Balanced model reduction of gradient systems

Jacquелиen Scherpen
University of Groningen

Joint work with
Arjan van der Schaft

Modred2010, Berlin
Change of topic from abstract

Hi, Dr. Elizabeth?
Yeah, uh... I accidentally took the Fourier transform of my cat...

Meow!
Original intention

Balancing based structure preserving order reduction for port-Hamiltonian (pH) systems

- Based on work of Polyuga and Van der Schaft for linear pH systems, to reduce non-minimal pH system to a minimal pH systems (precise reduction).
Original intention

Balancing based structure preserving order reduction for port-Hamiltonian (pH) systems

- Based on work of Polyuga and Van der Schaft for linear pH systems, to reduce non-minimal pH system to a minimal pH systems (precise reduction).
- Extension to nonlinear case done by Scherpen and Van der Schaft.
Original intention

Balancing based structure preserving order reduction for port-Hamiltonian (pH) systems

- Based on work of Polyuga and Van der Schaft for linear pH systems, to reduce non-minimal pH system to a minimal pH systems (precise reduction).

- Extension to nonlinear case done by Scherpen and Van der Schaft.

- Based on either observability or controllability, resulting in different models.
Original intention

Balancing based structure preserving order reduction for port-Hamiltonian (pH) systems

• Based on work of Polyuga and Van der Schaft for linear pH systems, to reduce non-minimal pH system to a minimal pH systems (precise reduction).

• Extension to nonlinear case done by Scherpen and Van der Schaft.

• Based on either observability or controllability, resulting in different models.

• Combination should result in approximate model order reduction. However, unfinished, equations are still "ugly".
Outline

For gradient system we do have nice results!

Outline:

• **Introduction**
 • gradient systems
 • linear balanced realizations
• Linear gradient systems and balancing
• Nonlinear gradient systems and balancing
• Concluding remarks
Introduction

• Gradient systems large class of systems, i.e., linear and nonlinear RLC circuits, Brayton-Moser systems, etc.
Introduction

• Gradient systems large class of systems, i.e., linear and nonlinear RLC circuits, Brayton-Moser systems, etc.

• Popular in circuits / systems / control literature of 70’s
Introduction

• Gradient systems large class of systems, i.e., linear and nonlinear RLC circuits, Brayton-Moser systems, etc.
• Popular in circuits / systems / control literature of 70’s
• Gradient form of drift vector field, along with pseudo-Riemannian metric.
Introduction

- Gradient systems large class of systems, i.e., linear and nonlinear RLC circuits, Brayton-Moser systems, etc.
- Popular in circuits / systems / control literature of 70’s
- Gradient form of drift vector field, along with pseudo-Riemannian metric.
- System theoretic relation with symmetric systems, i.e., input vector field and output map such that overall system is symmetric. For linear systems: $H(s) = H^T(s)$, with H transfer matrix.
Introduction: gradient systems

Nonlinear gradient system:

\[G(x) \dot{x} = -\frac{\partial P}{\partial x}(x) + \frac{\partial}{\partial x}(x)u \]
\[y = h(x) \]

\(G(x) = G^T(x) \) invertible pseudo-Riemannian metric, \(P \) mixed potential function.
Introduction: gradient systems

Nonlinear gradient system:

\[G(x) \dot{x} = -\frac{\partial P}{\partial x}(x) + \frac{\partial h}{\partial x}(x)u \]
\[y = h(x) \]

\(G(x) = G^T(x) \) invertible pseudo-Riemannian metric, \(P \) mixed potential function.

Linear gradient system with mixed potential function \(\frac{1}{2}x^TPx \):

\[G \dot{x} = -Px + C^Tu \]
\[y = Cx \]

\(P = P^T, \ G = G^T \neq 0, \ H(s) = C(sI - G^{-1}P)^{-1}G^{-1}C^T = H(s)^T. \)
Introduction: gradient systems

Linear gradient system:

\[G \dot{x} = -Px + C^T u \]
\[y = Cx \]

Example: \(x \) currents/voltages through inductors/over condensators,

\[G = \text{blockdiag}\{L, -C\}, \]

\(P \) matrix containing resistors, conductors and interconnection structure

\(u \) sources, and \(y \) corresponding currents or voltages (power outputs).
Introduction: gradient systems

Model order reduction for large scale gradient systems should "preserve" as much as possible:

- Input/output structure (interconnection structure).
- Gradient structure.

