Summerschool 2010 - TU Berlin
 Infinite Dimensional Operator Matrices
 Theory and Applications

Prof. Heinz Langer

Exercise B

Let $(\mathcal{K},[\cdot, \cdot])$ be a Krein space and T a closed operator.
11)

$$
\begin{array}{ll}
\lambda \in \rho(T) \Longleftrightarrow \lambda^{*} \in \rho\left(T^{+}\right), & \lambda \in \sigma_{r}(T) \Longrightarrow \lambda^{*} \in \sigma_{p}\left(T^{+}\right), \\
\lambda \in \sigma_{p}(T) \Longrightarrow \lambda^{*} \in \sigma_{r}\left(T^{+}\right) \cup \sigma_{p}\left(T^{+}\right), & \lambda \in \sigma_{c}(T)
\end{array}>\lambda^{*} \in \sigma_{c}\left(T^{+}\right) .
$$

12) If $A=A^{+}$then $\sigma(A)$ is symmetric with respect to the real axis and if $\lambda, \mu \in \sigma_{p}(A)$, then for the algebraic eigenspaces $\mathcal{S}_{\lambda}, \mathcal{S}_{\mu}$ it holds

$$
\mathcal{S}_{\lambda}[\perp] \mathcal{S}_{\mu} \quad \text { if } \lambda \neq \mu^{*} ;
$$

moreover, if λ and λ^{*} are isolated eigenvalues, then the Jordan structures of $\left.A\right|_{\mathcal{S}_{\lambda}}$ and $\left.A\right|_{\mathcal{S}_{\lambda^{*}}}$ coincide.
13) If $A=A^{+}, \rho(A) \neq \emptyset$ and $[A x, x] \geq 0, x \in \operatorname{dom} A$, then $\sigma(A)$ is real.
(Hint: Show that $\sigma(A)$ cannot have a non-real boundary point.)
14) Let σ be a compactly supported bounded measure on \mathbb{R} and $\alpha \in \mathbb{R}$. Then the function

$$
\begin{equation*}
f(z):=\int_{\mathbb{R}} \frac{d \sigma(t)}{t-z}+\alpha-z \tag{1}
\end{equation*}
$$

has either exactly one zero $z_{0} \in \mathbb{C}^{+}$, or $f(z) \neq 0, z \in \mathbb{C}^{+}$, and there exists exactly one point $z_{0} \in \mathbb{R}$ such that

$$
\int_{\mathbb{R}} \frac{d \sigma(t)}{\left|t-z_{0}\right|^{2}} \leq 1 \text { and } \int_{\mathbb{R}} \frac{d \sigma(t)}{t-z_{0}}+\alpha-z_{0}=0 .
$$

(Hint: Consider the operator $A:=\left(\begin{array}{cc}t \cdot & \mathbf{1} \\ -(\cdot, \mathbf{1}) & \alpha\end{array}\right)$ in the Hilbert space $L_{\sigma}^{2} \oplus \mathbb{C}$.)
15) Let f be as in (??) and set $g(z):=\int_{\mathbb{R}} \frac{d \sigma(t)}{t-z}+\alpha$. For arbitrary $z_{1} \in \mathbb{C}^{+}$the sequence $\left(z_{n}\right)_{n=1}^{\infty}$:

$$
z_{n+1}:=g\left(z_{n}\right), \quad n=1,2, \ldots,
$$

belongs to \mathbb{C}^{+}and converges to the point $z_{0} \in \mathbb{C}^{+} \cup \mathbb{R}$ from 14). (Exercises 14) and 15) are closely related to a result of Denjoy and Wolff (Compt. Rend. ...) on solutions of the equation $s(z)-z=0$ in $\overline{\mathbb{D}}$ for a Schur function s.)
16) If U is a unitary operator in the Krein space \mathcal{K} such that

$$
\left\|U^{n}\right\| \leq C, n=1,2, \ldots
$$

for some $C>0$, then there exist a maximal non-negative subspace \mathcal{L}_{+}and a maximal nonpositive subspace \mathcal{L}_{-}, which are invariant under U and such that $\mathcal{K}=\mathcal{L}_{+}[\dot{+}] \mathcal{L}_{-}$.
(Hint: The assumptions imply $\left\|U^{n}\right\| \leq C$ for all $n=0, \pm 1, \pm 2, \ldots$ According to a result of Sz.-Nagy, U is similar to a (Hilbert space) unitary operator $V: U=T V T^{-1}$. Consider $S:=T^{*} J T$ for a fundamental symmetry J.)
17) Let T be expansive in the Krein space $(\mathcal{K},[\cdot, \cdot])$, that is

$$
[T x, T x] \geq[x, x], x \in \mathcal{K}
$$

and suppose that $\mathbb{T}:=\{z:\|z\|=1\} \subset \rho(T)$. Then there exist a maximal non-negative subspace \mathcal{L}_{+}and a maximal non-positive subspace \mathcal{L}_{-}, which are invariant under T and such that

$$
\mathcal{K}=\mathcal{L}_{+} \dot{+} \mathcal{L}_{-}
$$

(Hint: Consider the Riesz spectral subspaces of T corresponding to $\sigma(T) \cap \mathbb{D}$ and $\sigma(T) \cap(\mathbb{C} \backslash \overline{\mathbb{D}})$.) 18) Let \widehat{J} be a $2 n \times 2 n$-matrix such that $\widehat{J}^{*}=-\widehat{J}$ and $\widehat{J}^{2}=-I$, and let H be a locally summable, symmetric $2 n \times 2 n$-matrix function on [0, ∞). Consider the canonical differential system

$$
\widehat{J} U^{\prime}(t)=H(t) U(t), \quad 0 \leq t<\infty ; \quad U(0)=I
$$

For $J:=i \widehat{J}$, the solution $U(t)$ is a J-unitary matrix function: $U(t)^{*} J U(t)=J$. (Remark: If H is periodic with period $\tau>0: H(t+\tau)=H(t), t \geq 0$, then the stability behaviour of the solution $U(t)$ is determined by $U(\tau)$.)

