Compressed Sensing and High-Resolution Image Inversion

Ali Pezeshki
ECE and Mathematics
Colorado State University

Matheon Workshop 2013
Compressed Sensing and Its Applications
TU Berlin, Berlin, Germany

December 9, 2013
Acknowledgements

Pooria Pakrooh Wenbing Dang Yuejie Chi

Louis Scharf Robert Calderbank Edwin Chong

Supported by NSF under grants CCF-1018472 and CCF-1017431
Image Inversion

\[y(t) = \sum_{i=1}^{k} \psi(\nu_i) \theta_i \quad \rightarrow \quad \{y(t_i)\}_{i=1}^{m} \quad \rightarrow \quad \{\hat{\nu}_i, \hat{\theta}_i\}_{i=1}^{k} \]
Classical Inversion vs Compressed Sensing

- **Classical: Matched filtering**
 - Sequence of rank-one subspaces, or one-dimensional test images, is matched to the measured image by filtering or correlating or phasing.
Classical Inversion vs Compressed Sensing

- **Classical: Matched filtering**
 - Sequence of rank-one subspaces, or one-dimensional test images, is matched to the measured image by filtering or correlating or phasing.
 - Test images is generated by scanning a prototype image (e.g., a waveform or a steering vector) through frequency, wavenumber, doppler, and/or delay.
Classical Inversion vs Compressed Sensing

- **Classical: Matched filtering**
 - Sequence of rank-one subspaces, or one-dimensional test images, is matched to the measured image by filtering or correlating or phasing.
 - Test images is generated by scanning a prototype image (e.g., a waveform or a steering vector) through frequency, wavenumber, doppler, and/or delay.
 - Extends to subspace matching for those cases in which the model for the image is comprised of several dominant modes.
Classical Inversion vs Compressed Sensing

- **Classical: Matched filtering**
 - Sequence of rank-one subspaces, or one-dimensional test images, is matched to the measured image by filtering or correlating or phasing.
 - Test images is generated by scanning a prototype image (e.g., a waveform or a steering vector) through frequency, wavenumber, doppler, and/or delay.
 - Extends to subspace matching for those cases in which the model for the image is comprised of several dominant modes.
 - Extends to whitened matched filter, or minimum variance unbiased (MVUB) filter, or generalized sidelobe canceller.
Classical Inversion vs Compressed Sensing

- **Classical: Estimation in Separable Model**
 - Low-order separable modal representation for the field.
 - Estimates of linear parameters (complex amplitudes of modes) and nonlinear mode parameters (frequency, wavenumber, delay, and/or doppler) are extracted, usually based on maximum likelihood, or some variation on linear prediction, using l_2 minimization.
Classical Inversion vs Compressed Sensing

- **Classical: Estimation in Separable Model**
 - Low-order separable modal representation for the field.
 - Estimates of linear parameters (complex amplitudes of modes) and nonlinear mode parameters (frequency, wavenumber, delay, and/or doppler) are extracted, usually based on maximum likelihood, or some variation on linear prediction, using l2 minimization.
 - SNR, Fisher Information, Cramer-Rao Bound (CRB), Kullback-Leibler divergence, Bayesian CRB, Threshold Effects.
Classical Inversion vs Compressed Sensing

- **Classical: Estimation in Separable Model**
 - Low-order separable modal representation for the field.
 - Estimates of linear parameters (complex amplitudes of modes) and nonlinear mode parameters (frequency, wavenumber, delay, and/or doppler) are extracted, usually based on maximum likelihood, or some variation on linear prediction, using l_2 minimization.
 - SNR, Fisher Information, Cramer-Rao Bound (CRB), Kullback-Leibler divergence, Bayesian CRB, Threshold Effects.

- **Sampling**: Any subsampling of the measured image has consequences for resolution (or bias) and for variability (or variance).
Compressed Sensing:

- Subsampling has manageable consequences for image inversion provided we have known sparsity structure.
- Typically employs randomly drawn linear combinations.
1. **Fisher Information**: What is the impact of compressive sampling on Fisher information and Cramer-Rao bound (CRB) for estimating nonlinear parameters?
1. **Fisher Information**: What is the impact of compressive sampling on Fisher information and Cramer-Rao bound (CRB) for estimating nonlinear parameters?