Focus presentation: combine

- balanced realization based model reduction
- preserve gradient structure.
Introduction: Linear balancing review

Continuous-time, causal linear input-output system $S : u \to y$ with impulse response $H(t)$.
If S is also BIBO stable then the system **Hankel operator:**

$$
\mathcal{H} : L^m_2[0, +\infty) \to L^p_2[0, +\infty) \\
\hat{u} \to \hat{y}(t) = \int_0^\infty H(t + \tau)\hat{u}(\tau) \, d\tau.
$$
Introduction: Linear balancing review

Continuous-time, causal linear input-output system $S: u \rightarrow y$ with impulse response $H(t)$.

If S is also BIBO stable then the system **Hankel operator**:

$$\mathcal{H} : L^m_2[0, +\infty) \rightarrow L^p_2[0, +\infty)$$

$$: \hat{u} \rightarrow \hat{y}(t) = \int_0^\infty H(t + \tau)\hat{u}(\tau) \, d\tau.$$

Time flipping operator $\mathcal{F} : L^m_2[0, +\infty) \rightarrow L^m_2(-\infty, 0]$
Introduction: Linear balancing review

Continuous-time, causal linear input-output system $S : u \rightarrow y$ with impulse response $H(t)$.
If S is also BIBO stable then the system **Hankel operator**:

$$
\mathcal{H} : L^m_2[0, +\infty) \rightarrow L^p_2[0, +\infty)
$$

$$
: \hat{u} \rightarrow \hat{y}(t) = \int_0^\infty H(t + \tau)\hat{u}(\tau) \, d\tau.
$$

Time flipping operator $\mathcal{F} : L^m_2[0, +\infty) \rightarrow L^m_2(-\infty, 0]$

$$
\mathcal{H}(\hat{u}) = S \circ \mathcal{F}(\hat{u})
$$
Introduction: Linear balancing (continued)

\[\mathcal{H} = OC, \] with the controllability and observability operators \(C \) and \(O \).

with \(\sigma_i \) are Hankel singular values, i.e., \(\sigma_i^2 \) are eigenvalues of \(\mathcal{H}^*\mathcal{H} \).
Introduction: Linear balancing *(continued)*

\[\mathcal{H} = \mathcal{O} \mathcal{C}, \] with the **controllability** and **observability operators** \(\mathcal{C} \) and \(\mathcal{O} \).

with \(\sigma_i \) are **Hankel singular values**, i.e., \(\sigma_i^2 \) are eigenvalues of \(\mathcal{H}^* \mathcal{H} \).

\((A, B, C)\) as. stable state space realization of \(S \) of order \(n \).

- \(\sigma_i^2 \) are eigenvalues of \(M W \), where \(W \geq 0 \) and \(M \geq 0 \) are the usual **controllability** and **observability Gramians** fulfilling

\[
AW + WA^T = -BB^T
\]

\[
A^T M + MA = -C^T C
\]
Introduction: Linear balancing (continued)

\((A, B, C)\) is minimal \(\iff M > 0\) and \(W > 0\).

If \((A, B, C)\) is minimal and as. stable, then there exists a state space representation where

\[
\Sigma := M = W = \begin{pmatrix}
\sigma_1 & 0 \\
\vdots & \ddots \\
0 & \sigma_n
\end{pmatrix}
\]

\(\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n > 0\) Hankel singular values. Then system is in balanced form.
Outline

• Introduction
 • gradient systems
 • linear balanced realizations

• **Linear gradient systems and balancing**

• Nonlinear gradient systems and balancing

• Concluding remarks
Linear gradient systems and balancing

Consider linear system \(\dot{x} = Ax + Bu, \ y = Cx \)
\(x \in \mathbb{R}^n, \ u \in \mathbb{R}^m, \ y \in \mathbb{R}^m. \)

Gradient system if there exists \(G = G^T \neq 0 \) satisfying

\[
A^T G = GA, \quad B^T G = C
\]

Since \(H(s) = H^T(s) \), \(G \) satisfying (*) is **unique** for controllable and observable system.

