Co-Simulation and modal reduction for multifield problems in multibody dynamics

7th Workshop on Descriptor Systems
March 2005, Paderborn

Martin Arnold [martin.arnold@mathematik.uni-halle.de]
Martin Luther University Halle-Wittenberg,
Department of Mathematics and Computer Science
Institute of Numerical Mathematics

Andreas Heckmann [andreas.heckmann@dlr.de]
DLR German Aerospace Center
Institute of Robotics and Mechatronics, Vehicle System Dynamics Group, Oberpfaffenhofen

Outline

1. Co-Simulation for weakly coupled problems
 • Co-Simulation and Modular time integration methods
 • Stability, Convergence, Overlapping methods
 • Dynamical interaction of multibody systems and large elastic structures

2. A modal multifield approach in multibody dynamics
 • Flexible multibody systems
 • Piezoelectricity, Thermoelasticity, Coupled model equations
 • Modal reduction for multifield problems
 • Thermal response modes
 • Industrial case study: Machine tool
Co-Simulation: Motivation

Simulation of heterogenous systems (system dynamics, micro systems, …)

\[
M(q)\ddot{q} = f(q, \dot{q}) - B^T(q)\lambda \\
0 = b(q)
\]

BDF, DAE’s, wheel/rail contact, …

\[
\rho A\dddot{w} = -EI\dddot{w} + Tw'' + \delta(x - x_p(t))\lambda
\]

FEM, modal reduction, Newmark, …

Data exchange at discrete synchronisation points T_n
Co-Simulation: Modular time integration

\[M_1 \ddot{q}_1 = f_1(q_1, \dot{q}_1) - B_1^T \lambda \]
\[M_2 \ddot{q}_2 = f_2(q_2, \dot{q}_2) - B_2^T \lambda \]
\[0 = B_1 a_1 + B_2 a_2 + \ldots \]

(a) Solve \(1 \) with \(\lambda = \lambda_n \)
(b) Interpolation in \([T_n, T_{n+1}] \Rightarrow \bar{q}_1\)
(c) Solve \(2^+ \) with \(q_1 = \bar{q}_1 \)
(d) New contact force \(\lambda = \lambda_{n+1} \)

Modular time integration: Convergence

Extrapolation steps \(\longrightarrow \) modular time integration in part explicit

Deuflhard / Hairer / Zugck (1987):
- Convergence theory for half-explicit DAE time integration methods
- Contractivity condition to guarantee stability and convergence

- Subsystems: BDF, RK (stiffly accurate, implicit), error \(O(h_i^{k_i}) \)
- Extrapolation: from \([T_{n-r}, T_n] \) to \((T_n, T_{n+1})\), error \(O(H^{q+1}) \)
- Contractivity condition: \(L \alpha < 1/r \) with contractivity constant

\[\alpha := \max \| (B_2 M_2^{-1} B_2^T)^{-1} (B_1 M_1^{-1} B_1^T) \| \]

\(\Rightarrow \) Global error of modular method \(O(h_1^{k_1} + h_2^{k_2} + H^{q+1}) \)

Mechanics (A. 1999), Circuit simulation (Günther 1999), Fluid/structure (Steindorf, Matthies 2001)
Overlapping modular time integration

Classical Gauss-Seidel Extrapolation of λ
\[
M_1 \ddot{q}_1 = f_1(q_1, \dot{q}_1) - B_1^T \lambda \\
0 = b(q_1, q_2)
\]
\[
M_2 \ddot{q}_2 = f_2(q_2, \dot{q}_2) - B_2^T \lambda \\
0 = b(q_1, q_2)
\]

Stabilization $\alpha = \max \| (B_2 M_2^{-1} B_2^T)^{-1} (B_1 M_1^{-1} B_1^T) \| < 1$

- Nonlinear projection steps (Kübler, Schiehlen 2000)
- Overrelaxation (A., Günther 1999)

Overlapping Gauss-Seidel Extrapolation of q_2, λ
\[
M_1 \ddot{q}_1 = f_1(q_1, \dot{q}_1) - B_1^T \Lambda_1 \\
0 = b(q_1, q_2)
\]
\[
M_2 \ddot{q}_2 = f_2(q_2, \dot{q}_2) - B_2^T \Lambda_2 \\
0 = b(q_1, q_2)
\]
\[\alpha = 0\] possible with $\lambda(t) = (I - A_1 - A_2) \lambda(t) + A_1 \Lambda_1(t) + A_2 \Lambda_2(t)$

