

Summerschool 2010 – TU Berlin Infinite Dimensional Operator Matrices Theory and Applications

Prof. Christiane Tretter

Problem Sheet 1: Operator theoretic backgound

In the following E, F, G are Banach or Hilbert spaces. Prove the following statements.

1. Unbounded operators.

- i) $S \in \mathcal{C}(F,G), T \in \mathcal{B}(E,F) \implies ST \in \mathcal{C}(E,G);$
- ii) $S \in \mathcal{C}(F,G)$ boundedly invertible, $T \in \mathcal{C}(E,F) \implies ST \in \mathcal{C}(E,G);$
- iii) $S \in \mathcal{C}(F,G), n(S) < \infty, R(S)$ closed, $T \in \mathcal{C}(E,F) \implies ST \in \mathcal{C}(E,G);$
- iv) $S, T \in \mathcal{L}(E, F), S + T$ densely defined $\implies T^* + S^* \subset (T + S)^*;$ "=" if $S \in \mathcal{B}(E, F);$
- v) $S \in \mathcal{L}(F,G), T \in \mathcal{L}(E,F), S, ST$ densely defined $\implies T^*S^* \subset (ST)^*;$ "=" if $S \in \mathcal{B}(F,G)$.
- **2. Relative boundedness.** Let $T \in \mathcal{L}(E, F), S \in \mathcal{L}(E, G)$.
 - i) T closed, S closable, $\mathcal{D}(T) \subset \mathcal{D}(S) \implies S$ T-bounded;
 - ii) S T-bounded with T-bound $\delta < 1 \implies S(S+T)$ -bounded with (S+T)-bound $\leq \frac{\delta}{1-\delta}$;
 - iii) S T-bounded $\iff \exists a'_S, b'_S \ge 0$: $||Sx||^2 \le {a'_S}^2 ||x||^2 + {b'_S}^2 ||Tx||^2, x \in \mathcal{D}(T)$ (\sharp); the T-bound of S is the infimum of all b'_S such that (\sharp) holds for some a'_S .

3. Relative compactness and relative bound 0.

- i) E, F reflexive, $T, S \in \mathcal{L}(E, F)$, T or S closable, S T-compact \implies S T-bounded with T-bound 0;
- ii) $T \in \mathcal{L}(E)$ sectorial, $S \in \mathcal{L}(E, F)$ closable, $\mathcal{D}(T^{\gamma}) \subset \mathcal{D}(S)$ for some $\gamma \in (0, 1) \implies S$ T-bounded with T-bound 0;
- iii) E, F Hilbert spaces, $T \in \mathcal{C}(E)$ densely defined, $S \in \mathcal{L}(E, F)$ closable, $\mathcal{D}(|T|^{\gamma}) \subset \mathcal{D}(S)$ for some $\gamma \in (0, 1) \implies S$ T-bounded with T-bound 0;

4. Classical perturbation theorems.

- i) $T, S \in \mathcal{L}(E, F), S T$ -bounded with T-bound < 1: T + S closable (closed) $\iff T$ closable (closed), (then $\mathcal{D}(\overline{T+S}) = \mathcal{D}(\overline{T}));$ T + S boundedly invertible $\iff T$ boundedly invertible, $a_S ||T^{-1}|| + b_S < 1;$
- ii) *H* Hilbert space, $T, S \in \mathcal{L}(H), T = T^* \ge \gamma_T, S \subset S^*, S T$ -bounded with *T*-bound < 1 \Longrightarrow

$$T + S = (T + S)^* \ge \gamma_T - \max\left\{\frac{a_S}{1 - b_S}, a_S + b_S |\gamma_T|\right\};$$

what is the analogous statement for quasi-m-accretive T?

iii) $T \in \mathcal{C}(E), S \in \mathcal{L}(E), S$ T-compact \implies

$$\sigma_{\rm ess}(T+S) = \sigma_{\rm ess}(T), \quad \text{ind } (T+S-\lambda) = \text{ind } (T-\lambda) \text{ for } \lambda \notin \sigma_{\rm ess}(T).$$