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1) [B74, Lemma I.2.1]

2) [B74, Lemma I.6.2]. Note that in the book by Bognár ‘non-negative’ subspaces are called
‘positive’ and ‘positive’ subspaces ‘positive definite’. See [B74, Remark 6.5] for the fact
that M[⊥] need not be maximal non-positive.

3) [DL96, Lemma 1.2]

4) [L82, Proposition 1.2]

5) [B74, Theorem V.1.3.] or [AI89, §1.6.13]

6) [IKL82, Theorem 2.4]

7) [L82, Proposition 5.1]

8) [L82, Theorem 5.2] and its proof.

9) [L82, p. 9]

10) [L82, Proposition 3.1]

11) The proof is essentially the same as in the Hilbert space case.

12) [L82, Proposition 3.2]

13) [B74, VII.1.3]

14) The operator A is self-adjoint in the Pontryagin space L
2
σ⊕C and hence has an eigenvalue

in the closed upper half-plane. Simplifying the eigenvalue equation for A one gets relation
(1). The condition

∫
R

dσ(t)
|t−z0|2

≤ 1 is equivalent to the fact that the eigenvector is non-
positive.

15) One possibility is to transform the upper half-plane to the unit disc with a Möbius
transform and apply results by Denjoy [D26] and Wolff [W26] (see also [B81]).

16) [A79, Theorem 5.1]

17) [A79, Theorem 5.2]

18) [L82, pp. 12,13]
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[D26] Denjoy, A., Sur l’itération des fonctions analytiques. C. R. Acad. Sc. Paris 182

(1926), 255–257.

[DL96] Dijksma, A., Langer, H., Operator theory and ordinary differential operators. Lectures
on operator theory and its applications (Waterloo, ON, 1994), pp. 73–139, Fields Inst.
Monogr., vol. 3, Amer. Math. Soc., Providence, RI, 1996.
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