Overlapping modular time integration (II)
\[
\begin{aligned}
\dot{y}_i &= \varphi_i(y_1, \ldots, y_r, w), \quad (i=1, \ldots, r) \\
0 &= \gamma(y_1, \ldots, y_r, w)
\end{aligned}
\]

Macro step
- Integrate r subsystems separately with stage functions Y_i, W_i.
- Assign each constraint to $l \geq 1$ subsystems $0 = P_i^T \gamma(y, w)$.
\[
\begin{aligned}
\dot{y}_i &= \varphi_i(Y_i, W_i) \\
0 &= P_i^T \gamma(Y_i, W_i)
\end{aligned}
\], $(i=1, \ldots, r)$ \Rightarrow $y_i, P_i^T W_i$

- Linear combination with weights A_i:
\[
w(t) = \left(I - \sum_{i=1}^r A_i P_i P_i^T \right) w(t) + \sum_{i=1}^r A_i P_i P_i^T W_i(t)
\]

Theorem There are weights $A_i(t)$ such that the contractivity condition is satisfied with $\alpha = 0$.

Martin Arnold, Andreas Heckmann: Multifield problems in multibody dynamics
7th Workshop on Descriptor Systems, Paderborn, March 2005.
Co-Simulation: Passing manoeuvre on bridge

Data exchange (sampling interval 1.0 ms)
- Vertical displacements
- Contact forces

CPU-time (PIII, 500 MHz): 580.0 s

2. Modal multifield approach in multibody dynamics

Elements (Rigid and flexible) bodies, joints, forces, ...

Model equations Principles of classical mechanics

\[M(q)\ddot{q} = f(q, \dot{q}) - B^T(q)\lambda \]
with \(B(q) := \frac{\partial b}{\partial q}(q) \)

with (redundant) position coordinates \(q \)
Flexible multibody systems: Modal reduction

- **FEM Model**
 - FEM Results
 - Mass matrices
 - Stiffness matrices
 - Mode matrices

- **Modal reduction**
 - Volume integrals

- **User**
 - Dynamic loads

- **FATIGUE**
 - Covariance
 - Rainflow

- **FEMBS**
 - Modal reduction

- **MBS Model**

- **MBS Results**

Multifield problems: Thermoelasticity

Coupling of elastic deformation and temperature field by loads / heat sources

\[
M_r \ddot{q}(t) = f_r(q, \dot{q}, u, \dot{u}) \\
\rho \ddot{\dot{u}}(x, t) = \ldots + f_u(u, \dot{u}, \dot{\dot{u}}) \\
\dot{\phi}(x, t) = \ldots + f_\phi(q, \dot{q}, \dot{\phi})
\]

- **Example 1** Hot spot scenario

© LMF UniBw Hamburg
Multifield problems: Thermoelasticity (II)

Coupling of elastic deformation and temperature field by loads / heat sources

\[
\begin{align*}
M_r \ddot{q}(t) &= f_r(q, \dot{q}, u, \dot{u}) \\
\varrho \ddot{u}(x, t) &= \ldots + f_u(u, \dot{u}, \dot{\vartheta}) \\
\dot{\vartheta}(x, t) &= \ldots + f_\vartheta(q, \dot{q}, \dot{\vartheta})
\end{align*}
\]

Example 2 Disc with thermal loads

- 2D model
- Transient temperature field with time independent boundary conditions
- Neumann condition at right boundary
- Robin condition at left boundary

Multifield problem: Linear Material Constitution

G. Heckmann (1925)

\[
\begin{pmatrix}
\sigma \\
d \\
\eta
\end{pmatrix}
= \begin{pmatrix}
H_\varepsilon & -H_\varepsilon^T & -H_\lambda^T \\
H_\varepsilon & H_\varepsilon & H_p \\
H_\lambda & H_p^T & H_\alpha
\end{pmatrix}
\begin{pmatrix}
\varepsilon \\
\vartheta
\end{pmatrix}
\]
Modal multifield approach: Model equations

