

Summerschool 2010 – TU Berlin Infinite Dimensional Operator Matrices Theory and Applications

Prof. Christiane Tretter

Problem Sheet 2 Examples of differential operators

Below we use the Sobolev spaces $W_2^k(\mathbb{R}^n) := \{f \in L_2(\mathbb{R}^n) : f^{(i)} \in L_2(\mathbb{R}^n), i = 1, 2, ..., k\}, k \in \mathbb{N}.$ Prove the following statements.

5. Useful inequalities.

- i) Hardy inequality $(n \ge 3)$: $\int_{\mathbb{R}^n} \frac{|f(x)|^2}{|x|^2} dx \le \frac{4}{(n-2)^2} \int_{\mathbb{R}^n} |\nabla f(x)|^2 dx, \quad f \in C_0^{\infty}(\mathbb{R}^n).$
- ii) Kato's inequality for accretive operators A. $||Ax||^2 \le 2||x|| ||A^2x||, x \in \mathcal{D}(A^2).$
- iii) Hardy-Littlewood inequality. $\|f'\|_{L_2(\mathbb{R})}^2 \leq \|f\|_{L_2(\mathbb{R})} \|f''\|_{L_2(\mathbb{R})}, \quad f \in W_2^2(\mathbb{R}).$

6. Schrödinger operators in \mathbb{R}^n $(n \geq 3)$.

Let $V: \mathbb{R}^n \to \mathbb{R}$ be measurable and $V \in \mathcal{C}(L_2(\mathbb{R}^n))$ the corr. maximal multiplication operator.

- i) V is $-\Delta$ -bounded with Δ -bound 0 if $|V(x)| \le C\left(\frac{1}{|x|}+1\right)$ for almost all $x \in \mathbb{R}^n$; ii) V is $-\Delta$ -compact if, in addition, $\lim_{x \to \infty} V(x) = 0$;
- iii) $-\Delta + V$ is positive if $V(x) \ge -\frac{(n-2)^2}{4|x|^2}$ for almost all $x \in \mathbb{R}^n$.

7. Dirac operators.

Define the Pauli spin matrices $\sigma_j \in M_2(\mathbb{C})$ and the Dirac matrices $\alpha_j, \beta \in M_4(\mathbb{C})$ by

$$\sigma_1 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 := \begin{pmatrix} 0 & -\mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix}, \quad \sigma_3 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \sigma_0 := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix};$$
$$\alpha_j := \begin{pmatrix} 0 & \sigma_j \\ \sigma_j & 0 \end{pmatrix}, \quad j = 1, 2, 3, \quad \beta := \begin{pmatrix} \sigma_0 & 0 \\ 0 & -\sigma_0 \end{pmatrix}.$$

Denote the free Dirac operator in $(L_2(\mathbb{R}^3))^4$ by

$$D_0 = \frac{1}{i}c\alpha \cdot \nabla + \beta mc^2 = \frac{1}{i}\sum_{j=1}^3 c\alpha_j \frac{\partial}{\partial x_j} + \beta mc^2, \quad \mathcal{D}(D_0) := \left(W_2^1(\mathbb{R}^3)\right)^4,$$

and for measurable $v: \mathbb{R}^3 \to \mathbb{R}$ by $V = vI \in \mathcal{C}((L_2(\mathbb{R}^3))^4)$ the maximal multiplication operator.

- i) D_0 is self-adjoint with $\sigma(D_0) = \sigma_{\text{ess}}(D_0) = (-\infty, -mc^2] \cap [mc^2, \infty).$
- ii) V is D₀-bounded with D₀-bound $\leq 2\gamma$ if $|V(x)| \leq \frac{\gamma}{|x|}$ for almost all $x \in \mathbb{R}^3$;
- iii) $V(x) = \frac{\gamma}{|x|} I, x \in \mathbb{R}^3$ (Coulomb potential), is not D_0 -compact and yet $\sigma_{\text{ess}}(D) = \sigma_{\text{ess}}(D_0) = (-\infty, -mc^2] \cap [mc^2, \infty)$. (Hint: consider the differences of the resolvents!)

8. Klein-Gordon equation. Let \mathcal{H} be a Hilbert space, $H_0 \ge m^2 > 0$ self-adjoint in \mathcal{H} , and V symmetric in \mathcal{H} with $\mathcal{D}(H_0^{1/2}) \subset \mathcal{D}(V)$. The abstract Klein-Gordon equation in \mathcal{H} is given by

$$\left(\left(\frac{\mathrm{d}}{\mathrm{d}t} - \mathrm{i}V\right)^2 + H_0\right)u = 0;$$

in the physical case, $H_0 = -\Delta + m^2$ and V is a real-valued potential in $\mathcal{H} = L_2(\mathbb{R}^n)$. Set $S := V H_0^{-1/2}$ and assume that $1 \in \rho(S^*S)$.

i) The Klein-Gordon equation is equivalent to the two different first order systems

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathrm{i}\,\mathcal{A}_i\mathbf{x}, \quad i = 1, 2, \qquad \mathcal{A}_1 = \begin{pmatrix} 0 & I \\ H_0 - V^2 & 2V \end{pmatrix}, \quad \mathcal{A}_2 = \begin{pmatrix} V & I \\ H_0 & V \end{pmatrix}.$$

- ii) $H := H_0^{1/2} (I S^*S) H_0^{1/2}$ is self-adjoint and boundedly invertible in \mathcal{H} .
- iii) \mathcal{A}_1 with $\mathcal{D}(\mathcal{A}_1) = \mathcal{D}(H) \times \mathcal{D}(H_0^{1/2})$ is closed and boundedly invertible.

iv) \mathcal{A}_2 is closable and $\mathcal{A}_1 = W\overline{\mathcal{A}_2}W^{-1}$ with $W = \begin{pmatrix} I & 0 \\ V & I \end{pmatrix}$.

v) $V(x) = \frac{\gamma}{|x|}, x \in \mathbb{R}^n$ (Coulomb potential) satisfies the assumptions if $|\gamma| < \frac{n-2}{2}$.