Summerschool 2010 – TU Berlin Infinite Dimensional Operator Matrices Theory and Applications

Prof. Heinz Langer

Exercise A

Let $(\mathcal{L}, [\cdot, \cdot])$ be a linear space with a sesquilinear form.

1) If $[\cdot, \cdot]$ is indefinite then there exist neutral elements.

2) If \mathcal{M} is a maximal non-negative subspace of \mathcal{L} , then $\mathcal{M}^{[\perp]}$ is a non-positive subspace.

3) Let $[\cdot, \cdot]$ be indefinite and $[\cdot, \cdot]_1$ be another sesquilinear form on \mathcal{L} . If

$$[x,x] = 0 \quad \Longrightarrow \quad [x,x]_1 = 0$$

then

a)
$$\mu := \inf\{[x, x]_1 | [x, x] = 1\} > -\infty,$$

b) $[x, x]_1 \ge \mu[x, x]$ for all $x \in \mathcal{L}$.

(Hint: Show that $y, z \in \mathcal{L}$ with [y, y] < 0 and [z, z] > 0 implies:

$$\frac{[y,y]_1}{[y,y]} \le \frac{[z,z]_1}{[z,z]}.$$

Otherwise there would be y, z with [y, y] = -1, [z, z] = 1 and $-[y, y]_1 > [z, z]_1$. Let $x = \epsilon y + z$ with $|\epsilon| = 1$. Then $[x, x] = 2\Re\{\epsilon[y, z]\}, [x, x]_1 < 2\Re\{\epsilon[y, z]_1\}$. Choose ϵ such that [x, x] = 0 and $[x, x]_1 < 0$.)

4) Let $[\cdot, \cdot]$ be non-degenerate. Then all Banach space norms on \mathcal{L} are equivalent. (Hint: With two Banach space norms $\|\cdot\|, \|\cdot\|'$ consider the norm $\|\cdot\|'' := \|\cdot\| + \|\cdot\|'$.)

5) Let $(\mathcal{H}, (\cdot, \cdot))$ be a Hilbert space, G be a bounded self-adjoint operator in $\mathcal{H}, [x, y] := (Gx, y), x, y \in \mathcal{H}$. Then:

 $(\mathcal{H}, [\cdot, \cdot])$ is a Krein space $\iff 0 \in \rho(G).$

6) Let $(\mathcal{K}, [\cdot, \cdot])$ be a Pontryagin space. Then the sequence $(x_n) \subset \mathcal{K}$ converges with respect to the norm of \mathcal{K} to x_0 if and only if the following two relations hold:

- (1) $[x_n, x_n] \rightarrow [x_0, x_0], \quad n \rightarrow \infty,$
- (2) $[x_n, y] \to [x_0, y], \quad n \to \infty$, for all elements y of a total subset of \mathcal{K} .

The sequence $(x_n) \subset \mathcal{K}$ is a Cauchy sequence with respect to the norm of \mathcal{K} if and only if the following two relations hold:

(1) $[x_n - x_m, x_n - x_m] \to 0, \quad m, n \to \infty,$

- (2) $[x_n x_m, y] \to 0$, $m, n \to \infty$, for all elements y of a total subset of \mathcal{K} .
- 7) If \mathcal{L} is a closed subspace of a Krein space \mathcal{K} , then

$$\mathcal{L} \cap \mathcal{L}^{[\perp]} = \{0\} \quad \Longleftrightarrow \quad \overline{\mathcal{L}[+]\mathcal{L}^{[\perp]}} = \mathcal{K}.$$

8) A closed subspace \mathcal{L} of a Krein space \mathcal{K} is called *projection complete* if for each $x \in \mathcal{K}$ there exists an $x_{\mathcal{L}} \in \mathcal{L}$ such that $x - x_{\mathcal{L}}[\bot]\mathcal{L}$. Equivalent are:

- (1) \mathcal{L} is projection complete.
- (2) $\mathcal{K} = \mathcal{L}[\dot{+}]\mathcal{L}^{[\perp]}.$
- (3) \mathcal{L} is the range of a $[\cdot, \cdot]$ -self-adjoint projection $E(E = E^2 = E^+)$.
- (4) The inner product $[\cdot, \cdot]$ is nondegenerate on \mathcal{L} and \mathcal{L} is sequentially complete in its $\sigma_{[\cdot, \cdot]}$ -topology.

Let $(\mathcal{K}, [\cdot, \cdot])$ be a Krein space. For a closed operator T in \mathcal{K} , its adjoint is denoted by T^+ :

$$[Tx, y] = [x, T^+y], \quad x \in \operatorname{dom} T, \ y \in \operatorname{dom} T^+.$$

9) If T is a closed operator in \mathcal{K} , σ a bounded spectral set of T and $E(T, \sigma)$ the corresponding Riesz projection, then

$$E(T;\sigma)^+ = E(T^+;\sigma^*).$$

10) If E is a self-adjoint projection in \mathcal{K} then $\mathcal{L}_1 := \operatorname{ran} E$ and $\mathcal{L}_2 := \operatorname{ran} E^+$ are in duality, that is

$$\begin{aligned} \forall x \in \mathcal{L}_1, \, x \neq 0, \, \exists y \in \mathcal{L}_2 : [x, y] \neq 0 \\ \text{and} \\ \forall y \in \mathcal{L}_2, \, y \neq 0, \, \exists x \in \mathcal{L}_1 : [x, y] \neq 0. \end{aligned}$$