intersects the first coordinate axes at
the angle π

4
(i.e., displays discrete uv–coordinates in xt–coordinates)

then the vertices of the coordinate quadrilaterals are naturally identi-
fied by their positions (d)own, (u)p, (l)eft, and (r)ight. Often, e.g,, in
Definition 4.2, equations are ment to hold for all admissible m,n ∈ Z.
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4.4. Definition. A discrete map f : Z2 → R3 such that opposite sides
of the quadrilaterals fd, fr, fu, fl have the same length is called a weak
Chebyshev net.

With this definitions we may reformulate Statement 8.1 as follows.

4.5. Lemma. If all edges of N : Z2 → S2 are shorter than π
2
, then N

is discrete Lorentz harmonic if and only if N is weak Chebyshev.

To solve the equation (Nu +Nd)× (Nl +Nr) = 0 for the fourth point
Nu we introduce quaternions.

4.6. Definition. The real four dimensional algebra H = { r+xi+ yj+
zk | r, x, y, z ∈ R } with the multiplication rules i2 = j2 = k2 = ijk =
−1 is called the (non–commutative) field of quaternions. We identify
R3 with the set of imaginary quaternions Im H = {xi + yj + zk |
x, y, z ∈ R }. The conjugate q̄ of a quaternion q ∈ H is given by
r + xi + yj + zk = r − xi − yj − zk and the length of a quaternion is
|q| =

√
qq̄.

4.7. Exercise. Check that

a) |qp| = |q||p| for all q, p ∈ H,
b) vw = −〈v, w〉+ v × w, for all v, w ∈ Im H, and
c) q2 = −1 is equivalent to q ∈ Im H and |q| = 1.

4.8. Theorem. Let q ∈ H\{0} and let v ∈ R3 = Im H and α ∈ R such
that |v| = 1 and q = (cos α

2
+ sin α

2
v)|q|. Then

R3 3 y 7→ qyq−1 ∈ R3

is a rotation about v by the angle α. The rotation determines q up to
multiplication by a real number.

Proof. The map is well defined since ȳ = −y and q−1 = q|q|−2 implies

qyq−1 = −qyq−1. The rotation of y about v by the angle α is given by

R(y) = 〈y, v〉v + cos(α)(y − 〈y, v〉v) + sin(α)v × y.

On the other hand

qyq−1 = qyq̄|q|−2

=
(
cos

(
α
2

)
+ sin

(
α
2

)
v
)
y
(
cos

(
α
2

)
− sin

(
α
2

)
v
)

=
(
cos2

(
α
2

)
y − sin2

(
α
2

)
vyv

)
+ sin

(
α
2

)
cos

(
α
2

)
(vy − yv)

use vy − yv = 2v × y and vyv = −2〈v, y〉v − yvv = −2〈v, y〉v + y

= (cos2
(

α
2

)
− sin2

(
α
2

)
)y + 2 sin2

(
α
2

)
〈v, y〉v + sin(α)v × y

= R(y)

¤
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4.9. Corollary. A discrete Lorentz harmonic map N : Z2 → S2 is ob-
tained from an initial zigzag by

Nu = (Nl +Nr)Nd(Nl +Nr)
−1.

4.10. Project. Implement an algorithm to construct a Lorentz har-
monic map from an initial zigzag with jReality. Visualize the time
evolution t ∈]−∞,∞[ of masses i = 0, . . . n at (i+ t, i− t) coupled by
rubber band.

5. Discrete K–Surfaces

In analogy to Definition 3.9 we define discrete K–surfaces as follows.

5.1. Definition. A map f : Z2 → R3 is called a discrete K–surface if
and only if there exists a discrete map N : Z2 → S2 such that fr−fd =
Nd ×Nr and fl − fd = −Nd ×Nl. N is called the Gauss map of f .

Otherwise said, edges of f are the cross product of the edges of N
with either one of the adjacent vertices. The definition of K–surfaces
is justified by the following analoguous theorem to Theorem 3.8.

5.2. Theorem. Let N : Z2 → S2 be a discrete map and assume that
the edges of the quadrilaterals Nd, Nr, Nu, Nl ∈ S2 are shorter than π

2
.

