

Summerschool 2010 – TU Berlin Infinite Dimensional Operator Matrices Theory and Applications

Prof. Heinz Langer

References to solutions of the problems

See next page for bibliographical references.

- 1) [B74, Lemma I.2.1]
- 2) [B74, Lemma I.6.2]. Note that in the book by Bognár 'non-negative' subspaces are called 'positive' and 'positive' subspaces 'positive definite'. See [B74, Remark 6.5] for the fact that $\mathcal{M}^{[\perp]}$ need not be maximal non-positive.
- 3) [DL96, Lemma 1.2]
- 4) [L82, Proposition 1.2]
- 5) [B74, Theorem V.1.3.] or [AI89, §1.6.13]
- 6) [IKL82, Theorem 2.4]
- 7) [L82, Proposition 5.1]
- 8) [L82, Theorem 5.2] and its proof.
- 9) [L82, p. 9]
- 10) [L82, Proposition 3.1]
- 11) The proof is essentially the same as in the Hilbert space case.
- 12) [L82, Proposition 3.2]
- 13) [B74, VII.1.3]
- 14) The operator A is self-adjoint in the Pontryagin space $L^2_{\sigma} \oplus \mathbb{C}$ and hence has an eigenvalue in the closed upper half-plane. Simplifying the eigenvalue equation for A one gets relation (1). The condition $\int_{\mathbb{R}} \frac{d\sigma(t)}{|t-z_0|^2} \leq 1$ is equivalent to the fact that the eigenvector is non-positive.
- 15) One possibility is to transform the upper half-plane to the unit disc with a Möbius transform and apply results by Denjoy [D26] and Wolff [W26] (see also [B81]).
- 16) [A79, Theorem 5.1]
- 17) [A79, Theorem 5.2]
- 18) [L82, pp. 12,13]

References

- [A79] Ando, T., *Linear Operators on Krein Spaces*. Hokkaido University, Research Institute of Applied Electricity, Division of Applied Mathematics, Sapporo, 1979.
- [AI89] Azizov, T. Ya., Iokhvidov, I. S., Linear Operators in Spaces with an Indefinite Metric. Translated from the Russian edition. Pure and Applied Mathematics (New York). John Wiley & Sons, Ltd., Chichester, 1989.
- [B74] Bognár, J., *Indefinite Inner Product Spaces*. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 78. Springer-Verlag, New York-Heidelberg, 1974.
- [B81] Burckel, R. B., Iterating analytic self-maps of discs. *Amer. Math. Monthly* 88 (1981), 396–407.
- [D26] Denjoy, A., Sur l'itération des fonctions analytiques. C. R. Acad. Sc. Paris 182 (1926), 255–257.
- [DL96] Dijksma, A., Langer, H., Operator theory and ordinary differential operators. *Lectures on operator theory and its applications (Waterloo, ON, 1994)*, pp. 73–139, Fields Inst. Monogr., vol. 3, Amer. Math. Soc., Providence, RI, 1996.
- [IKL82] Iohvidov, I.S., Kreĭn, M.G., Langer, H., Introduction to the spectral theory of operators in spaces with an indefinite metric. Mathematical Research, vol. 9. Akademie-Verlag, Berlin, 1982.
- [L82] Langer, H., Spectral functions of definitizable operators in Krein spaces. Functional analysis (Dubrovnik, 1981), pp. 1–46, Lecture Notes in Math., vol. 948, Springer, Berlin-New York, 1982.
- [W26] Wolff, J., Sur l'itération des fonctions bornées. C. R. Acad. Sc. Paris 182 (1926), 42–43.