With \(P = -GA = P^T \):

\[
G \dot{x} = -Px + C^T u \quad y = Cx
\]
Linear gradient systems and balancing

The controllability and observability Gramian W and M of (A, B, C) are unique solutions of

$$AW + WA^T = BB^T, \quad A^T M + MA = C^T C$$

Pre- and postmultiplying first eq. by G, and using gradient cond.

$$GAWG + GW A^T G = GB B^T G \iff$$

$$A^T (GWG) + (GWG) A = C^T C$$

implying $GWG = M$.
Linear gradient systems and balancing

The controllability and observability Gramian W and M of (A, B, C) are unique solutions of

\[AW + WA^T = BB^T, \quad A^T M + MA = C^T C \]

Pre- and postmultiplying first eq. by G, and using gradient cond.

\[GAWG + GW A^T G = GBB^T G \iff \]

\[A^T(GWG) + (GWG)A = C^T C \]

implying $GWG = M$.

In \textbf{balanced coordinates} with distinct Hankel s.v.’s:

\[G\Sigma G = \Sigma \Rightarrow G = diag\{\pm 1\} \quad (G > 0 \Rightarrow G = I) \]
Linear gradient systems and balanced trunc.

Remark: If some Hankel s.v.’s are equal, coordinates can be chosen such that $G = \text{diag}\{\pm 1\}$

Remark: Passivity conditions are easily obtained.
Linear gradient systems and balanced trunc.

Remark: If some Hankel s.v.’s are equal, coordinates can be chosen such that \(G = \text{diag}\{\pm 1\} \)

Remark: Passivity conditions are easily obtained.

Proposition: Consider gradient system with \(\sigma_1 \geq \cdots \sigma_k >> \sigma_{k+1} \geq \cdots \geq \sigma_n \) in balanced form with \(G = \text{diag}\{\pm 1\} \). Truncate \(x_{k+1}, \ldots, x_n \). Then reduced order model is gradient system

\[
\dot{\hat{G}}\hat{x} = \hat{P}\hat{x} + \hat{C}^T u, \quad \hat{x} \in \mathbb{R}^k
\]

\[
\hat{y} = \hat{C}\hat{x}
\]

\(\hat{G} = \text{diag}\{\pm 1\} = G_{11}, \hat{P} = P_{11}, \hat{C} = C_1. \)
Linear gradient systems and singular pert.

Proposition: Consider gradient system with
\[\sigma_1 \geq \cdots \sigma_k \gg \sigma_{k+1} \geq \cdots \geq \sigma_n \] in balanced form with
\[G = \text{diag}\{\pm 1\}. \] Apply \(\dot{x}_{k+1} = \cdots = \dot{x}_n = 0 \), then again reduced order gradient system with \(\hat{G} = G_{11} \), and \(\hat{P} = \hat{P}^T \)

\[\hat{P} = P_{11} - P_{12}P_{22}^{-1}P_{21} \]

and with output equation

\[\hat{y} = \hat{C}\hat{x} + \hat{D}u \]

where \(\hat{C} := C_1 - C_2P_{22}^{-1}P_{21} \) and \(\hat{D} := C_2P_{22}^{-1}C_2^T \).
Linear gradient systems: electrical circuits

In balanced coordinates, inductors and condensators all transformed to ± 1. **Mixed potential** function normally given as

$$\frac{1}{2}i^T R i - \frac{1}{2}v^T G v + i^T \Lambda v$$

with R resistors, G conductors, Λ interconnection matrix (topology of circuit), and i and v inductor currents and capacitor voltages.
Linear gradient systems: electrical circuits

In balanced coordinates, inductors and condensators all transformed to ± 1. Mixed potential function normally given as

$$\frac{1}{2} i^T R i - \frac{1}{2} v^T G v + i^T \Lambda v$$

with R resistors, G conductors, Λ interconnection matrix (topology of circuit), and i and v inductor currents and capacitor voltages.

In balanced coordinates, structure mixed potential may be lost. After truncation, circuit realization may also require additional transformers.
Linear gradient system: the cross Gramian

Consider so-called cross Gramian X, with

$$WM = X^2,$$

and X unique solution of **Sylvester** equation $AX +XA = BC$. In fact, $X = WG = G^{-1}M$. Thus, in balanced coordinates

$$X = \Sigma G \Rightarrow X = diag\{\pm \sigma_i\}$$
Linear gradient system: the cross Gramian

