On a model hierarchy for gas flow simulation

Jeroen J. Stolwijk
Technische Universität Berlin

joint work with Volker Mehrmann

ERC Grant
Modeling, Simulation and Control of Multi-Physics Systems

Berlin, Sept. 29, 2014
Both the energy transition and the (gas) crisis in Eastern Europe are important topics today in Europe.

These topics force Europe to use and transport natural gas efficiently.

Figure: Goals of the energy transition in Germany [1].

Sources: gas-roads.eu, mobilexag.de, and nordkurier.de.
1. Introduction
2. Model Hierarchy
3. Error Analysis for the Pressure
 - Backward Error
 - Amplifying Factors
4. Statistical Analysis
5. Results
6. Conclusions
7. Future Work
Euler equations: continuity equation, impulse equation, and energy equation. In one dimension:

\[
\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho v) = 0,
\]

\[
\frac{\partial}{\partial t}(\rho v) + \frac{\partial}{\partial x}(p + \rho v^2) = -\frac{\lambda}{2D} \rho v |v| - g \rho h', \quad \text{(TA1)}
\]

\[
\frac{\partial}{\partial t} \left(\rho \left(\frac{1}{2} v^2 + e \right) \right) + \frac{\partial}{\partial x} \left(\rho v \left(\frac{1}{2} v^2 + e \right) + pv \right) = -\frac{k_w}{D} (T - T_w),
\]

together with the state equation for real gases

\[
p = R \rho T z(p, T).
\]

Here,
\[
\lambda = \text{pipe friction coefficient}, \ D = \text{diameter}, \ h' = \text{slope of the pipe}, \ e = \text{internal energy}, \ k_w = \text{heat conductivity coefficient}, \ T_w = \text{wall temperature}, \ R = \text{gas constant}, \ z(p, T) = \text{compressibility factor}.
\]
The model hierarchy is used to find an appropriate trade-off between accuracy and computational complexity. Moreover, only the algebraic models are (currently) feasible for optimization.
Figure: Realistic gas network with three compressors, together with the choice of models in the pipelines over time for a moderate accuracy [2].

The simplifications in the hierarchy lead to the algebraic model

\[\rho v = \rho_{in} v_{in}, \]

\[p(x) = \sqrt{p_{in}^2 - \frac{\lambda c^2}{2D} \rho v |\rho v|(x - x_0)}, \quad \text{(TA-ALG)} \]

\[T(x) = (T_{in} - T_w) e^{-\frac{k_w}{Dc_v \rho v} (x - x_0)} + T_w, \]

which is commercially utilized for optimization and now further examined.
Backward error: Computational rounding errors and measurement errors are interpreted as errors/perturbations in the input parameters.

For computing the pressure

$$ p(q) = \sqrt{p_{in}^2 - \frac{\lambda c^2}{2D} \rho v |\rho v| (x - x_0)} $$

the following algorithm can be applied:

\[
\begin{align*}
 z_1 &:= p_{in} \cdot p_{in}; \\
 z_2 &:= c \cdot c; \\
 z_3 &:= \lambda \cdot z_2; \\
 z_4 &:= 2 \cdot D; \\
 z_5 &:= \frac{z_3}{z_4}; \\
 z_6 &:= \rho \cdot v; \\
 z_7 &:= x - x_0; \\
 z_8 &:= z_5 \cdot z_6; \\
 z_9 &:= z_8 \cdot |z_6|; \\
 z_{10} &:= z_9 \cdot z_7; \\
 z_{11} &:= z_1 - z_{10}; \\
 p(q) &:= z_{12} = \sqrt{z_{11}}.
\end{align*}
\]

Every step causes a relative error of machine precision ε.
Thus,

\[\tilde{p}(q) = \sqrt{p_{in}^2(1 + \varepsilon_1)(1 + \varepsilon_{11}) - \frac{\lambda c^2(1 + \varepsilon_2)(1 + \varepsilon_3)}{2D(1 - \varepsilon_4)}(1 + \varepsilon_5)\rho v(1 + \varepsilon_6)(1 + \varepsilon_8)|\rho v|} \]
\[\cdot \sqrt{(1 + \varepsilon_6)(1 + \varepsilon_9)(x - x_0)(1 + \varepsilon_7)(1 + \varepsilon_{10})(1 + \varepsilon_{11})(1 + \varepsilon_{12})} \]
\[= \sqrt{(p_{in}(1 + \varepsilon_{13}))^2 - \frac{\lambda(1 + \varepsilon_{14})c^2}{2D}\rho v|\rho v|(x - x_0)}. \]