2. **Breakdown Thresholds**: What is the impact of compressive sampling on SNR thresholds at which mean-squared error in estimating parameters deviate sharply from the CRB?
1. **Fisher Information:** What is the impact of compressive sampling on Fisher information and Cramer-Rao bound (CRB) for estimating nonlinear parameters?

2. **Breakdown Thresholds:** What is the impact of compressive sampling on SNR thresholds at which mean-squared error in estimating parameters deviate sharply from the CRB?

3. **Model mismatch:** What is the sensitivity of compressed sensing to model mismatch? Can these sensitivities be mitigated?
Fisher Information and Cramer-Rao Bound
Fisher Information and Cramer-Rao Bound

- **Fisher Information:**

\[J(\theta) = E\left[\left(\frac{\partial \log f(y; \theta)}{\partial \theta} \right) \left(\frac{\partial \log f(y; \theta)}{\partial \theta} \right)^H \right]. \]

- **Cramer-Rao Bound:** The inverse \(J^{-1}(\theta) \) lower bounds the error covariance matrix for any unbiased estimator of \(\theta \).
Complex Normal model:
\[y = s(\theta) + n \in \mathbb{C}^n; \quad y = \mathcal{CN}_n[s(\theta), R] \]

Fisher information matrix:
\[J(\theta) = G^H(\theta)R^{-1}G(\theta) \]
\[= \frac{1}{\sigma^2} G^H(\theta)G(\theta), \quad \text{when} \quad R = \sigma^2 I \]
\[G(\theta) = [g_1(\theta), \ldots, g_k(\theta)]; \quad g_i(\theta) = \frac{\partial s(\theta)}{\partial \theta_i} \]

Cramer-Rao lower bound:
\[(J^{-1}(\theta))_{ii} = \sigma^2 (g_i^T(\theta)(I - P_{G_i(\theta)}))g_i(\theta))^{-1} \]

When one sensitivity looks like a linear combination of others, performance is poor.
CS, Fisher Information, and CRB

- **Compressive measurement:**
 \[z = \Phi y = \Phi [s(\theta) + n] \in \mathbb{C}^m; \]

- **Fisher information matrix**
 \[\hat{J}(\theta) = \frac{1}{\sigma^2} G^H(\theta) P_{\Phi^H} G(\nu) = \hat{G}^H(\theta) \hat{G}(\theta) \]

- **Fisher information matrix**
 \[\hat{G}(\theta) = [\hat{g}_1(\theta), \ldots, \hat{g}_k(\theta)]; \quad \hat{g}_i(\theta) = P_{\Phi^H} \frac{\partial s(\theta)}{\partial \theta_i} \]

- **Cramer-Rao lower bound:**
 \[(\hat{J}^{-1}(\theta))_{ii} = \sigma^2 (\hat{g}_i^T(\theta)(I-P_{\hat{G}_i(\theta)})\hat{g}_i(\theta))^{-1} \]

Compressive measurement reduces the distance between subspaces: loss of information.
Question: What is the impact of compressive sampling on the Fisher information matrix, Cramer-Rao bound (CRB), and Kullback-Leibler divergence for estimating parameters?
JL Lemma: For any $\epsilon \in (0, 1)$, a random linear transformation $\Phi : \mathbb{R}^n \to \mathbb{R}^m$ is said to satisfy an ϵ–JL type Lemma over a set of vectors $Q \subset \mathbb{R}^n$ with probability at least $1 - \delta$ if

$$\Pr \left(\forall q \in Q : (1 - \epsilon)\|q\|_2^2 \leq \|\Phi q\|_2^2 \leq (1 + \epsilon)\|q\|_2^2 \right) \geq 1 - \delta.$$

