Summerschool 2010 - TU Berlin Infinite Dimensional Operator Matrices Theory and Applications

Basic notation and facts

- E, F, G Banach (Hilbert) spaces;
- $\mathcal{L}(E, F):=\{T: E \supset \underbrace{\mathcal{D}(T)}_{\text {subspace }} \rightarrow F, T$ linear $\}, \quad \mathcal{L}(E):=\mathcal{L}(E, E)$, $\mathcal{D}(T)$ domain, $\mathcal{G}(T)$ graph, ker T kernel, $\quad R(T)$ range;
- $T \in \mathcal{L}(E, F)$ closable $: \Longleftrightarrow \overline{\mathcal{G}(T)}=\mathcal{G}(\bar{T})$ with $\bar{T} \in \mathcal{L}(E, F)$, $T \in \mathcal{L}(E, F)$ closed $: \Longleftrightarrow \mathcal{G}(T)$ closed;
- $\mathcal{C}(E, F):=\{T \in \mathcal{L}(E, F): T$ closed $\}, \quad \mathcal{C}(E):=\mathcal{C}(E, E)$;
- $\mathcal{B}(E, F):=\{T \in \mathcal{L}(E, F): T$ bounded, $\mathcal{D}(T)=E\}, \quad \mathcal{B}(E):=\mathcal{B}(E, E)$;
- $T \in \mathcal{L}(E)$ closable:

$$
\begin{aligned}
\rho(T) & :=\left\{\lambda \in \mathbb{C}: T-\lambda \text { injective, }(T-\lambda)^{-1} \in \mathcal{B}(E)\right\} & & \text { resolvent set } \\
\sigma(T) & :=\mathbb{C} \backslash \rho(T) & & \text { spectrum } \\
\sigma_{\mathrm{p}}(T) & :=\{\lambda \in \mathbb{C}: T-\lambda \text { not injective }\} & & \text { point spectrum; }
\end{aligned}
$$

- $T \in \mathcal{C}(E) \Longrightarrow \rho(T)=\{\lambda \in \mathbb{C}: T-\lambda$ bijective $\}$ (by closed graph theorem)
- $T \in \mathcal{L}(E, F)$ bounded: T closed $\Longleftrightarrow \mathcal{D}(T)$ closed;
- $\rho(T) \neq \emptyset \Longrightarrow T$ closed;
- $T \in \mathcal{L}(E, F)$ closed: T (semi-) Fredholm $: \Longleftrightarrow$

$$
\begin{align*}
n(T):=\operatorname{dim} \operatorname{ker} T<\infty, & R(T) \text { closed } \\
d(T):=\operatorname{codim} R(T)<\infty, & (\Longrightarrow R(T) \text { closed }) ; \tag{or}
\end{align*}
$$

then ind $T:=n(T)-d(T)$ index of T,

$$
\sigma_{\text {ess }}(T):=\{\lambda \in \mathbb{C}: T-\lambda \text { not Fredholm }\} ;
$$

- $T \in \mathcal{L}(E, F), \rho(T) \neq \emptyset, \Omega$ component of $\mathbb{C} \backslash \sigma_{\text {ess }}(T)$:

$$
\Omega \cap \rho(T) \neq \emptyset \Longrightarrow \Omega \cap \sigma(T) \text { discrete; }
$$

- $T \in \mathcal{L}(E)$ sectorial $: \Longleftrightarrow(-\infty, 0) \subset \rho(T), \exists M \geq 0:\left\|(T-\lambda)^{-1}\right\| \leq \frac{M}{|\lambda|}, \lambda \in(-\infty, 0)$,
\rightsquigarrow fractional powers T^{γ} for $\gamma \in[0,1]$ defined;
For E, F Hilbert spaces:
- $T \in \mathcal{L}(E, F), \mathcal{D}(T)$ dense in $E: \quad T^{*} \in \mathcal{L}(F, E)$ Hilbert space adjoint.
- $T \in \mathcal{L}(E)$ accretive $: \Longleftrightarrow \operatorname{Re}(T x, x) \geq 0, x \in \mathcal{D}(T)$;
$T \in \mathcal{L}(E)$ m-accretive : $\Longleftrightarrow T$ accretive, $\rho(T) \cap\{\lambda \in \mathbb{C}: \operatorname{Re} \lambda<0\} \neq \emptyset$,
$\rightsquigarrow\left\|(T-\lambda)^{-1}\right\| \leq \frac{1}{|\operatorname{Re} \lambda|}, \operatorname{Re} \lambda<0 \rightsquigarrow T$ sectorial with $M=1$, $T \in \mathcal{L}(E)$ quasi-(m-)accretive $: \Longleftrightarrow T+\alpha(\mathrm{m}-)$ accretive for some $\alpha>0$.

References

[EE87] Edmunds, D. E., Evans, W. D. Spectral theory and differential operators. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1987. Oxford Science Publications.
[GGK90] Gohberg, I. C., Goldberg, S., Kaashoek, M. A. Classes of Linear Operators. I, volume 49 of Oper. Theory Adv. Appl. Birkhäuser, Basel, 1990.
[Kat95] Kato, T. Perturbation theory for linear operators. Classics in Mathematics. Springer, Berlin, 1995. Reprint of the 1980 edition.
[Tre08] Tretter, C. Spectral theory of block operator matrices and applications. Imperial College Press, London, 2008.

