Point Vortex Dynamics on Closed Surfaces (M.S. Thesis)

Marcel Padilla
Master Thesis at TU Berlin (2018)
Supervisor: Ulrich Pinkall
Source code is available on
GitHub.

The theory of point vortex dynamics has existed since Kirchhoff's proposal in 1891 and is still under development with connections to many fields in mathematics. As a strong simplification of the concept of vorticity it excels in computational speed for vorticity based fluid simulations at the cost of accuracy. Recent finding by Stefanella Boatto and Jair Koiller allowed the extension of this theory on to closed surfaces. A comprehensive guide to point vortex dynamics on closed surfaces with genus zero and vanishing total vorticity is presented here. Additionally fundamental knowledge of fluid dynamics and surfaces are explained in a way to unify the theory of point vortex dynamics of the plane, the sphere and closed surfaces together with implementation details and supplement material.