A Class of Nonlinear Eigenvalue Problems

J. Behrndt

This talk is based on joint work with C. Trunk.

Let A be a symmetric operator with defect one in the Krein space $(\mathcal{H}, [\cdot, \cdot])$ such that the form $[A \cdot, \cdot]$ has a finite number of negative squares and let $\{\mathbb{C}, \Gamma_0, \Gamma_1\}$ be a boundary value space for A^+ . In this talk we consider a class of λ -dependent boundary value problems of the form

$$(A^+ - \lambda)f = g, \quad \tau(\lambda)\Gamma_0 f = \Gamma_1 f, \quad f \in \mathcal{D}(A^+), \quad g \in \mathcal{H},$$
 (1)

where τ has the property that the function $\lambda \mapsto \lambda(\lambda^2 + 1)^{-1}\tau(\lambda)$ can be written as a sum of a generalized Nevanlinna function and a rational function. We construct a selfadjoint operator \widetilde{A} in a Krein space $\mathcal{H} \times \mathcal{K}$ such that $f = P_{\mathcal{H}}(\widetilde{A} - \lambda)^{-1}|_{\mathcal{H}}g$ is a solution of (1). Here it turns out that \widetilde{A} is an operator with a finite number of negative squares.