For random matrices with i.i.d. $\mathcal{N}(0, 1/m)$ entries Φ_{ij}, we have $\delta \leq 2|Q|e^{-mc_0(\epsilon)}$ where $c_0(\epsilon) = \epsilon^2/4 - \epsilon^3/6$ [Baraniuk, Davenport, Devore, and Wakin ’08; Dasgupta and Gupta ’02].
Subspace JL Lemma: [Sarlos '06] Let $\Phi : \mathbb{R}^n \to \mathbb{R}^m$, $m < n$, and $\epsilon \in (0, 1)$. Then Φ satisfies the ϵ–JL type Lemma over any arbitrary p-dimensional subspace $\langle \mathbf{V} \rangle$ of \mathbb{R}^n with probability at least $1 - \delta$, provided that it satisfies the $\epsilon'–$JL type Lemma over any set $Q \subset \mathbb{R}^n$ of $\lceil (2\sqrt{p}/\epsilon')^p \rceil$ vectors with probability at least $1 - \delta$, where ϵ' satisfies

$$
\left(\frac{3\epsilon'}{1 - \epsilon'} \right)^2 + 2\left(\frac{3\epsilon'}{1 - \epsilon'} \right) = \epsilon.
$$
Theorem: [Pakrooh, P., Scharf, Chi '13]

(a) For any compression matrix, we have

\[(J^{-1}(\theta))_{ii} \leq (\hat{J}^{-1}(\theta))_{ii} \leq 1/\lambda_{\text{min}}(G^T(\theta)P_{\Phi^T}G(\theta))\]

(b) For a random compression matrix, we have

\[(\hat{J}^{-1}(\theta))_{ii} \leq \frac{\lambda_{\text{max}}(J^{-1}(\theta))}{\lambda_{\text{min}}((\Phi\Phi^T)^{-1})} \leq \frac{\lambda_{\text{max}}(J^{-1}(\theta))}{C(1-\epsilon)}\]

with probability at least \(1 - \delta - \delta'\), where

- \(1 - \delta\) is the lower bound on the probability that \(\Phi\) satisfies the \(\epsilon\)-JL type lemma for any \(p\)-dimensional subspace, and
- \(1 - \delta'\) is the probability that \(\lambda_{\text{min}}((\Phi\Phi^T)^{-1})\) is larger than \(C\).
For tr($\hat{J}^{-1}(\theta)$) we have

$$\text{tr}(J^{-1}(\theta)) \leq \text{tr}(\hat{J}^{-1}(\theta)) \leq \frac{p\lambda_{\text{max}}(J^{-1}(\theta))}{C(1 - \epsilon)}$$

where again the upper bound holds with probability at least $1 - \delta - \delta'$.

We can also bound det($\hat{J}^{-1}(\theta)$).
CRB after Compression

Bounds on the CRB for $-2\pi/n \leq \theta_2 \leq 2\pi/n$, $m = 3000, n = 8192$

Upper bounds on δ versus the number of measurements m for $n = 8192$ and $\epsilon = 0.66$ (red) and $\epsilon = 0.33$ (green)
CS and Kullback-Leibler Divergence

KL divergence between $\mathcal{N}(x(\theta), R)$ and $\mathcal{N}(x(\theta'), R)$:

$$D(\theta, \theta') = \frac{1}{2}[(x(\theta) - x(\theta'))^T R^{-1}(x(\theta) - x(\theta'))].$$

- After compression with Φ:

$$\hat{D}(\theta, \theta') = \frac{1}{2}[(x(\theta) - x(\theta'))^T \Phi^T (\Phi R \Phi^T)^{-1} \Phi (x(\theta) - x(\theta'))].$$

- With white noise $R = \sigma^2 I$:

$$\hat{D}(\theta, \theta') = \frac{1}{2\sigma^2}[(x(\theta) - x(\theta'))^T P_{\Phi^T} (x(\theta) - x(\theta'))].$$

Theorem: [Pakrooh, P., Scharf, and Chi (ICASSP'13)]

$$C(1 - \epsilon) D(\theta, \theta') \leq \hat{D}(\theta, \theta') \leq D(\theta, \theta')$$

with probability at least $1 - \delta - \delta'$, where δ, δ'.

Nielsen, Christensen, and Jensen (ICASSP’12): Bounds on mean value of Fisher Information after random compression.

Ramasamy, Venkateswaran, and Madhow (Asilomar’12): Bounds on Fisher information after compression in a different noisy model.

Breakdown Threshold and Subspace Swaps
Breakdown Threshold and Subspace Swaps

- **Threshold effect:** Sharp deviation of Mean Squared Error (MSE) performance from Cramer-Rao Bound (CRB).

- **Breakdown threshold:** SNR at which a threshold effect occurs with non-negligible probability.