Consider so-called cross Gramian X, with

$$WM = X^2,$$

and X unique solution of **Sylvester** equation $AX +XA = BC$. In fact, $X = WG = G^{-1}M$. Thus, in balanced coordinates

$$X = \Sigma G \Rightarrow X = \text{diag}\{\pm \sigma_i\}$$

Corollary: Assume $\sigma_i \neq \sigma_j$, $\forall i, j$, Let $\bar{x} = Sx$ be s.t. $SXS^{-1} = \text{diag}(\pm \sigma_1, \pm \sigma_2, \cdots, \pm \sigma_n)$. Then there exists a diagonal matrix D such that DS is a balancing transformation.
Outline

• Introduction
 • gradient systems
 • linear balanced realizations
• Linear gradient systems and balancing
• Nonlinear gradient systems and balancing
• Concluding remarks
Nonlinear gradient systems and balancing

Nonlinear gradient system with $G(x) = G^T(x)$ invertible:

\[G(x) \dot{x} = -\frac{\partial P}{\partial x}(x) + \frac{\partial h}{\partial x}(x)u \]

\[y = h(x) \]
Nonlinear gradient systems and balancing

Nonlinear gradient system with $G(x) = G^T(x)$ invertible:

\[G(x)\dot{x} = -\frac{\partial P}{\partial x}(x) + \frac{\partial h}{\partial x}(x)u \]
\[y = h(x) \]

- Recall BM nonlinear circuits are gradient systems.
- External characterization given in Cortes et. al. (2005), entailing two different prolongations of system.
- Main idea: symmetry obtained for prolongations in observability and accessibility.
- Linear case special case, nonlinear needs prolongations, complicating balancing procedure!
Nonlinear systems: balancing

Smooth system

\[
\begin{align*}
\dot{x} &= f(x) + g(x)u \\
y &= h(x)
\end{align*}
\]

where \(u \in \mathbb{R}^m \), \(y \in \mathbb{R}^p \), and \(x \in M \) (manifold of dim \(n \)).

Assumptions:

- \(f(0) = 0 \), 0 as. stable eq. point for \(u = 0, x \in X \).
- \(h(0) = 0 \).
- Controllability function \(L_c \) and observability function \(L_o \) smooth and exist.
Energy functions: Gramian extensions

\[L_c(x_0) = \min_{u \in L_2(-\infty, 0)} \frac{1}{2} \int_{-\infty}^{0} \| u(t) \|^2 \, dt \]

\[x(-\infty) = 0, \, x(0) = x_0 \]

Minimum amount of control energy necessary to reach state \(x_0 \). \(L_c \) is the so-called **controllability function**.
Energy functions: Gramian extensions

\[L_c(x_0) = \min_{u \in L_2(-\infty, 0)} \frac{1}{2} \int_{-\infty}^{0} \| u(t) \|^2 \, dt \]

\[x(-\infty) = 0, \quad x(0) = x_0 \]

Minimum amount of control energy necessary to reach state \(x_0 \). \(L_c \) is the so-called **controllability function**.

\[L_o(x_0) = \frac{1}{2} \int_{0}^{\infty} \| y(t) \|^2 \, dt, \quad x(0) = x_0, \quad u(\tau) = 0, \quad 0 \leq \tau < \infty \]

Output energy generated by state \(x_0 \). \(L_o \) is the so-called **observability function**
Nonlinear systems: balancing

- In linear case: $L_o(x) = \frac{1}{2} x^T M x$ and $L_c(x) = \frac{1}{2} x^T W^{-1} x$.

- Lyapunov and Hamilton-Jacobi-Bellmann equations characterize L_o and L_c.

- Role of observability and controllability for linear systems is replaced by zero-state observability and asymptotic reachability (or anti-stabilizability).
Nonlinear systems: balancing

Lots of research efforts later (Fujimoto, Gray, Scherpen):

• Under appropriate conditions, there exists neighborhood X of 0 and $x = \Phi(z)$ s.t.

$$L_c(\Phi(z)) = \frac{1}{2} \sum_{i=1}^{n} \frac{z_i^2}{\bar{\sigma}_i(z_i)} \quad L_o(\Phi(z)) = \frac{1}{2} \sum_{i=1}^{n} z_i^2 \bar{\sigma}_i(z_i).$$

In particular, on X, $\|\Sigma\|_H = \sup_{\Phi(z_1,0,\ldots,0) \in X} \bar{\sigma}_1(z_1)$.

• Singular value functions unique at coordinate axes.

