Modelling Two-Phase Flows by Single Phase RANS and Population Dynamics

Jan Heiland

Seminar der AG ModNumDiff, TU Berlin

June 10, 2010
Table of contents

1 Introduction
 • Background
 • Motivation

2 Derivation of the Model
 • Mathematical Tools
 • Equations of Motion for the Phase
• Stirring of two fluids
• Reynolds number $Re \sim 30,000$
• In industrial applications:
 - continuous phase $\sim 90\%$
 - dispersed phase $\sim 10\%$
• Imagine droplets of oil swimming in water
Numerical simulation of the stirring process

Physical model that is simplified for simulations

- Two phases
- Phase interactions
- Inhomogeneous turbulent flow field

- One phase (mixture)
- Distribution of dispersion is determined by the flow of the mixture
- Low-fidelity turbulence modelling
- Numerical errors
Justification for the reduced model:

1. Volume fraction $\phi \sim 10\%$ of the dispersed phase is small
2. Physical properties (density, viscosity) of the phases are similar

And thus one assumes that:

- The mixture behaves like a single fluid
- Droplets simply move with the fluid
- No phase interaction
Manifold motivations of analysing the model:

- Quantify the validity regions
- Balance the numerical error and the modelling error
- Capture tendencies like overestimation
- Improve the model
Outline of the talk

Start with a microscopic for every droplet and do

1. Averaging
2. Summation of the phases
3. Modelling of interactions and turbulence
4. Modelling of the dispersed phase

to come up with a global macroscopic model for the mixture
Averaging of flow variables $f(t, x)$:

- e.g. time averaging:

$$\langle \psi \rangle(t, x) := \frac{1}{\hat{t}} \int_{t-\hat{t}}^{t} \psi(\tau, x) d\tau$$

with a suitable averaging period \hat{t}

- Properties

$$\langle \psi + \varphi \rangle = \langle \psi \rangle + \langle \varphi \rangle,$$

$$\langle \frac{\partial \psi}{\partial t} \rangle = \frac{\partial \langle \psi \rangle}{\partial t},$$

$$\langle \frac{\partial \psi}{\partial x_i} \rangle = \frac{\partial \langle \psi \rangle}{\partial x_i}.$$

- But in general

$$\langle \psi \varphi \rangle \neq \langle \psi \rangle \langle \varphi \rangle.$$
Decompositions of flow variables $\psi(t, x)$
- into averaged (mean) and fluctuating part:

$$\psi(t, x) = \langle \psi \rangle(t, x) + \psi'(t, x)$$

- with

$$\langle \langle \psi \rangle \rangle = \langle \psi \rangle \quad \text{and} \quad \langle \psi' \rangle = 0$$

- for the velocity ν and the stresses T

$$\nu = \langle \nu \rangle + \nu' \quad \text{and} \quad T = \langle T \rangle + T'$$

but not for the densities $\rho = \langle \rho \rangle$.
Phase-indicator function

\[\chi_d(t, x) = \begin{cases} 1 & \text{if } x \text{ is in the dispersed phase at time } t \\ 0 & \text{otherwise} \end{cases} . \]

Treating \(\chi_d \) as a generalized function one can find

[\[\frac{\partial \chi_d}{\partial t} + \mathbf{v} \cdot \nabla \chi_d = 0. \]

and justify the notation

\[\nabla \chi_d = n_d \frac{\partial \chi_d}{\partial n} . \]

The term \(\frac{\partial \chi_d}{\partial n} \) acts like a \(\delta \)-function by picking out the boundaries of the dispersed phase.
Putting all concepts together one can reason

\[\langle \chi_d \rangle = \phi \]
(Dispersed phase fraction)

\[\langle \chi_d \psi \rangle = \phi \langle \psi \rangle \quad \text{and} \quad \langle \chi_d \psi' \rangle = 0 \]

\[\langle \psi' \nabla \chi_d \rangle = 0 \]
(Boundary average)

which will be of major importance in the modelling.
For phase α in a multiphase flow one has