Donald W. Tufts (1933-2012)
Subspace Swap: Event in which measured data is more accurately resolved by one or more modes of an orthogonal subspace to the signal subspace.

- Cares only about what the data itself is saying.
- Bound probability of a subspace swap to predict breakdown SNRs.
Before compression:

$$y : \mathcal{CN}_n[\text{Hu}, \sigma^2 I]$$

After compression with left-orthogonal $\Phi \in \mathbb{C}^{m \times n}, m < n$:

$$y : \mathcal{CN}_m[\text{Gu}, \sigma^2 I], \ G = \Phi H$$
Before compression:

\[y : \mathcal{CN}_n[0, HR_{uu}H^H + \sigma^2 I] \]

After compression with left-orthogonal \(\Phi \in \mathbb{C}^{m \times n}, m < n \):

\[y : \mathcal{CN}_m[0, GR_{uu}G^H + \sigma^2 I], \quad G = \Phi H \]

Assume data consists of \(L \) iid realizations of \(y \) arranged as \(Y = [y_1, y_2, \cdots, y_L] \).
Subspace Swap Events

- **Subspace Swap Event** E: One or more modes of the orthogonal subspace $\langle A \rangle$ resolves more energy than one or more modes of the noise-free signal subspace $\langle H \rangle$.

![Diagram showing Subspace Swap Events](image)
Subspace Swap Events

- **Subevent F:** Average energy resolved in the orthogonal subspace $\langle A \rangle$ is greater than the average energy resolved in the noise-free signal subspace $\langle H \rangle$.

 $$
 \min_i |h_i^H y|^2 \leq \frac{1}{p} y^H P_H y < \frac{1}{n-p} y^H P_A y \leq \max_i |a_i^H y|^2
 $$

- **Subevent G:** Energy resolved in the apriori minimum mode h_{min} of the noise-free signal subspace $\langle H \rangle$ is smaller than the average energy resolved in the orthogonal subspace $\langle A \rangle$.

 $$
 |h_{min}^H y|^2 < \frac{1}{n-p} y^H P_A y \leq \max_i |a_i^H y|^2.
 $$
Theorem: [Pakrooh, P., Scharf (GlobalSIP’13)]

1. **Before compression:**

 \[P_{ss} \geq 1 - P \left[\frac{y^H P_H y}{y^H P_A y / (n - p)} > 1 \right] \]

 \[= 1 - P \left[F_{2p,2(n-p)} \left(\frac{\|H u\|_2^2}{\sigma^2} \right) > 1 \right] \]

 \(\|H u\|_2^2/\sigma^2 \) is the SNR before compression.

2. **After compression:**

 \[P_{ss} \geq 1 - P \left[F_{2p,2(m-p)} \left(\frac{\|G u\|_2^2}{\sigma^2} \right) > 1 \right] \]

 \(\|G u\|_2^2/\sigma^2 \) is the SNR after compression, \(G = \Phi H \).
Theorem: [Pakrooh, P., Scharf (GlobalSIP’13)]

- (a) Before compression:

\[P_{ss} \geq 1 - P \left[\frac{tr(Y^H P_H Y / pL)}{tr(Y^H P_A Y / (n - p)L)} > 1 \right] \]
\[= 1 - P[F_{2pL, 2(n-p)L} > \frac{1}{1 + \lambda_p / \sigma^2}] \]

\[\lambda_p = ev_{min}(HR_{uu}H^H) \]
\[\lambda_p / \sigma^2: \text{Effective SNR before compression} \]

- (b) After compression:

\[P_{ss} \geq 1 - P[F_{2pL, 2(m-p)L} > \frac{1}{1 + \lambda'_p / \sigma^2}] \]

\[\lambda'_p = ev_{min}(GR_{uu}G^H) \]
\[\lambda'_p / \sigma^2: \text{Effective SNR after compression} \]
Sensor Array Processing: Dense, Gaussian, and Co-prime

- **Dense array**

- **Gaussian compression**

- **Co-prime compression** [Pal and Vaidyanathan (2011)]

At $N = 11$ and $M = 9$, $(2M - 1)N\lambda/2 = 187\lambda/2$.
Sensor Array Processing–Mean Case

Analytical lower bounds for the probability of subspace swap.