\[
\begin{pmatrix}
M_{uu} & M_{u\alpha} & M_{u\varphi} \\
M_{u\alpha} & M_{\alpha\alpha} & M_{u\alpha} \\
M_{u\varphi} & M_{u\alpha} & M_{\varphi\varphi}
\end{pmatrix}
\begin{pmatrix}
a_h \\
a_{\alpha} \\
\ddot{u}
\end{pmatrix}
=
\begin{pmatrix}
h_u \\
h_{\alpha} \\
h_{\varphi}
\end{pmatrix}
-
\begin{pmatrix}
0 \\
0 \\
K_{uu} + K_{u\alpha} + K_{u\varphi}
\end{pmatrix}
\begin{pmatrix}
\ddot{u} \\
\ddot{\alpha} \\
\ddot{\varphi}
\end{pmatrix}
\]

\[
K_{uu} = \int B_u^T H_c B_u \, dV \\
K_{u\alpha} = \int B_u^T \Phi^T \Phi \, dV \\
K_{u\varphi} = \int B_u^T H_e^T B_{\varphi} \, dV
\]

Thermal response modes

Finite element discretization of multifield equations

\[
M_{uu} \ddot{z}_u + D_{uu} \dot{z}_u + K_{uu} z_u = \ldots + h_u(z_u, \dot{z}_u, \ddot{z}_u)
\]

\[
C_{\theta\theta} \ddot{z}_\theta + K_{\theta\theta} z_\theta = \ldots + h_\theta(q, \dot{q}, z_\theta)
\]

Modal approach

1. Deformation field: Eigenmodes \((M_{uu} \lambda_j^2 + D_{uu} \lambda_j + K_{uu}) z_u^{(j)} = 0\),
 static modes \((M_{uu} \lambda_j^2 + D_{uu} \lambda_j + K_{uu}) z_u^{(j)} = h_u^{(j)}\), etc.

2. Temperature field: Thermal modes \((C_{\theta\theta} \kappa_i + K_{\theta\theta}) z_\theta^{(i)} = h_\theta^{(i)}\).

3. Coupling in multifield problem: Thermal response modes resulting from a static analysis \(K_{uu} z_u^{(i)} = h_u(\ldots, z_\theta^{(i)})\).
Thermal response modes: Disc with thermal loads

Comparison FEM vs. MMA

\[u_z(x_{101}, t), \ \vartheta(x_{101}, t) \]

Thermal and thermal response modes

1. [Image of temperature distribution 1]
2. [Image of temperature distribution 2]
3. [Image of temperature distribution 3]
4. [Image of temperature distribution 4]
5. [Image of temperature distribution 5]
6. [Image of temperature distribution 6]
7. [Image of temperature distribution 7]

Industrial application: Machine tool

- High speed: mounting of > 50,000 elements per hour
- Acceleration at tool center point: 4 g
- High precision: tolerances <100µm

Martin Arnold, Andreas Heckmann: Multifield problems in multibody dynamics 7th Workshop on Descriptor Systems, Paderborn, March 2005.
Industrial application: Machine tool (II)

Machine tool: Thermal response modes

- Long-term simulation with kinematics pre-defined by periodic input function
- Thermoelastic coupling defines quasi-stationary input $q(y)$ for heat equation
Machine tool: Thermal response modes (II)

Quasi-stationary temperature field

2 Steady state heat transfer FEM-solutions
⇒ 2 Thermal modes
⇒ 2 Thermal response modes

Machine tool: Thermal response modes (III)

Comparison FEM vs. MBS

Eigenvalue Analysis

Mechanical eigenmodes
\{ 90 Hz, 105 Hz, 114 Hz, ... 384 Hz, 387 Hz, 391 Hz \}

Thermal response modes
\{ 1694 Hz, 2368 Hz \}
Machine tool: Dynamical simulation

TCP: Tool center point
P2: Reference, moving along the machine base with pre-defined kinematics
Δr_3, Δz_3: Reference displacements of TCP without thermal loads

Summary

Simulation of coupled instationary problems in multibody dynamics

Co-Simulation: Coupling of simulation tools

- Modular time integration methods: Stability, Convergence
- Stabilization by overlapping techniques
- Application to weakly coupled problems

Modal reduction for multifield problems

- Coupled model equations: Piezoelectricity, Thermoelasticity
- Modal reduction: Thermal response modes
- Industrial case study: Machine tool

ECMI-Workshop “Numerical methods in multibody dynamics”
26.10.-28.10.2005, Bad Herrenalb, Kontakt: Prof. Dr. B. Simeon
NUMDIFF-11: 04.09. - 08.09.2006, Halle (Saale), Kontakt: M. Arnold