• Tool for balanced structure preserving model reduction.
Nonlinear systems: balancing

Lots of research efforts later (Fujimoto, Gray, Scherpen):

- Under appropriate conditions, there exists neighborhood X of 0 and $x = \Phi(z)$ s.t.

 $$L_c(\Phi(z)) = \frac{1}{2} \sum_{i=1}^{n} \frac{z_i^2}{\bar{\sigma}_i(z_i)} \quad L_o(\Phi(z)) = \frac{1}{2} \sum_{i=1}^{n} z_i^2 \bar{\sigma}_i(z_i).$$

 In particular, on X, $\|\Sigma\|_H = \sup_{z_1, \Phi(z_1, 0, \ldots, 0) \in X} \bar{\sigma}_1(z_1)$.

- Singular value functions unique at coordinate axes.
- Tool for balanced structure preserving model reduction.
- Discrete time version similar! Fujimoto, Scherpen 2010.
Nonlinear gradient systems: balanced trunc.

Take $T(x) = G(x)^{-1}$, then balancing can be applied. Assume that $\sigma_k(x_k) \gg \sigma_{k+1}(x_{k+1})$, and split state (and matrices and functions) accordingly, i.e., $x^a = (x_1, \ldots, x_k)^T$, $x^b = (x_{k+1}, \ldots, x_n)^T$. Balanced truncation, $x^b = 0$, then
Nonlinear gradient systems: balanced trunc.

Take $T(x) = G(x)^{-1}$, then balancing can be applied. Assume that $\sigma_k(x_k) >> \sigma_{k+1}(x_{k+1})$, and split state (and matrices and functions) accordingly, i.e. $x^a = (x_1, \ldots, x_k)^T$, $x^b = (x_{k+1}, \ldots, x_n)^T$. Balanced truncation, $x^b = 0$, then

Proposition: If

$$T^{ab}(x^a, 0) \frac{\partial P}{\partial x^b}(x^a, 0) = 0, \quad \text{and} \quad T^{ab}(x^a, 0) \frac{\partial h}{\partial x^b}(\bar{x}^a, 0) = 0,$$

then reduced order system is gradient system with pseudo-Riemannian metric $G^a(x^a) = T^{aa}(x^a, 0)^{-1}$.
Nonlinear gradient systems: balanced trunc.

Take $T(x) = G(x)^{-1}$, then balancing can be applied. Assume that $\sigma_k(x_k) >> \sigma_{k+1}(x_{k+1})$, and split state (and matrices and functions) accordingly, i.e., $x^a = (x_1, \ldots, x_k)^T$, $x^b = (x_{k+1}, \ldots, x_n)^T$. Balanced truncation, $x^b = 0$, then

Proposition: If

$$T^{ab}(x^a, 0) \frac{\partial P}{\partial x^b}(x^a, 0) = 0, \quad \text{and} \quad T^{ab}(x^a, 0) \frac{\partial h}{\partial x^b}(\bar{x}^a, 0) = 0,$$

then reduced order system is gradient system with pseudo-Riemannian metric $G^a(x^a) = T^{aa}(x^a, 0)^{-1}$.

Main problem compared with linear case: no specific structure for $G(x)$ is obtained!
Nonlinear gradient systems: sing. pert.

Also singular perturbation reduction different in nonlinear case. Restrictive assumption: in bal. form x^b part of system linear.

Proposition: Under appropriate assumptions, reduced order system via singular perturbations is gradient again, i.e.,

$$\dot{x}^a = \hat{T}(x^a) \frac{\partial \hat{P}}{\partial x^a}(x^a) + \hat{T}(x^a) \frac{\partial \hat{h}}{\partial x^a}(x^a)u, \quad y = \hat{h}(x^a, u)$$

with $\hat{P}(x^a), \hat{h}(x^a, u)$ follow from solving x^b from

$$\frac{\partial P}{\partial x^b}(x) + \frac{\partial h}{\partial x^b}(x)u$$
Nonlinear gradient systems: sing. pert.

Also singular perturbation reduction different in nonlinear case.
Restrictive assumption: in bal. form x^b part of system linear.

