Dr. Matthias Langer

Exercises on variational principles

1. Let A be a closed operator in a Hilbert space \mathcal{H}. Show that the form

$$
\mathfrak{a}[x, y]:=(A x, A y), \quad x, y \in \operatorname{dom}(A),
$$

is closed and non-negative.
2. Let $\mathcal{H}=\ell^{2}$ and consider the operator function T :

$$
T(\lambda)=\operatorname{diag}\left(T_{n}(\lambda)\right), \quad \lambda \in(-1,3),
$$

with

$$
T_{n}(\lambda):= \begin{cases}1, & \lambda \in(-1,0], \\ 1-n \lambda, & \lambda \in\left(0, \frac{2}{n}\right) \\ -1, & \lambda \in\left[\frac{2}{n}, 3\right)\end{cases}
$$

for $n \in \mathbb{N}$. Calculate the spectrum of the operator function T. Can the variational principle from the lecture be applied?
3. Let $\mathcal{H}=L^{2}(0,1) \oplus \mathbb{C}$ and A the operator of multiplication by the independent variable in $L^{2}(0,1)$. Show that the operator function

$$
T(\lambda)=\left(\begin{array}{cc}
A+\lambda^{2} I & 0 \\
0 & 1-\lambda
\end{array}\right), \quad \lambda \in(-1,2),
$$

satisfies the assumptions of the variational principle. Calculate κ and

$$
\min _{\substack{L \subset \mathcal{D} \\ \operatorname{dim} L=\kappa+n}} \max _{\substack{x \in \leq \\ x \neq 0}} p(x)
$$

for $n \in \mathbb{N}$. Determine the spectrum of T.
4. Let A be a self-adjoint operator in a Hilbert space \mathcal{H} so that

$$
A \geq-c \quad \text { for some } c>0, \quad \sigma_{\mathrm{ess}}(A) \cap(-\infty, 0)=\emptyset
$$

Let B be a symmetric, non-negative operator which is A-bounded with A-bound 0 . Apply the variational principle principle to the operator function

$$
T(\lambda)=\lambda^{2} I-\lambda B+A, \quad \lambda \in(-\sqrt{c}-1,0) .
$$

5. Prove the formula

$$
\lambda_{n}=\max _{\substack{L \subset \mathcal{Y} \\ \operatorname{dim} \\ L=k+n-1}} \inf _{\substack{x \in \mathcal{D}^{x \neq 0} \\ x \perp L}} p(x)
$$

from the theorem in the lecture about operator functions.

