Motivation

Electromagnetic modeling and discretization of electric devices often leads to linear system descriptions of the form

\[P_\pi z^{(\pi)}(t) + \ldots + P_1 z^{(1)}(t) + P_0 z(t) = 0, \quad P_i \in \mathbb{C}^{p,q}, \]

which are no longer passive, i.e., they generate energy in some frequency ranges.

Background

With \(P(\lambda) = \lambda^\pi P_\pi + \ldots + \lambda P_1 + P_0 \) being a polynomial of degree \(\pi \in \mathbb{N} \) the problem of passivation leads to a structured eigenvalue problem for the matrix polynomial

\[
\begin{bmatrix}
0 & P(\lambda) \\
-P^T(-\lambda) & H(\lambda)
\end{bmatrix},
\]

where \(H(\lambda) = H^T(-\lambda) \) itself is a fixed structured matrix polynomial that measures the energy.

Research highlights

- R. Byers, V. Mehrmann, and H.Xu *A structured staircase algorithm for skew-symmetric/symmetric pencils*: implementation of the algorithm as production software
- T. Reis *Circuit synthesis of passive descriptor systems - a modified nodal approach*
- S. Bora and V. Mehrmann *Perturbation theory for structured matrix pencils arising in control theory*

Future goals

- Generalize to polynomial systems (this includes non-regular problems, descriptor systems)
- Obtain discrete-time equivalents
- Implement passivity checking and passivity enforcement
- Exploit the structure of the original model

Internal MATHEON cooperations: D1, D13, C4

External cooperations: A. C. Antoulas (Rice U.), R. Freund (UC Davis), L. Rodman (College of William and Mary)

Industrial cooperations: CST GmbH Darmstadt, NEC Europe, IAV GmbH

Private funding: CST GmbH Darmstadt, NEC Europe