Including measurement errors for the input parameters gives

\[\tilde{p}(q) = \sqrt{(p_{in}(1 + \varepsilon_{p_{in}})(1 + \varepsilon_{13}))^2 - \frac{\lambda(1 + \varepsilon_\lambda)(1 + \varepsilon_{14})c^2(1 + \varepsilon_c)^2}{2D(1 - \varepsilon_D)}\rho v|\rho v|(1 + \varepsilon_\rho)^2(1 + \varepsilon_\nu)^2(x(1 + \varepsilon_x) - x_0(1 + \varepsilon_{x_0}))} \]
\[= \sqrt{(p_{in}(1 + \varepsilon_{15}))^2 - \frac{\lambda(1 + \varepsilon_{16})c^2}{2D}\rho v|\rho v|(x(1 + \varepsilon_x) - x_0(1 + \varepsilon_{x_0})).} \]

So the backward error for \(\tilde{p}(q) \) is given by

\[\tilde{p}(p_{in}, \lambda, x, x_0) = p(p_{in}(1 + \varepsilon_{15}), \lambda(1 + \varepsilon_{16}), x(1 + \varepsilon_x), x_0(1 + \varepsilon_{x_0})). \]
Amplifying Factors

Relative error in the pressure due to perturbations in the data:

\[
\frac{p(q) - p(q + \Delta q)}{p(q)} = \frac{\partial p(q)}{\partial p_{in}} \frac{p_{in}}{p(q)} \Delta p_{in} + \frac{\partial p(q)}{\partial \lambda} \frac{\lambda}{p(q)} \Delta \lambda + \frac{\partial p(q)}{\partial x} \frac{x}{p(q)} \Delta x + \frac{\partial p(q)}{\partial x_0} \frac{x_0}{p(q)} \Delta x_0 + O((\Delta q)^2)
\]

\[
= \left(\frac{p_{in}}{p(q)} \right)^2 \varepsilon_{15} - \frac{\lambda c^2 \rho^2 v^2 (x - x_0)}{4Dp(q)^2} \varepsilon_{16} - \frac{\lambda c^2 \rho^2 v^2 x}{4Dp(q)^2} \varepsilon_x - \frac{\lambda c^2 \rho^2 v^2 x_0}{4Dp(q)^2} \varepsilon_{x_0} + \text{h.o.t.}
\]

Amplifying factors for the relative error \((L = x - x_0)\):

![Amplifying factor A1](chart1.png)

![Amplifying factor A2](chart2.png)
Outline

1. Introduction
2. Model Hierarchy
3. Error Analysis for the Pressure
 - Backward Error
 - Amplifying Factors
4. Statistical Analysis
5. Results
6. Conclusions
7. Future Work
Univariate Reduced Quadrature (URQ) Method:

\[\mu_{f_{URQ}}(x_0) = W_0 f(x_0) + \sum_{i=1}^{n} W_i \left[\frac{f(x_i^+)}{h_i^+} - \frac{f(x_i^-)}{h_i^-} \right] \]

and

\[\sigma^2_{f_{URQ}}(x_0) = \sum_{i=1}^{n} \left\{ W_i^+ \left[\frac{f(x_i^+)}{h_i^+} \right]^2 + W_i^- \left[\frac{f(x_i^-)}{h_i^-} \right]^2 + W_i^\pm \frac{[f(x_i^+)-f(x_0)][f(x_i^-)-f(x_0)]}{h_i^+ h_i^-} \right\} . \]
The theoretical result for the pressure $p(x) = \sqrt{p_{in}^2 - \frac{\lambda c^2 L \rho v |\rho v|}{2D}}$ is illustrated using the URQ Method. The relative standard deviation $\frac{\sigma_x}{\mu_x}$ of the input parameters x is 0.5%.

\Rightarrow A length of 70 km is the absolute maximum (40 km is preferable).
1. Introduction
2. Model Hierarchy
3. Error Analysis for the Pressure
 - Backward Error
 - Amplifying Factors
4. Statistical Analysis
5. Results
6. Conclusions
7. Future Work
The error for the pressure in the algebraic model grows quickly if the pipeline length is increased.

This has been shown both theoretically and in a simulation.
1 Introduction
2 Model Hierarchy
3 Error Analysis for the Pressure
 • Backward Error
 • Amplifying Factors
4 Statistical Analysis
5 Results
6 Conclusions
7 Future Work
The work of Domschke/Kolb/Lang (2011) shows that a model hierarchy can be used to reach an appropriate trade-off between accuracy and computational complexity.

The algebraic model can be used safely for pipelines up to 70 km length.
Outline

1. Introduction
2. Model Hierarchy
3. Error Analysis for the Pressure
 - Backward Error
 - Amplifying Factors
4. Statistical Analysis
5. Results
6. Conclusions
7. Future Work
Future Work

▷ Perform the error analysis on the more advanced (time-dependent) models in the hierarchy.
▷ Write a user-friendly MATLAB toolbox that quickly determines which model can be used where in the network, based on an error analysis.
▷ Use model adaptivity to determine which model to use for a desired accuracy.
Any Questions?