Summerschool 2010 - TU Berlin Infinite Dimensional Operator Matrices
 Theory and Applications

Exercise A

Let $(\mathcal{L},[\cdot, \cdot])$ be a linear space with a sesquilinear form.

1) If $[\cdot, \cdot]$ is indefinite then there exist neutral elements.
2) If \mathcal{M} is a maximal non-negative subspace of \mathcal{L}, then $\mathcal{M}^{[\perp]}$ is a non-positive subspace.
3) Let $[\cdot, \cdot]$ be indefinite and $[,, \cdot]_{1}$ be another sesquilinear form on \mathcal{L}. If

$$
[x, x]=0 \quad \Longrightarrow \quad[x, x]_{1}=0
$$

then
a) $\mu:=\inf \left\{[x, x]_{1} \mid[x, x]=1\right\}>-\infty$,
b) $[x, x]_{1} \geq \mu[x, x]$ for all $x \in \mathcal{L}$.
(Hint: Show that $y, z \in \mathcal{L}$ with $[y, y]<0$ and $[z, z]>0$ implies:

$$
\frac{[y, y]_{1}}{[y, y]} \leq \frac{[z, z]_{1}}{[z, z]} .
$$

Otherwise there would be y, z with $[y, y]=-1,[z, z]=1$ and $-[y, y]_{1}>[z, z]_{1}$. Let $x=\epsilon y+z$ with $|\epsilon|=1$. Then $[x, x]=2 \Re\{\epsilon[y, z]\},[x, x]_{1}<2 \Re\left\{\epsilon[y, z]_{1}\right\}$. Choose ϵ such that $[x, x]=0$ and $[x, x]_{1}<0$.)
4) Let $[\cdot, \cdot]$ be non-degenerate. Then all Banach space norms on \mathcal{L} are equivalent.
(Hint: With two Banach space norms $\|\cdot\|,\|\cdot\|^{\prime}$ consider the norm $\|\cdot\|^{\prime \prime}:=\|\cdot\|+\|\cdot\|^{\prime}$.)
5) Let $(\mathcal{H},(\cdot, \cdot))$ be a Hilbert space, G be a bounded self-adjoint operator in $\mathcal{H},[x, y]:=$ $(G x, y), x, y \in \mathcal{H}$. Then:

$$
(\mathcal{H},[\cdot, \cdot]) \text { is a Krein space } \quad \Longleftrightarrow 0 \in \rho(G) .
$$

6) Let $(\mathcal{K},[\cdot, \cdot])$ be a Pontryagin space. Then the sequence $\left(x_{n}\right) \subset \mathcal{K}$ converges with respect to the norm of \mathcal{K} to x_{0} if and only if the following two relations hold:
(1) $\left[x_{n}, x_{n}\right] \rightarrow\left[x_{0}, x_{0}\right], \quad n \rightarrow \infty$,
(2) $\left[x_{n}, y\right] \rightarrow\left[x_{0}, y\right], \quad n \rightarrow \infty$, for all elements y of a total subset of \mathcal{K}.

The sequence $\left(x_{n}\right) \subset \mathcal{K}$ is a Cauchy sequence with respect to the norm of \mathcal{K} if and only if the following two relations hold:
(1) $\left[x_{n}-x_{m}, x_{n}-x_{m}\right] \rightarrow 0, \quad m, n \rightarrow \infty$,
(2) $\left[x_{n}-x_{m}, y\right] \rightarrow 0, \quad m, n \rightarrow \infty$, for all elements y of a total subset of \mathcal{K}.
7) If \mathcal{L} is a closed subspace of a Krein space \mathcal{K}, then

$$
\mathcal{L} \cap \mathcal{L}^{[\perp]}=\{0\} \quad \Longleftrightarrow \overline{\mathcal{L}[\dot{+}] \mathcal{L}^{[\perp]}}=\mathcal{K}
$$

8) A closed subspace \mathcal{L} of a Krein space \mathcal{K} is called projection complete if for each $x \in \mathcal{K}$ there exists an $x_{\mathcal{L}} \in \mathcal{L}$ such that $x-x_{\mathcal{L}}[\perp] \mathcal{L}$. Equivalent are:
(1) \mathcal{L} is projection complete.
(2) $\mathcal{K}=\mathcal{L}[\dot{+}] \mathcal{L}^{[\perp]}$.
(3) \mathcal{L} is the range of a $[\cdot, \cdot]$-self-adjoint projection $E\left(E=E^{2}=E^{+}\right)$.
(4) The inner product $[\cdot, \cdot]$ is nondegenerate on \mathcal{L} and \mathcal{L} is sequentially complete in its $\sigma_{[\cdot, \cdot]}$ topology.

Let $(\mathcal{K},[\cdot, \cdot])$ be a Krein space. For a closed operator T in \mathcal{K}, its adjoint is denoted by T^{+}:

$$
[T x, y]=\left[x, T^{+} y\right], \quad x \in \operatorname{dom} T, y \in \operatorname{dom} T^{+}
$$

9) If T is a closed operator in \mathcal{K}, σ a bounded spectral set of T and $E(T, \sigma)$ the corresponding Riesz projection, then

$$
E(T ; \sigma)^{+}=E\left(T^{+} ; \sigma^{*}\right)
$$

10) If E is a self-adjoint projection in \mathcal{K} then $\mathcal{L}_{1}:=\operatorname{ran} E$ and $\mathcal{L}_{2}:=\operatorname{ran} E^{+}$are in duality, that is

$$
\begin{aligned}
& \forall x \in \mathcal{L}_{1}, x \neq 0, \exists y \in \mathcal{L}_{2}:[x, y] \neq 0 \\
& \text { and } \\
& \forall y \in \mathcal{L}_{2}, y \neq 0, \exists x \in \mathcal{L}_{1}:[x, y] \neq 0
\end{aligned}
$$