Then there exists a discrete K–surface f : Z2 → R3, i.e.,

(5.1) fr − fd = Nd ×Nr and fl − fd = −Nd ×Nl.

with Gauss map N if and only if N is Lorentz harmonic, i.e.,

(5.2) (Nu +Nd)× (Nl +Nr) = 0.

Proof. The formulas 5.1 yield two formulas that involve fu:

fu − fl = Nl ×Nu and fu − fr = −Nr ×Nu.

These yield the same value for fu if and only if

Nl ×Nu +Nr ×Nu = fr − fl = Nd ×Nr +Nd ×Nl = 0,

which is equivalent to 5.2. ¤

In the continuous case an asymptotic line parametrization is charac-
terized by the second partial derivative fuu and fvv being tangent to f ,
cf. 3.1. The discrete version is the following.

5.3. Definition. A map f : Z2 → R3 is called a discrete asymptotic
line parametrization if a vertex fmn of f and its four adjacent vertices
f(m,n−1), f(m+1,n), f(m,n+1), and f(m−1,n) lie in a plane.

5.4. Theorem. Let f : Z2 → R3 be a discrete K–surface. Then f is a
weak Chebyshev asymptotic line parametrization.
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Proof. The formulas 5.1 show that the four adjacent edges of a vertex
fmn are all orthogonal to the Gauss map at this vertex Nmn.
Lemma 4.5 implies that N is a weak Chebyshev net, and |fu − fl| =
|Nl ×Nu| = | sin(∠(Nl, Nu))| implies that f is also a weak Chebyshev
net. ¤

5.5. Project. Implement an algorithm to construct a discrete K-surfaces
from an initial zigzag.

Discrete K–surfaces are very stable in the sense that they look almost
periodic. This behavior is due to an infinite sequence of conservation
laws.

6. Special Initial Conditions for Discrete K–Surfaces

The Gauss map N of a discrete K–Surface is, by Corollary 4.9 com-
pletely determined by an initial zigzag, i.e., the values at time zero
N(n, n) and time one N(n+1, n). Suppose that we start with a closed
zigzag, i.e., N(n, n) and N(n + 1, n) are periodic in n with the same
period. Then the following initial conditions ensure that the corre-
sponding K–surface is also a cylinder, because the symmetry of the
initial condition rules out the translational periods that may possibly
occur when Theorem 3.8 is applied.

(1) At time t = 0 the polygon is collapsed to a point, i.e., N(n, n)
is constant. At time t = 1 the center of mass of the polygon
lies on the axis of the fixed point. This then implies that the
discrete K–surface f corresponding to N contains a planar strip
along the curve f(n, n), i.e., all tangent planes along that curve
are equal.

(2) The polygon is initially at rest, i.e., vertices Nd where d = (n, n)
at time t = 0 are in the center of the great circle through the
adjacent vertices Nl and Nr at time t = 1, because then Nl,
Nd, Nr, Nd form a spherical parallelogram, which implies that
Nu = Nd, i.e., vertices at time t = 0 and t = 2 coincide.

Linear dependence of Nl +Nr and Nd implies

fr − fd = Nd ×Nr = Nd × (Nr − (Nr +Nl))

= −Nd ×Nl = fl − fd.

Hence fr = fl, which means that the surface has a cone point
at time t = 1.

6.1. Project. Implement an algorithm to construct a discrete K-surfaces
from the special initial conditions.

7. Napier’s Analogy

In order to better understand the geometry of a discrete Lorentz har-
monic map, i.e., a quadmesh consisting of spherical parallelograms we
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like to derive a fundamental formula of spherical trigonometry, which
is known as Napier’s Analogy.

7.1. Theorem (Napier’s Analogy). Consider a spherical triangle, i.e.,
the intersection of three hemispheres whose sides have length a, b, and
c with opposite angles α, β, and γ. Then

cos
(

a−b
2

)
cos

(
a+b
2

) = tan
(

α+β
2

)
tan

(
γ
2

)
7.2. Remark. Usually there are a lot of Napier’s Analogies which can
be derived from the one above applying it to the triangles which are
obtained taking the complement of one of the defining hemispheres or
interchanging the role of angles and side lengths.

