On Hamiltonian operators and operator-functions

T.Ya. Azizov

This talk is based on a joint work with A. Dijksma and I.V. Gridneva.

Let $\{\mathcal{G}, (\cdot, \cdot)\}$ be a Hilbert space. Consider the orthogonal direct sum

$$\mathcal{H} = \mathcal{G} \oplus \mathcal{G}$$

which is a Hilbert space whose inner product we also denote by $(\,\cdot\,,\cdot\,).$ Introduce the matrices $J = \left[\begin{array}{cc} 0 & I \\ I & 0 \end{array} \right]$

$$\mathfrak{J} = \left[\begin{array}{cc} 0 & iI \\ -iI & 0 \end{array} \right]$$

and two Krein spaces $\mathcal{K}_J := \{\mathcal{H}, [\cdot, \cdot]_J\}$ and $\mathcal{K}_{\mathfrak{J}} := \{\mathcal{H}, [\cdot, \cdot]_{\mathfrak{J}}\}$, whose indefinite inner products are defined by

$$[\cdot,\cdot]_J = (J\cdot,\cdot) \text{ and } [\cdot,\cdot]_{\mathfrak{J}} = (\mathfrak{J}\cdot,\cdot),$$

respectively.

A closed densely defined operator \mathfrak{A} on \mathcal{H} is called a Hamiltonian operator if $i\mathfrak{A}$ is self-adjoint in the Krein space $\mathcal{K}_{\mathfrak{Z}}$ and \mathfrak{A} is called a nonnegative Hamiltonian operator if it is a Hamiltonian operator and $i\mathfrak{A}$ is dissipative in the Krein space \mathcal{K}_J . The aim of this talk is to give conditions which imply the boundedness of closed densely defined Hamiltonian operators and conditions by which a Hamiltonian operator-function is reducible.

This research supported by the grants NWO-RFBR 047-008-008 and RFBR 99-01-00391, 02-01-00353.