VolkswagenStiftung

Summerschool 2010 - TU Berlin Infinite Dimensional Operator Matrices
 Theory and Applications

Dr. Matthias Langer

References to solutions of problems

1. This follows basically from the definition. For quadratic forms see, e.g. [Kato95].
2. $\sigma(T)=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$. The variational principle cannot be applied because T is not continuous in norm resolvent sense at 0 . It can be applied to the function $S(\lambda)=-T(-\lambda)$ on the interval $[-3,0)$.
3. A similar example was considered in [BEL00, Example 3.6].
$\sigma(T)=\{0,1\}, \kappa=0$. The variation gives the eigenvalue 1 and not the point 0 in the essential spectrum.
4. See [EL04, Section 3.2].
5. See [EL04, pp. 296-297].

References

[BEL00] Binding, P., Eschwé, D., Langer, H., Variational principles for real eigenvalues of self-adjoint operator pencils. Integral Equations Operator Theory 38 (2000), 190206.
[EL04] Eschwé, D., Langer, M., Variational principles for eigenvalues of self-adjoint operator functions. Integral Equations Operator Theory 49 (2004), 287-321.
[Kato95] Kato, T., Perturbation Theory for Linear Operators. Reprint of the 1980 edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.