7.3. Discrete moving frames. We like to give a proof in the spirit
of discrete differential geometry.
Recall, that F = (γ, T,N) : I → SO(3) is called an orthonormal moving

frame of an oriented spherical curve γ : I ⊂ R → S2 if T = γ′

|γ′| .

Identifying the standard basis of R3 = Im(H) with the quaternions
i, j, k, cf. 4.6, one obtains

γ = F i, T = F j, N = Fk.

Let γ : Z → S2 be a discrete oriented curve. At each vertex γm one
has an incoming tangent vector T2m and an outgoing tangent vector
T2m+1. Using the representation of rotations in R3 in Theorem 4.8 we
call Fm ∈ H a frame of γ if

γm = F2miF−1
2m = F2m+1iF

−1
2m+1,

Tm = FmjF−1
m ,

Nm = FmkF−1
m .

The outgoing frame F2m+1, at the vertex γm at which the edges form
an angle of α, is he incoming frame F2m rotated about γm by α, i.e.,

F2m+1 = F2m

(
1 + i tan

(
α
2

))
.

The incoming frame F2m+2 of the vertex γm+1 is the outgoing frame
F2m+1 at the vertex γm rotated about N2m by the length of the con-
necting edge δ, i.e.,

F2m+2 = F2m+1

(
1 + k tan

(
δ
2

))
.

proof of Theorem 7.1. Treat a triangle with edge lengths a, b, c and
internal angles α, β, γ as a 3–periodic discrete curve. Then Fm =
±Fm+6 implies F−1

m+5Fm ∈ R⊕ Rk.
The angles between the edges of the triangle are the outer angles, i.e.,
π − α, etc. Using tan π−α

2
= cot α

2
we get(

1 + i cot β
2

) (
1 + k tan a

2

) (
1 + i cot γ

2

) (
1 + k tan b

2

) (
1 + i cot α

2

)
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for F−1
m+5Fm. The vanishing of the i–part is Napier’s Analogy. ¤

8. Spectral Parameter of a Lorentz Harmonic Map

8.1. Spherical parallelograms. Applying Napier’s Analogy 7.1 to a
spherical parallelogram with edges δ and δ̃ and inner angles ϕ and ϕ̃
yields

tan ϕ
2

tan ϕ̃
2

=
1 + tan δ

2
tan δ̃

2

1− tan δ
2
tan δ̃

2

8.2. Associated Family and spectral parameter. So given a dis-
crete Lorentz harmonic map changing the side lengths δ and δ̃ such

that the value of tan δ
2
tan δ̃

2
does not change one gets a new Lorentz

harmonic map with these new side lengths and the same angles. This
amounts to scaling by λ and 1

λ
in the coordinate tan δ

2
, which is stere-

ographic projection of eiδ. This family of Lorentz harmonic maps is
called the associated family of the given Lorentz harmonic map and
the parameter λ is called the spectral parameter.

9. Discrete Pendulum equation

9.1. sine–Gordon equation. A smooth K–surface is completely de-
termined by the angle between its asymptotic lines ϕ and its constant
Gauss curvature K < 0. The Gauss–Codazzi equations for an as-
ymptotic line Chebyshev parametrization reduce to the sine–Gordon
equation

ϕuv = −K sinϕ.

9.2. Pendulum equation. The sine–Gordon equation in xt–coordinates
is ϕxx − ϕtt = −4K sinϕ. For surfaces of revolution the angle ϕ is in-
dependent of x and one gets the pendulum equation

ϕtt = 4K sinϕ.

9.3. Discrete pendulum equation. We may thus derive a discrete
pendulum equation from discrete K–surfaces. The angles between the
asymptotic lines are equal to the angles in the parallelogram of the
Gauss map of the K–surface. The angles at a vertex of the Gauss map
of a discrete K–surface satisfy

ϕu + ϕd + ϕr + ϕl = 2π.

