Problem Sheet 3
 Block operator matrices and quadratic numerical range

Quiz. What is the shape of the numerical range of a 2×2 matrix?
Hint: Try to look at special cases such as

$$
\mathrm{A}=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) \quad \text { and } \quad \mathrm{A}=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right) \text { ! }
$$

In the following let always $\mathcal{H}_{1}, \mathcal{H}_{2}$ be Hilbert spaces, $\mathcal{H}=\mathcal{H}_{1} \times \mathcal{H}_{2}$, and

$$
\mathcal{A}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right), \quad \mathcal{D}(\mathcal{A})=\mathcal{D}_{1} \times \mathcal{D}_{2}, \quad \mathcal{D}_{1}=\mathcal{D}(A) \cap \mathcal{D}(C), \quad \mathcal{D}_{2}=\mathcal{D}(B) \cap \mathcal{D}(D) ;
$$

here all entries $A \in \mathcal{L}\left(\mathcal{H}_{1}\right), B \in \mathcal{L}\left(\mathcal{H}_{2}, \mathcal{H}_{1}\right), C \in \mathcal{L}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right), D \in \mathcal{L}\left(\mathcal{H}_{2}\right)$ are closable and densely defined and such that $\mathcal{D}(\mathcal{A})$ is dense in \mathcal{H}. Prove the following statements.
9. Simple properties of the quadratic numerical range (QNR).
i) \mathcal{A} bounded $\Longrightarrow W^{2}(\mathcal{A}) \subset K_{\|\mathcal{A}\|}(0):=\{z \in \mathbb{C}:|z| \leq\|\mathcal{A}\|\}$; $\operatorname{dim} \mathcal{H}<\infty \Longrightarrow W^{2}(\mathcal{A})$ closed;
ii) $W^{2}(\alpha \mathcal{A}+\beta)=\alpha W^{2}(\mathcal{A})+\beta, \alpha, \beta \in \mathbb{C}$;
iii) $U=\operatorname{diag}\left(U_{1}, U_{2}\right), U_{1} \in \mathcal{L}\left(\mathcal{H}_{1}\right), U_{2} \in \mathcal{L}\left(\mathcal{H}_{2}\right)$ unitary $\quad \Longrightarrow \quad W^{2}\left(U^{-1} \mathcal{A} U\right)=W^{2}(\mathcal{A})$;
iv) $\overline{W(A)} \cap \overline{W(D)}=\emptyset, 2 \sqrt{\|B\|\|C\|}<\operatorname{dist}(W(A), W(D)) \Longrightarrow \overline{W^{2}(\mathcal{A})}$ has two components.
10. Self-adjoint and \mathcal{J}-self-adjoint block operator matrices.
i) \mathcal{A} symmetric $\left.\Longleftrightarrow A\right|_{\mathcal{D}_{1}} \subset\left(\left.A\right|_{\mathcal{D}_{1}}\right)^{*},\left.B\right|_{\mathcal{D}_{2}} \subset\left(\left.C\right|_{\mathcal{D}_{1}}\right)^{*},\left.D\right|_{\mathcal{D}_{2}} \subset\left(\left.D\right|_{\mathcal{D}_{2}}\right)^{*}$;
ii) if one of the following holds:
(dd) A, D Fredholm, $C A$-compact, $B D$-compact, $B^{*} A^{*}$-compact, $C^{*} D^{*}$-compact,
(odd) B, C Fredholm, $A C$-compact, $D B$-compact, $A^{*} B^{*}$-compact, $D^{*} C^{*}$-compact, then

$$
\mathcal{A}^{*}=\left(\begin{array}{cc}
A^{*} & C^{*} \\
B^{*} & D^{*}
\end{array}\right) ;
$$

iii) find conditions for diagonally dominant and off-diagonally dominant block operator matrices to be self-adjoint!
iv) what are the analogues for \mathcal{J}-symmetric $/ \mathcal{J}$-self-adjoint block operator matrices with

$$
\mathcal{J}=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right) ?
$$

11. Block operator matrices with real QNR.

i) $\mathcal{A}=\mathcal{A}^{*} \Longrightarrow W^{2}(\mathcal{A}) \subset \mathbb{R} ; \mathcal{A} \mathcal{J}$-self-adjoint $\Longrightarrow W^{2}(\mathcal{A})$ symmetric to \mathbb{R};
ii) B, C closed, $\not \equiv 0,(B y, x)(C x, y) \in \mathbb{R}, x \in \mathcal{D}(C), y \in \mathcal{D}(B) \Longrightarrow \exists \gamma \in \mathbb{R}: C \subset \gamma B^{*}$;
iii) if $\operatorname{dim} \mathcal{H}_{1}$, $\operatorname{dim} \mathcal{H}_{2} \geq 2, B, C \not \equiv 0, \mathcal{D}(B) \cap \mathcal{D}(D)$ core of $B, \mathcal{D}(A) \cap \mathcal{D}(C)$ core of C, then

$$
W^{2}(\mathcal{A}) \subset \mathbb{R} \Longrightarrow \mathcal{A} \text { similar to a symmetric or to a } \mathcal{J} \text {-symmetric BOM. }
$$

12. Spectral inclusion.

i) $T \in \mathcal{L}(E)$ closable $\Longrightarrow \sigma_{\mathrm{p}}(\bar{T}) \subset \sigma_{\text {app }}(T), \sigma_{\text {app }}(\bar{T})=\sigma_{\text {app }}(T)$;
ii) \mathcal{A} off-diagonally dominant of order $0, B, C$ boundedly invertible $\Longrightarrow \sigma_{\text {app }}(\mathcal{A}) \subset \overline{W^{2}(\mathcal{A})}$;
iii) find an example showing that ii) need not hold if one of B, C is not boundedly invertible.