MSE and MSE bounds; Interfering source at $\theta_2 = \pi/188$; Average over 200 trials.
Analytical lower bounds for the probability of subspace swap.

MSE and MSE bounds; Interfering source at $\theta_2 = \pi/188$; 200 snapshots; Averaged over 500 trials.
References on Breakdown Thresholds

Intermediate Recap

Compression, whether by linear maps (eg, Gaussian or Bernoulli) or by subsampling (eg, co-prime) has performance consequences.

- The CR bound increases and the onset of threshold SNR increases. These increases may be quantified to determine where compressive sampling is viable.
Model Mismatch
From Over-determined to Under-determined

\[y = \sum_{i=1}^{K} \psi(\nu_i)\theta_i \]

\[y \approx [\psi(\omega_1), \cdots, \psi(\omega_n)] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \]
Model Mismatch

Mathematical (CS) model:

\[s = \Psi_0 x \]

The basis (or frame) \(\Psi_0 \) is assumed, typically a gridded imaging matrix (e.g., \(n \) point DFT matrix or identity matrix), and \(x \) is presumed to be \(k \)-sparse.

Physical (true) model:

\[s = \Psi_1 \theta \]

The basis \(\Psi_1 \) is unknown, and is determined by a point spread function, a Green’s function, or an impulse response, and \(\theta \) is a \(k \)-sparse and unknown.

Key transformation:

\[x = \Psi \theta = \Psi_0^{-1} \Psi_1 \theta \]

\(x \) is sparse in the unknown \(\Psi \) basis, not in the identity basis.
Model Mismatch: From Sparse to Incompressible

DFT Grid Mismatch:

\[\Psi = \Psi_0^{-1} \Psi_1 = \begin{bmatrix} L(\Delta \theta_0 - 0) & L(\Delta \theta_1 - \frac{2\pi(n-1)}{n}) & \cdots & L(\Delta \theta_{n-1} - \frac{2\pi}{n}) \\ L(\Delta \theta_0 - \frac{2\pi}{n}) & L(\Delta \theta_1 - 0) & \cdots & L(\Delta \theta_{n-1} - \frac{2\pi}{n}) \\ \vdots & \vdots & \ddots & \vdots \\ L(\Delta \theta_0 - \frac{2\pi(n-1)}{n}) & L(\Delta \theta_1 - \frac{2\pi(n-2)}{n}) & \cdots & L(\Delta \theta_{n-1} - 0) \end{bmatrix} \]

where \(L(\theta) \) is the Dirichlet kernel:

\[L(\theta) = \frac{1}{n} \sum_{\ell=0}^{n-1} e^{i\ell \theta} = \frac{1}{n} e^{i\theta (n-1)/2} \frac{\sin(\theta n/2)}{\sin(\theta/2)}. \]

Slow decay of the Dirichlet kernel means that the presumably sparse vector \(x = \Psi \theta \) is in fact incompressible.
Sensitivity to Model Mismatch

Question: What is the consequence of assuming that \mathbf{x} is k-sparse in \mathbf{I}, when in fact it is only k-sparse in an unknown basis Ψ, which is determined by the mismatch between Ψ_0 and Ψ_1?

CS Inverter: Basis pursuit solution satisfies

\[
\begin{align*}
\text{Noise-free:} & \quad \|\mathbf{x}^* - \mathbf{x}\|_1 & \leq C_0 \|\mathbf{x} - \mathbf{x}_k\|_1 \\
\text{Noisy:} & \quad \|\mathbf{x}^* - \mathbf{x}\|_2 & \leq C_0 k^{-1/2} \|\mathbf{x} - \mathbf{x}_k\|_1 + C_1 \epsilon
\end{align*}
\]

where \mathbf{x}_k is the best k-term approximation to \mathbf{x}.

Key: Analyze the sensitivity of $\|\mathbf{x} - \mathbf{x}_k\|_1$ to basis mismatch.
Sensitivity to Model Mismatch

Theorem: [Chi, Scharf, P., Calderbank (TSP 2011)] Let
\(\Psi = \Psi_0^{-1} \Psi_1 = I + E \), where \(x = \Psi \theta \). Let \(1 \leq p, q \leq \infty \) and
\(1/p + 1/q = 1 \).