Because the surface and its Gauss map are rotationally symmetric along
the x–coordinate ϕl = ϕr. Writing indices for the t–coordinate only
ϕd = ϕn−1, ϕu = ϕn+1, and writing ϕ̃n = ϕl = ϕr one gets

ϕn+1 − 2ϕn + ϕn−1 = −2(ϕn + ϕ̃n)

modulo 2π. Since the Gauss map is Lorentz harmonic the quadrilateral
with inner angles ϕn and ϕ̃n are parallelograms. Thus the equation
derived in 8.1 holds.
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Writing K = tan δ
2
tan δ̃

2
this yields

tan
ϕn + ϕ̃n

2
=

tan ϕn

2
+ tan ϕ̃n

2

1− tan ϕn

2
tan ϕ̃n

2

=
tan ϕn

2
+ 1+K

1−K
(tan ϕn

2
)−1

1− 1+K
1−K

=
(1−K) sin2 ϕn

2
+ (1 +K) cos2 ϕn

2

−2K sin ϕn

2
cos ϕn

2

=
1 +K cosϕn

−K sinϕn

Discrete K–surfaces thus yield the following discrete pendulum equation

(DP) ϕn+1 − 2ϕn + ϕn−1 = −4 arg(1 +Keiϕn)

This is similar to the discretization of the pendulum equation one gets
by the Verlet–method :

(VP) ϕn+1 − 2ϕn + ϕn−1 = −4K sin(ϕn).

Both methods yield symplectic integrators. That means the first order
transformation

T : R2 → R2, T (ϕn−1, ϕn) = (ϕn, ϕn+1)

induced in the phase space satisfies det(T ′) = 1, or otherwise said, T
leaves the symplectic form det on R2 invariant. This holds, because
both are of the form T (x, y) = (y, h(y)− x).
In contrast to the Verlet–integrator (VP) the integrator (DP) obtained
from discrete K–surfaces is integrable in the sense that it posseses a
constant of the motion, namely the monodromy of the Gauss map
along the x–axis. This is a time independent rotation, because the ro-
tational symmetry of the initial condition is preserved by the geometric
construction (completion of spherical parallelograms).

9.4. Theorem. The function

(9.1) H(ϕn−1, ϕn) =
(
cos

(
ϕn

2
− ϕn−1

2

)
+K cos

(
ϕn

2
+ ϕn−1

2

))2

is constant under the evolution of the discrete pendulum equation (DP),
i.e.,

H ◦ T = H, where T

(
ϕn−1

ϕn

)
=

(
ϕn

2ϕn − 4 arg(1 +Keiϕn)− ϕn−1

)
Proof. The intrinsic geometric data of the Gauss map (the angles ϕn

and the sidelengths δ and δ̃ of the spherical parallelograms) of a surface
of revolution is 1–periodic in x–direction. The monodromy along the
x–axis is a rotation. This rotation is, in the sense of Theorem 4.8,
represented by the quaternion

λ =
(
1 + k tan δ

2

) (
1 + i cot ϕn−1

2

) (
1 + k tan δ̃

2

) (
1 + i cot ϕn

2

)
This can be obtained with the methods introduced in the proof of
Napier’s Analogy, Theorem 7.1.



12 ULRICH PINKALL (NOTES BY G. PAUL PETERS)

Let ω denote the angle of rotation represented by λ, then one may
check that

H(ϕn−1, ϕn) = (1 + tan2 δ
2
)(1 + tan2 δ̃

2
)(tan ω

2
+ 1)−1.

¤

The evolution T of the Verlet–integrator of the pendulum equation (VP)
is the so called standard map of chaos theory, which should be inter-
preted in the context of the KAM–theorem as a perturbation of the
integrable discrete pendulum equation (DP).
Figures 1 and 2 show (for K = .04 and K = .3, respectively) or-
bits in phase space obtained by the Runge–Kutta method, the Verlet–
integrator (VP), and the integrable discrete pendulum equation (DP).
The integrability of (DP) expressed in Theorem 9.4 implies that its
orbits have no choice but to lie on the level sets of the constant of the
motion H.

Figure 1. Phase space of the pendulum equation
(Runge–Kutta, VP, DP)

Figure 2. Phase space of the pendulum equation
(Runge–Kutta, VP, DP)
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