Proposition: Under appropriate assumptions, reduced order system via singular perturbations is gradient again, i.e.,

\[
\dot{x}^a = \hat{T}(x^a) \frac{\partial \hat{P}}{\partial x^a}(x^a) + \hat{T}(x^a) \frac{\partial \hat{h}}{\partial x^a}(x^a) u, \quad y = \hat{h}(x^a, u)
\]

with $\hat{P}(x^a), \hat{h}(x^a, u)$ follow from solving x^b from

\[
\frac{\partial P}{\partial x^b}(x) + \frac{\partial h}{\partial x^b}(x) u
\]

Claim: Via nonlinear Schur complement linearity assumption can be removed.
Nonlinear gradient systems: cross Gramian

Cross-Gramian for linear gradient systems uses symmetry property. How about nonlinear case?

- In Ionescu, Scherpen 2009 extension is given for prolongation and gradient extension → a **Sylvester** like equation is difficult to obtain.
Nonlinear gradient systems: cross Gramian

Cross-Gramian for linear gradient systems uses symmetry property. How about nonlinear case?

- In Ionescu, Scherpen 2009 extension is given for prolongation and gradient extension \rightarrow a *Sylvester* like equation is difficult to obtain.

- In Ionescu, Fujimoto, Scherpen 2010/2011 other definition is given, i.e., observability and controllability for nonlinear system is "symmetrized", resulting in different cross-Gramian definition.
Nonlinear gradient systems: cross Gramian

Cross-Gramian for linear gradient systems uses symmetry property. How about nonlinear case?

- In Ionescu, Scherpen 2009 extension is given for prolongation and gradient extension \rightarrow a \textit{Sylvester} like equation is difficult to obtain.

- In Ionescu, Fujimoto, Scherpen 2010/2011 other definition is given, i.e., observability and controllability for nonlinear system is "symmetrized", resulting in different cross-Gramian definition.

- Again due to lack of structure in $G(x)$, no direct link with balancing is yet obtained.
Nonlinear gradient systems: cross Gramian

Result based on cross-Gramian definition for prolongations of gradient system:

Corollary: Take $f(x) = G(x)^{-1} \frac{\partial P}{\partial x}(x)$. Nonlinear cross Gramian $L(x)$ fulfills the following Sylvester like equation

$$p^T T(x) L(x) \frac{\partial f}{\partial x}(x) v + \frac{1}{2} p^T \frac{\partial h}{\partial x}(x) \frac{\partial^T h}{\partial x}(x) v =$$

$$-v^T \frac{\partial^2 L_p}{\partial v \partial x}(x, v) f(x) + \frac{\partial^T L_p}{\partial x}(x, v) f(x) - \bar{F}^T L(x) v,$$

with $\bar{F} = F - T(x) \dot{G}(x) v$, and p and v states of prolongations.
Nonlinear gradient systems: cross Gramian

Result based on cross-Gramian definition for prolongations of gradient system:

Corollary: Take \(f(x) = G(x)^{-1} \frac{\partial P}{\partial x} (x) \). Nonlinear cross Gramian \(L(x) \) fulfills the following Sylvester like equation

\[
p^T T(x) L(x) \frac{\partial f}{\partial x}(x) v + \frac{1}{2} p^T \frac{\partial h}{\partial x}(x) \frac{\partial^T h}{\partial x}(x) v = \\
- v^T \frac{\partial^2 L_o^p}{\partial v \partial x}(x, v) f(x) + \frac{\partial^T L_o^p}{\partial x}(x, v) f(x) - \bar{F}^T L(x) v,
\]

with \(\bar{F} = F - T(x) \dot{G}(x) v \), and \(p \) and \(v \) states of prolongations.

Remark: In linear case Sylvester equation obtained!
Outline

• Introduction
 • gradient systems
 • linear balanced realizations

• Linear gradient systems and balancing

• Nonlinear gradient systems and balancing

• Concluding remarks
Concluding remarks

• Linear gradient systems: nice and clean results. Applicable to large class of systems, including RLC circuits! Reciprocity directly related with symmetry.
Concluding remarks

- Linear gradient systems: nice and clean results. Applicable to large class of systems, including RLC circuits! Reciprocity directly related with symmetry.

- Nonlinear gradient systems: structure is less clear, more research is necessary to see if structure can be of some help for model order reduction. Nonlinear RLC circuits in Brayton-Moser form are gradient systems.
Concluding remarks

- Linear gradient systems: nice and clean results. Applicable to large class of systems, including RLC circuits! Reciprocity directly related with symmetry.

- Nonlinear gradient systems: structure is less clear, more research is necessary to see if structure can be of some help for model order reduction. Nonlinear RLC circuits in Brayton-Moser form are gradient systems.

- How to deal with DAE systems?