## Problem Sheet 2 <br> Examples of differential operators

Below we use the Sobolev spaces $W_{2}^{k}\left(\mathbb{R}^{n}\right):=\left\{f \in L_{2}\left(\mathbb{R}^{n}\right): f^{(i)} \in L_{2}\left(\mathbb{R}^{n}\right), i=1,2, . ., k\right\}, k \in \mathbb{N}$. Prove the following statements.

## 5. Useful inequalities.

i) Hardy inequality $(n \geq 3): \quad \int_{\mathbb{R}^{n}} \frac{|f(x)|^{2}}{|x|^{2}} \mathrm{~d} x \leq \frac{4}{(n-2)^{2}} \int_{\mathbb{R}^{n}}|\nabla f(x)|^{2} \mathrm{~d} x, \quad f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$.
ii) Kato's inequality for accretive operators $A$. $\quad\|A x\|^{2} \leq 2\|x\|\left\|A^{2} x\right\|, \quad x \in \mathcal{D}\left(A^{2}\right)$.
iii) Hardy-Littlewood inequality. $\quad\left\|f^{\prime}\right\|_{L_{2}(\mathbb{R})}^{2} \leq\|f\|_{L_{2}(\mathbb{R})}\left\|f^{\prime \prime}\right\|_{L_{2}(\mathbb{R})}, \quad f \in W_{2}^{2}(\mathbb{R})$.
6. Schrödinger operators in $\mathbb{R}^{\boldsymbol{n}}(\boldsymbol{n} \geq 3)$.

Let $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be measurable and $V \in \mathcal{C}\left(L_{2}\left(\mathbb{R}^{n}\right)\right)$ the corr. maximal multiplication operator.
i) $V$ is $-\Delta$-bounded with $\Delta$-bound 0 if $|V(x)| \leq C\left(\frac{1}{|x|}+1\right)$ for almost all $x \in \mathbb{R}^{n}$;
ii) $V$ is $-\Delta$-compact if, in addition, $\lim _{x \rightarrow \infty} V(x)=0$;
iii) $-\Delta+V$ is positive if $V(x) \geq-\frac{(n-2)^{2}}{4|x|^{2}}$ for almost all $x \in \mathbb{R}^{n}$.

## 7. Dirac operators.

Define the Pauli spin matrices $\sigma_{j} \in M_{2}(\mathbb{C})$ and the Dirac matrices $\alpha_{j}, \beta \in M_{4}(\mathbb{C})$ by

$$
\begin{aligned}
& \sigma_{1}:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}:=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \quad \sigma_{3}:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \sigma_{0}:=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) ; \\
& \alpha_{j}:=\left(\begin{array}{cc}
0 & \sigma_{j} \\
\sigma_{j} & 0
\end{array}\right), \quad j=1,2,3, \quad \beta:=\left(\begin{array}{cc}
\sigma_{0} & 0 \\
0 & -\sigma_{0}
\end{array}\right) .
\end{aligned}
$$

Denote the free Dirac operator in $\left(L_{2}\left(\mathbb{R}^{3}\right)\right)^{4}$ by

$$
D_{0}=\frac{1}{\mathrm{i}} c \alpha \cdot \nabla+\beta m c^{2}=\frac{1}{\mathrm{i}} \sum_{j=1}^{3} c \alpha_{j} \frac{\partial}{\partial x_{j}}+\beta m c^{2}, \quad \mathcal{D}\left(D_{0}\right):=\left(W_{2}^{1}\left(\mathbb{R}^{3}\right)\right)^{4}
$$

and for measurable $v: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $V=v I \in \mathcal{C}\left(\left(L_{2}\left(\mathbb{R}^{3}\right)\right)^{4}\right)$ the maximal multiplication operator.
i) $D_{0}$ is self-adjoint with $\sigma\left(D_{0}\right)=\sigma_{\text {ess }}\left(D_{0}\right)=\left(-\infty,-m c^{2}\right] \cap\left[m c^{2}, \infty\right)$.
ii) $V$ is $D_{0}$-bounded with $D_{0}$-bound $\leq 2 \gamma$ if $|V(x)| \leq \frac{\gamma}{|x|} \quad$ for almost all $x \in \mathbb{R}^{3}$;
iii) $V(x)=\frac{\gamma}{|x|} I, x \in \mathbb{R}^{3}$ (Coulomb potential), is not $D_{0}$-compact and yet $\sigma_{\text {ess }}(D)=\sigma_{\text {ess }}\left(D_{0}\right)=$ $\left(-\infty,-m c^{2}\right] \cap\left[m c^{2}, \infty\right) . \quad$ (Hint: consider the differences of the resolvents!)
8. Klein-Gordon equation. Let $\mathcal{H}$ be a Hilbert space, $H_{0} \geq m^{2}>0$ self-adjoint in $\mathcal{H}$, and $V$ symmetric in $\mathcal{H}$ with $\mathcal{D}\left(H_{0}^{1 / 2}\right) \subset \mathcal{D}(V)$. The abstract Klein-Gordon equation in $\mathcal{H}$ is given by

$$
\left(\left(\frac{\mathrm{d}}{\mathrm{~d} t}-\mathrm{i} V\right)^{2}+H_{0}\right) u=0
$$

in the physical case, $H_{0}=-\Delta+m^{2}$ and $V$ is a real-valued potential in $\mathcal{H}=L_{2}\left(\mathbb{R}^{n}\right)$. Set $S:=V H_{0}^{-1 / 2}$ and assume that $1 \in \rho\left(S^{*} S\right)$.
i) The Klein-Gordon equation is equivalent to the two different first order systems

$$
\frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t}=\mathrm{i} \mathcal{A}_{i} \mathbf{x}, \quad i=1,2, \quad \mathcal{A}_{1}=\left(\begin{array}{cc}
0 & I \\
H_{0}-V^{2} & 2 V
\end{array}\right), \quad \mathcal{A}_{2}=\left(\begin{array}{cc}
V & I \\
H_{0} & V
\end{array}\right)
$$

ii) $H:=H_{0}^{1 / 2}\left(I-S^{*} S\right) H_{0}^{1 / 2}$ is self-adjoint and boundedly invertible in $\mathcal{H}$.
iii) $\mathcal{A}_{1}$ with $\mathcal{D}\left(\mathcal{A}_{1}\right)=\mathcal{D}(H) \times \mathcal{D}\left(H_{0}^{1 / 2}\right)$ is closed and boundedly invertible.
iv) $\mathcal{A}_{2}$ is closable and $\mathcal{A}_{1}=W \overline{\mathcal{A}_{2}} W^{-1}$ with $W=\left(\begin{array}{cc}I & 0 \\ V & I\end{array}\right)$.
v) $V(x)=\frac{\gamma}{|x|}, x \in \mathbb{R}^{n}$ (Coulomb potential) satisfies the assumptions if $|\gamma|<\frac{n-2}{2}$.