$$\frac{\partial \rho_\alpha}{\partial t} + \nabla \cdot \rho_\alpha \mathbf{v} = 0$$

$$\frac{\partial \rho_\alpha \mathbf{v}}{\partial t} + \nabla \cdot \rho_\alpha \mathbf{v} \mathbf{v} - \nabla \cdot T_\alpha - \rho_\alpha \mathbf{f} = 0$$

in the interior, with the tensor of stresses

$$T_\alpha = -p I + \mu_\alpha [\nabla \mathbf{v} + (\nabla \mathbf{v})^T]$$

and the interfaces the jump conditions

$$[[\rho_\alpha (\mathbf{v} - \mathbf{v}_s) \cdot n]] = 0$$

$$[[\rho_\alpha \mathbf{v} (\mathbf{v} - \mathbf{v}_s) \cdot n - T_\alpha \cdot n]] = \sigma \kappa n$$

ρ_α ... density
μ_α ... viscosity
\mathbf{f} ... volume force
\mathbf{v}_s ... interface \mathbf{v}
n ... normal vector
κ ... curvature
σ ... interfacial tension
Exemplarily for the dispersed phase for the continuum equation

\[\frac{\partial \rho_d}{\partial t} + \nabla \cdot \rho_d \mathbf{v} = 0 \]

Multiply by \(\chi_d \) and decompose \(\mathbf{v} = \langle \mathbf{v} \rangle + \mathbf{v}' \):

\[\chi_d \frac{\partial \rho_d}{\partial t} + \chi_d \nabla \cdot \rho_d \langle \mathbf{v} \rangle + \chi_d \nabla \cdot \rho_d \mathbf{v}' = 0 \]

Rearrange by product rule, e.g.

\[\chi_d \frac{\partial \rho_d}{\partial t} = \frac{\partial \chi_d \rho_d}{\partial t} - \rho_d \frac{\partial \chi_d}{\partial t} = \frac{\partial \chi_d \rho_d}{\partial t} + \rho_d \mathbf{v}_s \cdot \nabla \chi_d \]

Apply the averaging to the whole equation to cancel out fluctuating terms like

\[\langle \chi_d \nabla \cdot \rho_d \mathbf{v}' \rangle = \phi \nabla \cdot \rho_d \langle \mathbf{v}' \rangle = 0 \]
Result: The averaged continuum equation for the dispersed phase

\[
\frac{\partial \phi \rho_d}{\partial t} + \nabla \cdot \phi \rho_d \langle v \rangle = \langle [\rho_d (\langle v \rangle - v_s)] \rangle_d \cdot \nabla \chi_d.
\]

Similar actions for the momentum equation deliver:

\[
\frac{\partial \phi \rho_d \langle v \rangle}{\partial t} + \nabla \cdot \phi \rho_d \langle v \rangle \langle v \rangle - \nabla \cdot \phi T_d^* - \phi \rho_d f = \\
= \langle [\rho_d \langle v \rangle (\langle v \rangle - v_s) - T_d^*] \rangle \cdot \nabla \chi_d.
\]

with the tensor of turbulent stresses \(T_d^* := \langle T \rangle_d - \rho_d \langle v' v' \rangle \)

Replace the subscript \(d \) by \(c \) and \(\phi \) by \(1 - \phi \) to get these equations for the continuous phase as well.
The right hand sides contain the averaged phase interface conditions

- For the continuum:

\[
\langle [\rho_d(\langle v \rangle - v_s)]_d \cdot \nabla \chi_d \rangle = \langle [\rho_\alpha(\langle v \rangle - v_s) \cdot n] \rangle = 0
\]

- For the momentum:

\[
\langle [\rho_d\langle v \rangle(\langle v \rangle - v_s) - T^*_{dd}] \cdot \nabla \chi_d \rangle = \\
\langle [\rho_\alpha\langle v \rangle(\langle v \rangle - v_s) \cdot n - T^*_\alpha \cdot n] \rangle = \sigma^* \kappa n := M^*_d
\]

where \(\sigma^* \) is the turbulent interfacial tension.

