

Summerschool 2010 – TU Berlin Infinite Dimensional Operator Matrices Theory and Applications

Prof. Heinz Langer

Exercise B

Let $(\mathcal{K}, [\cdot, \cdot])$ be a Krein space and T a closed operator.

11)
$$\lambda \in \rho(T) \iff \lambda^* \in \rho(T^+), \qquad \lambda \in \sigma_r(T) \implies \lambda^* \in \sigma_p(T^+), \\ \lambda \in \sigma_p(T) \implies \lambda^* \in \sigma_r(T^+) \cup \sigma_p(T^+), \qquad \lambda \in \sigma_c(T) \implies \lambda^* \in \sigma_c(T^+).$$

12) If $A = A^+$ then $\sigma(A)$ is symmetric with respect to the real axis and if $\lambda, \mu \in \sigma_p(A)$, then for the algebraic eigenspaces \mathcal{S}_{λ} , \mathcal{S}_{μ} it holds

$$S_{\lambda}[\perp]S_{\mu}$$
 if $\lambda \neq \mu^*$;

moreover, if λ and λ^* are isolated eigenvalues, then the Jordan structures of $A|_{\mathcal{S}_{\lambda}}$ and $A|_{\mathcal{S}_{\lambda^*}}$ coincide.

- 13) If $A = A^+$, $\rho(A) \neq \emptyset$ and $[Ax, x] \geq 0$, $x \in \text{dom } A$, then $\sigma(A)$ is real. (Hint: Show that $\sigma(A)$ cannot have a non-real boundary point.)
- 14) Let σ be a compactly supported bounded measure on \mathbb{R} and $\alpha \in \mathbb{R}$. Then the function

$$f(z) := \int_{\mathbb{R}} \frac{d\sigma(t)}{t - z} + \alpha - z \tag{1}$$

has either exactly one zero $z_0 \in \mathbb{C}^+$, or $f(z) \neq 0$, $z \in \mathbb{C}^+$, and there exists exactly one point $z_0 \in \mathbb{R}$ such that

$$\int_{\mathbb{R}} \, \frac{d\sigma(t)}{|t-z_0|^2} \leq 1 \ \ \text{and} \ \ \int_{\mathbb{R}} \, \frac{d\sigma(t)}{t-z_0} + \alpha - z_0 = 0.$$

(Hint: Consider the operator $A:=\begin{pmatrix}t\cdot&\mathbf{1}\\-(\cdot,\mathbf{1})&\alpha\end{pmatrix}$ in the Hilbert space $L^2_\sigma\oplus\mathbb{C}.$)

15) Let f be as in (??) and set $g(z) := \int_{\mathbb{R}} \frac{d\sigma(t)}{t-z} + \alpha$. For arbitrary $z_1 \in \mathbb{C}^+$ the sequence $(z_n)_{n=1}^{\infty}$:

$$z_{n+1} := g(z_n), \quad n = 1, 2, \dots,$$

belongs to \mathbb{C}^+ and converges to the point $z_0 \in \mathbb{C}^+ \cup \mathbb{R}$ from 14). (Exercises 14) and 15) are closely related to a result of Denjoy and Wolff (Compt. Rend. ...) on solutions of the equation s(z) - z = 0 in $\overline{\mathbb{D}}$ for a Schur function s.)

16) If U is a unitary operator in the Krein space K such that

$$||U^n|| \le C, \ n = 1, 2, \dots,$$

for some C > 0, then there exist a maximal non-negative subspace \mathcal{L}_+ and a maximal non-positive subspace \mathcal{L}_- , which are invariant under U and such that $\mathcal{K} = \mathcal{L}_+[\dot{+}]\mathcal{L}_-$.

(Hint: The assumptions imply $||U^n|| \leq C$ for all $n = 0, \pm 1, \pm 2, \ldots$ According to a result of Sz.-Nagy, U is similar to a (Hilbert space) unitary operator $V: U = TVT^{-1}$. Consider $S := T^*JT$ for a fundamental symmetry J.)

17) Let T be expansive in the Krein space $(\mathcal{K}, [\cdot, \cdot])$, that is

$$[Tx, Tx] \ge [x, x], \ x \in \mathcal{K},$$

and suppose that $\mathbb{T} := \{z : ||z|| = 1\} \subset \rho(T)$. Then there exist a maximal non-negative subspace \mathcal{L}_+ and a maximal non-positive subspace \mathcal{L}_- , which are invariant under T and such that

$$\mathcal{K} = \mathcal{L}_{+} \dotplus \mathcal{L}_{-}$$
.

(Hint: Consider the Riesz spectral subspaces of T corresponding to $\sigma(T) \cap \mathbb{D}$ and $\sigma(T) \cap (\mathbb{C} \setminus \overline{\mathbb{D}})$.)

18) Let \widehat{J} be a $2n \times 2n$ -matrix such that $\widehat{J}^* = -\widehat{J}$ and $\widehat{J}^2 = -I$, and let H be a locally summable, symmetric $2n \times 2n$ -matrix function on $[0, \infty)$. Consider the *canonical* differential system

$$\widehat{J}U'(t) = H(t)U(t), \quad 0 \le t < \infty; \qquad U(0) = I.$$

For $J := i\widehat{J}$, the solution U(t) is a J-unitary matrix function: $U(t)^*JU(t) = J$. (Remark: If H is periodic with period $\tau > 0$: $H(t + \tau) = H(t)$, $t \ge 0$, then the stability behaviour of the solution U(t) is determined by $U(\tau)$.)