- If the rows \(e_{\ell}^T \in \mathbb{C}^{1 \times n} \) of \(E \) are bounded as \(\| e_{\ell} \|_p \leq \beta \), then

\[
\| x - x_k \|_1 \leq \| \theta - \theta_k \|_1 + (n - k)\beta \| \theta \|_q.
\]

The bound is achieved when the entries of \(E \) satisfy

\[
e_{mn} = \pm \beta \cdot e^{j(\arg(\theta_m) - \arg(\theta_n))} \cdot (|\theta_n|/\| \theta \|_q)^{q/p}.
\]

Message: In the presence of basis mismatch, exact or near-exact sparse recovery cannot be guaranteed. Recovery may suffer large errors.
Mismatch in Modal Analysis

![Graphs showing actual modes, conventional FFT, compressed sensing, and linear prediction](image)

- **Actual modes**
- **Conventional FFT**
- **Compressed sensing**
- **Linear Prediction**

Frequency mismatch
Mismatch in Modal Analysis

- Actual modes
- Conventional FFT
- Compressed sensing
- Linear Prediction

Damping mismatch
Mismatch in Modal Analysis

- Actual modes
- Conventional FFT
- Compressed sensing
- Linear Prediction with Rank Reduction

Frequency mismatch–noisy measurements
Noise Limited, Quantization Limited, or Null Space Limited

\[l_1 \text{ inversions for } L = 2, 4, 6, 8 \]

\[f_1 = 0.5 \text{ Hz}, \ f_2 = 0.52 \text{ Hz}, \ m = 25 \text{ samples}, \text{ complex Gaussian noise of variance } \sigma^2 \]. DFT frame \(\Psi \in \mathbb{C}^{n \times mL} \) with half-cell width \((1/2nL) \).
Noise Limited, Quantization Limited, or Null Space Limited

(a) OMP for $L = 2, 4, 6, 8$

(b) OMP for $L = 8, 12, 14$
Misfocus in Optical Imaging
Misfocus in Optical Imaging

CS mask $M=1000$, $z=0.1$DOF

CS mask $M=1000$, $z=0.5$DOF

CS mask $M=1000$, $z=1$DOF

CS mask $M=1000$, $z=2$DOF
References on Model Mismatch in CS

Compressed Sensing Off The Grid
Atomic Norm Decomposition

Model:

\[y = \sum_{i=1}^{k} \psi_k \theta_k; \quad \{\psi_k\} : \text{Atoms} \]

Atomic norm [Chandrasekaran, Recht, Parrilo, and Willsky (Allerton 2010)]:

\[\|y\|_A = \inf_{(\theta, \psi)} \sum_{i=1}^{k} |\theta_k| \]

Atomic norm decomposition:

\[\min \|\eta\|_A \quad \text{s.t.} \quad P_\Omega(y) = P_\Omega(\eta) \]

Atomic set:

\[A = \left\{ \begin{pmatrix} e^{i\phi} \\ e^{i(2\pi \nu + \phi)} \\ \vdots \\ e^{i(n-1)2\pi \nu + \phi} \end{pmatrix} : \nu \in [0, 1), \phi \in [0, 2\pi) \right\} \]
Line spectra resolution:

- **Theorem:** [Candes and Fernandez-Granda 2012] A line spectrum with minimum frequency separation $\Delta_f > 4/k$ can be recovered from the first $2k$ Fourier coefficients via atomic norm minimization.

- **Theorem:** [Tang, Bhaskar, Shah, and Recht 2012] A line spectrum with minimum frequency separation $\Delta_f > 4/n$ can be recovered from most subsets of the first n Fourier coefficients of size at least $m = O(k \log(k) \log(n))$.

- **Theorem:** [Chi and Chen 2013] A 2D line spectrum with minimum frequency separation $\Delta_f > 4/\left(\sqrt{n_1 n_2}\right)$ can be recovered from most subsets of the first n Fourier coefficients of size at least $m = O(k \log(k) \log(n))$.
Refernces on Off-Grid CS

Compression, whether by linear maps (eg, Gaussian or Bernoulli) or by subsampling (eg, co-prime) has performance consequences. The CR bound increases and the onset of breakdown threshold increases.