- And for the equations corresponding to the continuous phase
Having introduced the symbols for the differences

\[\delta \rho = \rho_c - \rho_d \quad \text{and} \quad \delta^* = \langle T_c \rangle - \langle T_d \rangle - \delta \rho \langle v'v' \rangle \]

one can sum up the phase equations to get the equations of motion for the mixture

\[
\begin{align*}
\frac{\partial \rho_c}{\partial t} + \nabla \rho_c \langle v \rangle &= \frac{\partial \phi \delta \rho}{\partial t} + \nabla \phi \delta \rho \langle v \rangle \\
\frac{\partial \rho_c \langle v \rangle}{\partial t} + \nabla \rho_c \langle v \rangle \langle v \rangle - \nabla T^*_c - \rho_c f &= \frac{\partial \phi \delta \rho \langle v \rangle}{\partial t} + \nabla \phi \delta \rho \langle v \rangle \langle v \rangle - \\
&- \nabla \phi \delta T^* - \phi \delta \rho f + M^*_d + M^*_c.
\end{align*}
\]
T^* and M^* have to be modelled

Then a population balance equation $P(\phi, \langle v \rangle, T^*) = 0$ closes the system:

$$\frac{\partial \rho_c}{\partial t} + \nabla \rho_c \langle v \rangle = \frac{\partial \phi \delta \rho}{\partial t} + \nabla \phi \delta \rho \langle v \rangle$$

$$\frac{\partial \rho_c \langle v \rangle}{\partial t} + \nabla \rho_c \langle v \rangle \langle v \rangle - \nabla T_c^* - \rho_c f = \frac{\partial \phi \delta \rho \langle v \rangle}{\partial t} + \nabla \phi \delta \rho \langle v \rangle \langle v \rangle -$$

$$- \nabla \phi \delta T^* - \phi \delta \rho f + M_d^* + M_c^*$$

$$0 = P(\phi, \langle v \rangle, T^*)$$
For the simulation we assumed that ϕ is small and the phases are similar, e.g.

$$\delta_\rho \to 0, \quad \delta_T^* \to 0 \quad \text{and} \quad M_c^* \approx -M_d^*$$

which intuitively justifies the model that neglects the right hand side:

$$\begin{align*}
\frac{\partial \rho_c}{\partial t} + \nabla \rho_c \langle v \rangle &= \frac{\partial \phi \delta_\rho}{\partial t} + \nabla \phi \delta_\rho \langle v \rangle \\
\frac{\partial \rho_c \langle v \rangle}{\partial t} + \nabla \rho_c \langle v \rangle \langle v \rangle - \nabla T_c^* - \rho_c f &= \frac{\partial \phi \delta_\rho \langle v \rangle}{\partial t} + \nabla \phi \delta_\rho \langle v \rangle \langle v \rangle - \nabla \phi \delta_T^* - \phi \delta_\rho f + M_d^* + M_c^* \\
0 &= P(\phi, \langle v \rangle, T^*)
\end{align*}$$
For the simulation we assumed that ϕ is small and the phases are similar, e.g.

$$\delta_\rho \to 0, \quad \delta^*_T \to 0 \quad \text{and} \quad M^*_c \approx -M^*_d$$

which intuitively justifies the model that neglects the right hand side:

$$\frac{\partial \rho_c}{\partial t} + \nabla \rho_c \langle v \rangle = 0$$

$$\frac{\partial \rho_c \langle v \rangle}{\partial t} + \nabla \rho_c \langle v \rangle \langle v \rangle - \nabla T^*_c - \rho_c f = 0$$

$$0 = 0$$
Conclusion

- A framework that combines the macroscopic and the turbulence modelling in one equation system has been derived.
- The modelling error can be expressed explicitly.

And outlook

- Analysis of the asymptotic behavior $\delta \rho \to 0$.
- Inclusion of numerical errors.
- Design of observers for a robust extraction of values of interest from the computed flow variables.
Thanks to Volker Mehrmann for the support and thank you for your attention.

For suggestions and questions please contact me
